

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1823-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Features (Continued)

- Data Signal Modulator module
- Selectable modulator and carrier sources
- SR Latch:
- Multiple Set/Reset input options
- Emulates 555 Timer applications

Device	Data Sheet Index	Program Memory Flash (words)	Data EEPROM (bytes)	Data SRAM (bytes)	I/O'S ⁽²⁾	10-bit ADC (ch)	CapSense (ch)	Comparators	Timers (8/16-bit)	EUSART	MSSP (I ² C TM /SPI)	ECCP (Full-Bridge) ECCP (Half-Bridge) CCP	SR Latch	Debug ⁽¹⁾	XLP
PIC12(L)F1822	(1)	2K	256	128	6	4	4	1	2/1	1	1	0/1/0	Y	I/H	Y
PIC12(L)F1840	(2)	4K	256	256	6	4	4	1	2/1	1	1	0/1/0	Y	I/H	Y
PIC16(L)F1823	(1)	2K	256	128	12	8	8	2	2/1	1	1	1/0/0	Y	I/H	Y
PIC16(L)F1824	(3)	4K	256	256	12	8	8	2	4/1	1	1	1/1/2	Y	I/H	Y
PIC16(L)F1825	(4)	8K	256	1024	12	8	8	2	4/1	1	1	1/1/2	Y	I/H	Y
PIC16(L)F1826	(5)	2K	256	256	16	12	12	2	2/1	1	1	1/0/0	Y	I/H	Y
PIC16(L)F1827	(5)	4K	256	384	16	12	12	2	4/1	1	2	1/1/2	Y	I/H	Y
PIC16(L)F1828	(3)	4K	256	256	18	12	12	2	4/1	1	1	1/1/2	Y	I/H	Y
PIC16(L)F1829	(4)	8K	256	1024	18	12	12	2	4/1	1	2	1/1/2	Y	I/H	Y
PIC16(L)F1847	(6)	8K	256	1024	16	12	12	2	4/1	1	2	1/1/2	Y	I/H	Y

TABLE 1: PIC12(L)F1822/1840/PIC16(L)F182X/1847 FAMILY TYPES

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.

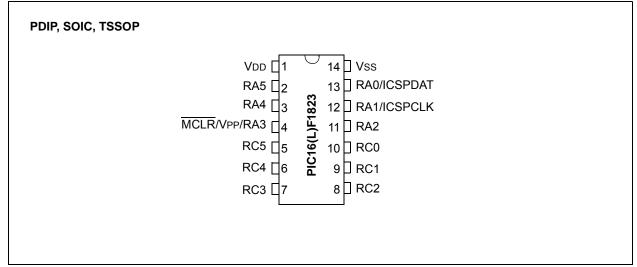
2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

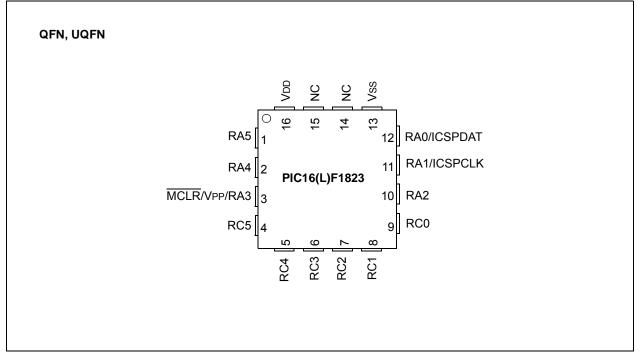
1: DS41413 PIC12(L)F1822/PIC16(L)F1823 Data Sheet, 8/14-Pin Flash Microcontrollers.

2: DS41441 PIC12(L)F1840 Data Sheet, 8-Pin Flash Microcontrollers.

3: DS41419 PIC16(L)F1824/1828 Data Sheet, 28/40/44-Pin Flash Microcontrollers.


4: DS41440 PIC16(L)F1825/1829 Data Sheet, 14/20-Pin Flash Microcontrollers.

5: DS41391 PIC16(L)F1826/1827 Data Sheet, 18/20/28-Pin Flash Microcontrollers.


6: DS41453 PIC16(L)F1847 Data Sheet, 18/20/28-Pin Flash Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.

FIGURE 2: 14-PIN DIAGRAM FOR PIC16(L)F1823

FIGURE 3: 16-PIN DIAGRAM FOR PIC16(L)F1823

REGISTER 4-1: CONFIGURATION WORD 1

		FCMEN	IESO	CLKOUTEN	BORE	N<1.0>	
				OLIGOTEIN	BORL	N~1.0/	CPD
		bit 13					bit 8
R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1
CP	MCLRE	PWRTE	WD	ΓE<1:0>		FOSC<2:0>	
bit 7		•					bit
Legend:							
R = Readable bit		P = Programm	able bit	U = Unimpleme	nted bit, read a	ıs '1'	
'0' = Bit is cleared		'1' = Bit is set		-n = Value wher	n blank or after	Bulk Erase	
bit 13	FCMEN: Fail-Sa	fe Clock Monitor	Enable bit				
		ock Monitor is ena ock Monitor is disa					
	1 = Internal/Exte	xternal Switchove rnal Switchover n rnal Switchover n	node is enable				
bit 11	CLKOUTEN: Clo	ock Out Enable bi	it				
	If FOSC configuration bits are set to LP. XT. HS modes: This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin All other FOSC modes:						
		JT function is disa JT function is ena		tion on the CLKOL _KOUT pin	JT pin		
		Brown-out Reset E	Enable bits ⁽¹⁾				
	11 = BOR enable		on and disable	d in Sleen			
	 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the BORCON register 00 = BOR disabled 						
	CPD: Data Code		is disabled				
		y code protection y code protection					
	CP: Code Protec						
	1 = Program memory code protection is disabled 0 = Program memory code protection is enabled						
	•	VPP Pin Function		1			
	If LVP bit = 1 :						
	This bit is ig	nored.					
	<u>lf LVP bit = 0</u> : 1 = MCLR/V	PP pin function is	MCLR; Weak p	ull-up enabled.			
				ICLR internally disa	abled; Weak pu	II-up under contro	ol of the WPU
bit 5		up Timer Enable	bit ⁽¹⁾				
	1 = PWRT disa						
	0 = PWRT enat WDTE<1:0>: Wa	oled atchdog Timer En	able bit				
	11 = WDT enab	-					
		led while running		•			
	01 = WDT contr 00 = WDT disab		IEN bit in the	WDTCON registe	r		

3: The entire program memory will be erased when the code protection is turned off.

REGISTER 10-1:	WDTCON: WATCHDOG TIMER CONTROL REGISTER

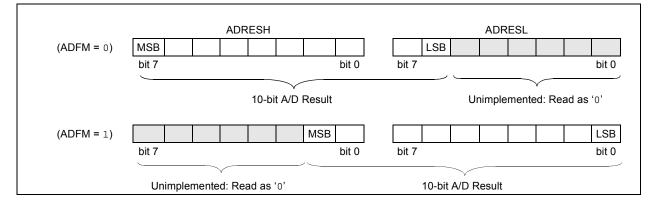
U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	_			WDTPS<4:0	>		SWDTEN
bit 7							bit
Legend:							
R = Readabl		W = Writable		•	mented bit, read		
u = Bit is unc	0	x = Bit is unkr	nown	-m/n = Value	at POR and BO	OR/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared				
bit 7-6	Unimplem	ented: Read as '	0'				
bit 5-1	-	:0>: Watchdog Ti		elect bits			
		Prescale Rate					
		1:32 (Interval 1 m	s tvp)				
		1:64 (Interval 2 m					
	00010 = 1	1:128 (Interval 4 r	ns typ)				
		1:256 (Interval 8 r					
		1:512 (Interval 16					
		1:1024 (Interval 3 1:2048 (Interval 6	2 • • <i>i</i>				
		1:4096 (Interval 0					
		1:8192 (Interval 2					
	01001 = 1	1:16384 (Interval	512 ms typ)				
		:32768 (Interval					
	01011 = 1	1:65536 (Interval	2s typ) (Rese	et value)			
	01100 = 1	l:131072 (2 ¹⁷) (Ir l:262144 (2 ¹⁸) (Ir	iterval 4s typ)				
		1:524288 (2 ¹⁹) (Ir					
	01111 = 1	1:1048576 (2 ²⁰) (Interval 32s ty	(q)			
	10000 = 1	1:2097152 (2 ²¹) (Interval 64s ty	/p)			
	10001 = 1	I:4194304 (2 ²²) (Interval 128s	typ)			
	10010 = 1	1:8388608 (2 ²³) (Interval 256s	typ)			
	10011 = F	Reserved. Result	s in minimum	interval (1:32)			
	•						
	•						
	11111 = F	Reserved. Result	s in minimum	interval (1:32)			
bit 0		Software Enable/			bit		
	If WDTE<1			5			
	This bit is ig	gnored.					
	If WDTE<1						
	1 = WDT is						
	$\cap = WDTie$						
	If WDTE<1	s turned off $= 1$					

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

16.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

FIGURE 16-3: 10-BIT A/D CONVERSION RESULT FORMAT

16.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 16-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 16-4. **The maximum recommended impedance for analog sources is 10 k** Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 16-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - I}\right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} (1 - \frac{1}{(2^{n+1}) - I}) ; combining [1] and [2]$$

Note: Where n = number of bits of the ADC.

Solving for TC:

$$Tc = -CHOLD(RIC + RSS + RS) \ln(1/2047)$$
$$= -12.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$
$$= 1.72\mu s$$

Therefore:

$$TACQ = 2\mu s + 1.72\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.97\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R-0/0	U-0	U-0	R/W-0/0	
MDEN	MDOE	MDSLR	MDOPOL	MDOUT	—	—	MDBIT	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value	at POR and BOP	R/Value at all	other Resets	
'1' = Bit is se	et	'0' = Bit is cle	eared					
bit 7	MDEN: Mod	ulator Module E	Enable bit					
		or module is er		• • •	als			
		or module is di		•				
bit 6	MDOE: Mod	MDOE: Modulator Module Pin Output Enable bit						
		or pin output ei						
		0 = Modulator pin output disabled						
bit 5		OUT Pin Slew	0					
		pin slew rate l						
bit 4		Iodulator Outpu	0					
	 1 = Modulator output signal is inverted 0 = Modulator output signal is not inverted 							
bit 3	MDOUT: Modulator Output bit							
	Displays the	Displays the current output value of the Modulator module. ⁽¹⁾						
bit 2-1	Unimpleme	Unimplemented: Read as '0'						
bit 0	MDBIT: Allow	MDBIT: Allows software to manually set modulation source input to module ⁽²⁾						
		or uses High C						
	0 = Modulat	or uses Low Ca	arrier source					
Note 1: ⊤	he modulated ou	utput frequency	can be greate	r and asynchro	onous from the c	lock that upd	ates this	
re	egister bit, the bi	t value may not	be valid for hi	gher speed mo	odulator or carrie	er signals.		

REGISTER 23-1: MDCON: MODULATION CONTROL REGISTER

2: MDBIT must be selected as the modulation source in the MDSRC register for this operation.

24.3.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

24.3.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

24.3.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.3.9 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1 "Alternate Pin Function**" for more information.

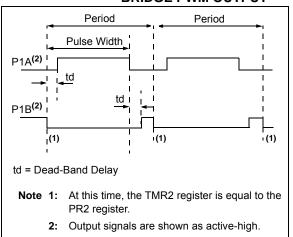
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	RXDTSEL	SDOSEL	SSSEL	—	T1GSEL	TXCKSEL	P1BSEL ⁽²⁾	CCP1SEL ⁽²⁾	114
CCP1CON	P1M·	<1:0>	DC1B	<1:0>		CCP1I	V<3:0>		213
CCPR1L	Capture/Com	pare/PWM Re	gister x Low B	syte (LSB)					191
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
PR2	Timer2 Period	d Register							176*
T2CON	-	T2OUTPS<3:0> TMR2ON T2CKPS<:0>1						178	
TMR2	Timer2 Modu	Timer2 Module Register						176*	
TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	117
TRISC ⁽¹⁾	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	121

TABLE 24-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

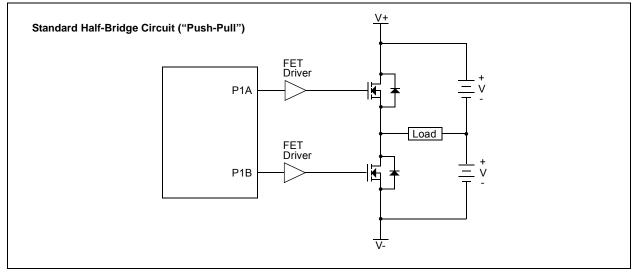
Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: PIC16(L)F1823 only.


2: PIC12(L)F1822 only.

24.4.5 PROGRAMMABLE DEAD-BAND DELAY MODE


In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 24-16 for illustration. The lower seven bits of the associated PWM1CON register (Register 24-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 24-16: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

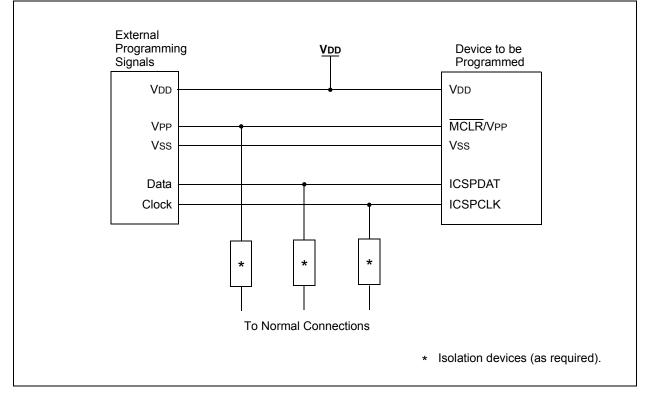
FIGURE 24-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCP1AS	Ξ	CCP1AS<2:0>		PSS1A	AC<1:0>	PSS1B	SD<1:0>
bit 7	·						bit (
Legend:							
R = Readat	ole hit	W = Writable b	nit	II – Unimpler	nented bit, read	1 ac '0'	
u = Bit is ur		x = Bit is unknown		•	at POR and BO		other Resets
'1' = Bit is s	•	'0' = Bit is clea					
1 - Dit 13 3			licu				
bit 7	CCP1ASE:	: CCP1 Auto-Shut	down Event S	Status bit			
	1 = A shutdown event has occurred; CCP1 outputs are in shutdown state 0 = CCP1 outputs are operating						
bit 6-4	CCP1AS<2:0>: CCP1 Auto-Shutdown Source Select bits 000 = Auto-shutdown is disabled 001 = Comparator C1 output high ⁽¹⁾ 010 = Comparator C2 output high ^(1, 2) 011 = Either Comparator C1 or C2 high ^(1, 2) 100 = VIL on FLT0 pin 101 = VIL on FLT0 pin or Comparator C1 high ⁽¹⁾ 110 = VIL on FLT0 pin or Comparator C2 high ^(1, 2) 111 = VIL on FLT0 pin or Comparator C1 or Comparator C2 high ^(1, 2)						
bit 3-2	PSS1AC<1:0>: Pins P1A and P1C Shutdown State Control bits ⁽²⁾ 00 = Drive pins P1A and P1C to '0' 01 = Drive pins P1A and P1C to '1' 1x = Pins P1A and P1C tri-state						
bit 1-0	PSS1BD<1:0>: Pins P1B and P1D Shutdown State Control bits ⁽²⁾ 00 = Drive pins P1B and P1D to '0' 01 = Drive pins P1B and P1D to '1' 1x = Pins P1B and P1D tri-state						
	f C1SYNC is enabled, the shutdown will be delayed by Timer1. 22, P1C and P1D available on PIC16(L)F1823 only.						

REGISTER 24-2: CCP1AS: CCP1 AUTO-SHUTDOWN CONTROL REGISTER

TABLE 27-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	_	ANSA4	—	ANSA2	ANSA1	ANSA0	118
ANSELC ⁽¹⁾	_	—	_	_	ANSC3	ANSC2	ANSC1	ANSC0	122
CPSCON0	CPSON	CPSRM	-	-	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	302
CPSCON1	_	—	_	—	CPSCH3 ⁽¹⁾	CPSCH2 ⁽¹⁾	CPSCH1	CPSCH0	303
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	164
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	173
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	117
TRISC ⁽¹⁾		_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	121


Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the CPS module.

Note 1: PIC16(L)F1823 only.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<4:3>) \rightarrow PC<12:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow \underline{WDT} \text{ prescaler,} \\ 1 \rightarrow \underline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.

CALLW	Subroutine Call With W						
Syntax:	[label] CALLW						
Operands:	None						
Operation:	(PC) +1 → TOS, (W) → PC<7:0>, (PCLATH<6:0>) → PC<14:8>						
Status Affected:	None						
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.						

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f			
Syntax:	[label] CLRF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$\begin{array}{l} \text{OOh} \rightarrow (f) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Description:	The contents of register 'f' are cleared and the Z bit is set.			

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

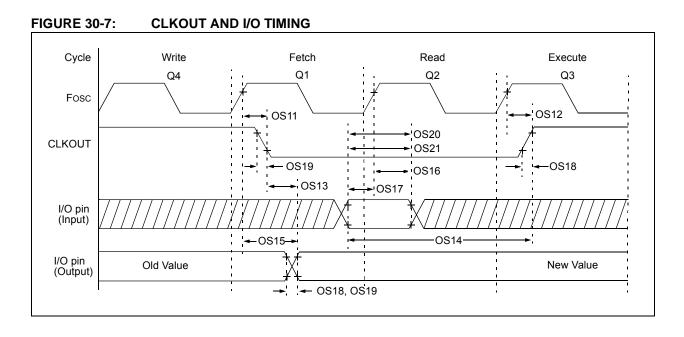
30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC12F1822/16F1823	0.3V to +6.5V
Voltage on VDD with respect to Vss, PIC12LF1822/16LF1823	-0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	210 mA
Maximum current out of Vss pin, -40°C \leq TA \leq +125°C for extended	95 mA
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial	150 mA
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended	70 mA
Clamp current, Iк (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD $+\sum$ IDD $+\sum$ {(VDD $+\sum$ IDD $+\sum$ (VDD $+\sum$ IDD $+\sum$ IDD $+\sum$ (VDD $+\sum$ IDD $+\sum$ IDD $+\sum$ (VDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ (VDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ (VDD $+\sum$ IDD $+\sum$ (VDD $+\sum$ IDD + \sum IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD + \sum IDD $+\sum$ IDD $+\sum$ IDD + \sum IDD $+\sum$ IDD $+\sum$ IDD $+\sum$ IDD + \sum IDD + \sum IDD $+\sum$ IDD + \sum	о – Voh) x Ioh} + Σ (Vol x Iol).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

30.2 DC Characteristics: PIC12(L)F1822/16(L)F1823-I/E (Industrial, Extended)


PIC12LF1	1822/16LF1823		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
PIC12F18	322/16F1823			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param	Device	Min.	Treat	Max	Units		Conditions		
No.	Characteristics	WIIII.	Тур†	Max.	Units	Vdd	Note		
	Supply Current (IDD) ^{(1, 2}	2)							
D020			2.0	3.1	mA	3.0	Fosc = 32 MHz		
			2.5	3.5	mA	3.6	HS Oscillator mode (Note 4)		
D020			2.0	3.1	mA	3.0	Fosc = 32 MHz		
			2.5	3.5	mA	5.0	HS Oscillator mode (Note 4)		
D021			210	425	μA	1.8	Fosc = 4 MHz		
			470	800	μA	3.0	EXTRC mode (Note 5)		
D021			350	435	μA	1.8	Fosc = 4 MHz		
		_	550	800	μA	3.0	EXTRC mode (Note 5)		
			620	850	μA	5.0			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- **3:** 8 MHz internal RC oscillator with 4x PLL enabled.
- 4: 8 MHz crystal oscillator with 4x PLL enabled.
- 5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 30-19: DC CHARACTERISTICS FOR PIC12F1822/16F1823-H (High Temp.)

PIC12F1822/16F1823				Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Condition	
D001	Vdd	Supply Voltage	2.5	—	5.5	V	Fosc ≤ 32 MHz (Note 1)	
D002*	Vdr	RAM Data Retention Voltage	2.1	—	5.5	V	Device in Sleep mode	
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-10	—	8	%	$\begin{array}{l} 1.024 \text{V}, \ \text{VDD} \geq 2.5 \text{V} \\ 2.048 \text{V}, \ \text{VDD} \geq 2.5 \text{V} \\ 4.096 \text{V}, \ \text{VDD} \geq 4.75 \text{V} \end{array}$	
D003A	VCDAFV R	Fixed Voltage Reference Voltage for ADC	-13		9	%	$\begin{array}{l} 1.024 \text{V}, \ \text{VDD} \geq 2.5 \text{V} \\ 2.048 \text{V}, \ \text{VDD} \geq 2.5 \text{V} \\ 4.096 \text{V}, \ \text{VDD} \geq 4.75 \text{V} \end{array}$	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: PLL required for 32 MHz operation.

TABLE 30-23: A/D CONVERTER (ADC) CHARACTERISTICS FOR PIC12F1822/16F1823-H (High Temp.)

				Standard Operating Conditions: (unless otherwise stated) Operating Temperature: -40°C \leq TA \leq +150°C for High Temperature					
Param No.	Sym.	Characteristic	Min. Typ. Max. Units Conditions						
AD04	EOFF	Offset Error			3.5	LSB	No missing codes VREF = 3.0V		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

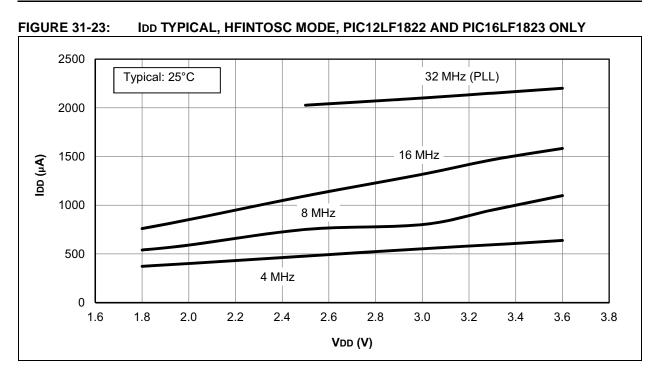

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

TABLE 30-24: COMPARATOR SPECIFICATIONS FOR PIC12F1822/16F1823-H (High Temp.)

PIC12F	1822/16		Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Sym.	Characteristic	Min. Typ. Max. Units Conditions						
CM01	VIOFF	Input Offset Voltage	—	—	±70	mV	High-Power mode, VICM = VDD/2		

TABLE 30-25: CAP SENSE OSCILLATOR SPECIFICATIONS FOR PIC12F1822/16F1823-H (High Temp.)

PIC12F	1822/16	-1823	Standard Operating Conditions: (unless otherwise stated) Operating Temperature: $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Sym.	Characteristic	Min. Typ. Max. Units Conditions						
All	All	All	—	—	—	—	This module is not intended for use in high temperature devices.		

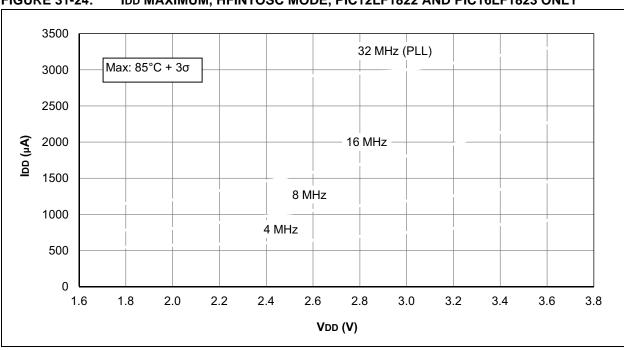
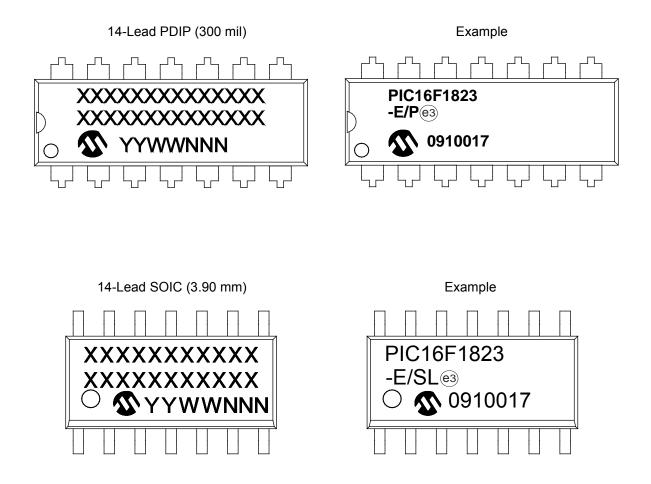



FIGURE 31-24: IDD MAXIMUM, HFINTOSC MODE, PIC12LF1822 AND PIC16LF1823 ONLY

33.1 Package Marking Information (Continuation)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	