

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXE

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	EBI/EMI, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	88
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-LFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7se32b-cu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Signal Description

Signal Name	Function	Туре	Active Level	Comments
	Pow	ver	1	
VDDIN	Voltage Regulator and ADC Power Supply Input		3V to 3.6V	
VDDOUT	Voltage Regulator Output	Power		1.85V
VDDFLASH	Flash and USB Power Supply	Power		3V to 3.6V
VDDIO	I/O Lines Power Supply	Power		3V to 3.6V or 1.65V to 1.95V
VDDCORE	Core Power Supply	Power		1.65V to 1.95V
VDDPLL	PLL	Power		1.65V to 1.95V
GND	Ground	Ground		
	Clocks, Oscillat	tors and PLLs		
XIN	Main Oscillator Input	Input		
XOUT	Main Oscillator Output	Output		
PLLRC	PLL Filter	Input		
PCK0 - PCK2	Programmable Clock Output	Output		
	ICE and	JTAG		
ТСК	Test Clock	Input		No pull-up resistor
TDI	Test Data In	Input		No pull-up resistor
TDO	Test Data Out	Output		
TMS	Test Mode Select	Input		No pull-up resistor.
JTAGSEL	JTAG Selection	Input		Pull-down resistor ⁽¹⁾
	Flash M	emory		
ERASE	Flash and NVM Configuration Bits Erase Command	Input	High	Pull-down resistor ⁽¹⁾
	Reset	/Test		
NRST	Microcontroller Reset	I/O	Low	Open drain with pull-up resistor ⁽¹⁾
TST	Test Mode Select	Input	High	Pull-down resistor ⁽¹⁾
	Debug	Unit		
DRXD	Debug Receive Data	Input		
DTXD	Debug Transmit Data	Output		
	Al	C		
IRQ0 - IRQ1	External Interrupt Inputs	Input		
FIQ	Fast Interrupt Input	Input		

Signal Name	Function	Туре	Active Level	Comments
	EBI for NAND F	lash Support		
NANDCS	NAND Flash Chip Select Line	Output	Low	
NANDOE	NAND Flash Output Enable	Output	Low	
NANDWE	NAND Flash Write Enable	Output	Low	
NANDCLE	NAND Flash Command Line Enable	Output	Low	
NANDALE	NAND Flash Address Line Enable	Output	Low	
	SDRAM C	ontroller		
SDCK	SDRAM Clock	Output		Tied low after reset
SDCKE	SDRAM Clock Enable	Output	High	
SDCS	SDRAM Controller Chip Select Line	Output	Low	
BA[1:0]	Bank Select	Output		
SDWE	SDRAM Write Enable	Output	Low	
RAS - CAS	Row and Column Signal	Output	Low	
NBS[3:0]	Byte Mask Signals	Output	Low	
SDA10	SDRAM Address 10 Line	Output		

Table 3-1. Signal Description List (Continued)

Note: 1. Refer to Section 6. "/O Lines Considerations" on page 15.

4.2 128-lead LQFP Pinout

Table 4-1.Pinout in 128-lead LQFP Package

1	ADVREF
2	GND
3	AD7
4	AD6
5	AD5
6	AD4
7	VDDOUT
8	VDDIN
9	PA20/PGMD8/AD3
10	PA19/PGMD7/AD2
11	PA18/PGMD6/AD1
12	PA17/PGMD5/AD0
13	PA16/PGMD4
14	PA15/PGMD3
15	PA14/PGMD2
16	PA13/PGMD1
17	PA12/PGMD0
18	PA11/PGMM3
19	PA10/PGMM2
20	PA9/PGMM1
21	VDDIO
22	GND
23	VDDCORE
24	PA8/PGMM0
25	PA7/PGMNVALID
26	PA6/PGMNOE
27	PA5/PGMRDY
28	PA4/PGMNCMD
29	PA3
30	PA2/PGMEN2
31	PA1/PGMEN1
32	PA0/PGMEN0

	ППаскауе
33	PB31
34	PB30
35	PB29
36	PB28
37	PB27
38	PB26
39	PB25
40	PB24
41	PB23
42	PB22
43	PB21
44	PB20
45	GND
46	VDDIO
47	VDDCORE
48	PB19
49	PB18
50	PB17
51	PB16
52	PB15
53	PB14
54	PB13
55	PB12
56	PB11
57	PB10
58	PB9
59	PB8
60	PB7
61	PB6
62	PB5
63	PB4
64	PB3

65	TDI			
66	TDO			
67	PB2			
68	PB1			
69	PB0			
70	GND			
71	VDDIO			
72	VDDCORE			
73	NRST			
74	TST			
75	ERASE			
76	ТСК			
77	TMS			
78	JTAGSEL			
79	PC23			
80	PC22			
81	PC21			
82	PC20			
83	PC19			
84	PC18			
85	PC17			
86	PC16			
87	PC15			
88	PC14			
89	PC13			
90	PC12			
91	PC11			
92	PC10			
93	PC9			
94	GND			
95	VDDIO			
96	VDDCORE			
	-			

97	SDCK	
98	PC8	
99	PC7	
100	PC6	
101	PC5	
102	PC4	
103	PC3	
104	PC2	
105	PC1	
106	PC0	
107	PA31	
108	PA30	
109	PA29	
110	PA28	
111	PA27/PGMD15	
112	PA26/PGMD14	
113	PA25/PGMD13	
114	PA24/PGMD12	
115	PA23/PGMD11	
116	PA22/PGMD10	
117	PA21/PGMD9	
118	VDDCORE	
119	GND	
120	VDDIO	
121	DM	
122	DP	
123	VDDFLASH	
124	GND	
125	XIN/PGMCK	
126	XOUT	
127	PLLRC	
128	VDDPLL	

4.4 144-ball LFBGA Pinout

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
A1	PB7	D1	VDDCORE	G1	PC18	K1	PC11
A2	PB8	D2	VDDCORE	G2	PC16	K2	PC6
A3	PB9	D3	PB2	G3	PC17	КЗ	PC2
A4	PB12	D4	TDO	G4	PC9	K4	PC0
A5	PB13	D5	TDI	G5	VDDIO	K5	PA27/PGMD15
A6	PB16	D6	PB17	G6	GND	K6	PA26/PGMD14
A7	PB22	D7	PB26	G7	GND	K7	GND
A8	PB23	D8	PA14/PGMD2	G8	GND	K8	VDDCORE
A9	PB25	D9	PA12/PGMD0	G9	GND	К9	VDDFLASH
A10	PB29	D10	PA11/PGMM3	G10	AD4	K10	VDDIO
A11	PB30	D11	PA8/PGMM0	G11	VDDIN	K11	VDDIO
A12	PB31	D12	PA7/PGMNVALID	G12	VDDOUT	K12	PA18/PGMD6/AD1
B1	PB6	E1	PC22	H1	PC15	L1	SDCK
B2	PB3	E2	PC23	H2	PC14	L2	PC7
B3	PB4	E3	NRST	НЗ	PC13	L3	PC4
B4	PB10	E4	ТСК	H4	VDDCORE	L4	PC1
B5	PB14	E5	ERASE	H5	VDDCORE	L5	PA29
B6	PB18	E6	TEST	H6	GND	L6	PA24/PGMD12
B7	PB20	E7	VDDCORE	H7	GND	L7	PA21/PGMD9
B8	PB24	E8	VDDCORE	H8	GND	L8	ADVREF
B9	PB28	E9	GND	H9	GND	L9	VDDFLASH
B10	PA4/PGMNCMD	E10	PA9/PGMM1	H10	PA19/PGMD7/AD2	L10	VDDFLASH
B11	PA0/PGMEN0	E11	PA10/PGMM2	H11	PA20/PGMD8/AD3	L11	PA17/PGMD5/AD0
B12	PA1/PGMEN1	E12	PA13/PGMD1	H12	VDDIO	L12	GND
C1	PB0	F1	PC21	J1	PC12	M1	PC8
C2	PB1	F2	PC20	J2	PC10	M2	PC5
C3	PB5	F3	PC19	JЗ	PA30	M3	PC3
C4	PB11	F4	JTAGSEL	J4	PA28	M4	PA31
C5	PB15	F5	TMS	J5	PA23/PGMD11	M5	PA25/PGMD13
C6	PB19	F6	VDDIO	J6	PA22/PGMD10	M6	DM
C7	PB21	F7	GND	J7	AD6	M7	DP
C8	PB27	F8	GND	J8	AD7	M8	GND
C9	PA6/PGMNOE	F9	GND	J9	VDDCORE	M9	XIN/PGMCK
C10	PA5/PGMRDY	F10	AD5	J10	VDDCORE	M10	XOUT
C11	PA2/PGMEN2	F11	PA15/PGMD3	J11	VDDCORE	M11	PLLRC
C12	PA3	F12	PA16/PGMD4	J12	VDDIO	M12	VDDPLL

Table 4-2.SAM7SE512/256/32 Pinout for 144-ball LFBGA Package

12 SAM7SE512/256/32 Summary

5. Power Considerations

5.1 Power Supplies

The SAM7SE512/256/32 has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDOUT pin. It is the output of the 1.8V voltage regulator.
- VDDIO pin. It powers the I/O lines; two voltage ranges are supported:
 - from 3.0V to 3.6V, 3.3V nominal
 - or from 1.65V to 1.95V, 1.8V nominal.
- VDDFLASH pin. It powers the USB transceivers and a part of the Flash. It is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V, 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.
- VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.

In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case VDDOUT should be left unconnected.

No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

5.2 Power Consumption

The SAM7SE512/256/32 has a static current of less than 60 μ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. Activating the brownout detector adds 20 μ A static current.

The dynamic power consumption on VDDCORE is less than 80 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA.

5.3 Voltage Regulator

The SAM7SE512/256/32 embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than 100 μ A static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 20 μ A static current and draws 1 mA of output current.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel:

• One external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible.

6.5 SDCK Pin

The SDCK pin is dedicated to the SDRAM Clock and is an output-only without pull-up. Maximum Output Frequency of this pad is 48 MHz at 3.0V and 25 MHz at 1.65V with a maximum load of 30 pF.

6.6 PIO Controller lines

All the I/O lines PA0 to PA31, PB0 to PB31, PC0 to PC23 integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the PIO controllers.

Typical pull-up value is 100 k $\!\Omega$

All the I/O lines have schmitt trigger inputs.

6.7 I/O Lines Current Drawing

The PIO lines PA0 to PA3 are high-drive current capable. Each of these I/O lines can drive up to 16 mA permanently.

The remaining I/O lines can draw only 8 mA.

However, the total current drawn by all the I/O lines cannot exceed 300 mA.

SAM7SE512/256/32 Summary

7. Processor and Architecture

7.1 ARM7TDMI Processor

- RISC processor based on ARMv4T Von Neumann architecture
 - Runs at up to 55 MHz, providing 0.9 MIPS/MHz (core supplied with 1.8V)
- Two instruction sets
 - ARM® high-performance 32-bit instruction set
 - Thumb[®] high code density 16-bit instruction set
- Three-stage pipeline architecture
 - Instruction Fetch (F)
 - Instruction Decode (D)
 - Execute (E)

7.2 Debug and Test Features

- EmbeddedICE[™] (Integrated embedded in-circuit emulator)
 - Two watchpoint units
 - Test access port accessible through a JTAG protocol
 - Debug communication channel
- Debug Unit
 - Two-pin UART
 - Debug communication channel interrupt handling
 - Chip ID Register
- IEEE1149.1 JTAG Boundary-scan on all digital pins

7.3 Memory Controller

- Programmable Bus Arbiter
 - Handles requests from the ARM7TDMI and the Peripheral DMA Controller
- · Address decoder provides selection signals for
 - Four internal 1 Mbyte memory areas
 - One 256-Mbyte embedded peripheral area
 - Eight external 256-Mbyte memory areas
- Abort Status Registers
 - Source, Type and all parameters of the access leading to an abort are saved
 - Facilitates debug by detection of bad pointers
- Misalignment Detector
 - Alignment checking of all data accesses
 - Abort generation in case of misalignment
- Remap Command
 - Remaps the SRAM in place of the embedded non-volatile memory
 - Allows handling of dynamic exception vectors
- 16-area Memory Protection Unit (Internal Memory and peripheral protection only)

- Individually programmable size between 1K Byte and 1M Byte
- Individually programmable protection against write and/or user access
- Peripheral protection against write and/or user access
- Embedded Flash Controller
 - Embedded Flash interface, up to three programmable wait states
 - Prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required wait states
 - Key-protected program, erase and lock/unlock sequencer
 - Single command for erasing, programming and locking operations
 - Interrupt generation in case of forbidden operation

7.4 External Bus Interface

- Integrates Three External Memory Controllers:
 - Static Memory Controller
 - SDRAM Controller
 - ECC Controller
- Additional Logic for NAND Flash and CompactFlash[®] Support
 - NAND Flash support: 8-bit as well as 16-bit devices are supported
 - CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are supported but the signals _IOIS16 (I/O and True IDE modes) and -ATA SEL (True IDE mode) are not handled.
- Optimized External Bus:
 - 16- or 32-bit Data Bus (32-bit Data Bus for SDRAM only)
 - Up to 23-bit Address Bus, Up to 8-Mbytes Addressable
 - Up to 8 Chip Selects, each reserved to one of the eight Memory Areas
 - Optimized pin multiplexing to reduce latencies on External Memories
- Configurable Chip Select Assignment:
 - Static Memory Controller on NCS0
 - SDRAM Controller or Static Memory Controller on NCS1
 - Static Memory Controller on NCS2, Optional CompactFlash Support
 - Static Memory Controller on NCS3, NCS5 NCS6, Optional NAND Flash Support
 - Static Memory Controller on NCS4, Optional CompactFlash Support
 - Static Memory Controller on NCS7

7.5 Static Memory Controller

- External memory mapping, 512-Mbyte address space
- 8-, or 16-bit Data Bus
- Up to 8 Chip Select Lines
- Multiple Access Modes supported
 - Byte Write or Byte Select Lines
 - Two different Read Protocols for each Memory Bank

¹⁸ SAM7SE512/256/32 Summary

7.8 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Eleven channels
 - Two for each USART
 - Two for the Debug Unit
 - Two for the Serial Synchronous Controller
 - Two for the Serial Peripheral Interface
 - One for the Analog-to-digital Converter
- · Low bus arbitration overhead
 - One Master Clock cycle needed for a transfer from memory to peripheral
 - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirements
- Peripheral DMA Controller (PDC) priority is as follows (from the highest priority to the lowest):

Receive	DBGU
Receive	USART0
Receive	USART1
Receive	SSC
Receive	ADC
Receive	SPI
Transmit	DBGU
Transmit	USART0
Transmit	USART1
Transmit	SSC
Transmit	SPI

256 Bytes/64 registers

SAM7SE512/256/32 Summary

256 MBytes

0xFFFE 3FFF 0xFFFE 4000

0xFFFF EFFF

0xFFFF F000

0xFFFF FFFF

Reserved

SYSC

A	Address Memory Space	9	ıl	nternal Memory Mappir	ng	Note:		
0x0000 0000	Internal Memories	256 MBytes	0x0000 0000	Boot Memory (1) Flash before Remap	1 MBytes		be ROM, Flash or ing on GPNVM2 a	
0x0FFF FFFF 0x1000 0000	EBI Chip Select 0	256 MBytes	0x000F FFFF 0x0010 0000	SRAM after Remap	1 MBytes			
0x1FFF FFFF 0x2000 0000	SMC EBI Chip Select 1/	256 MBytes	0x001F FFFF 0x0020 0000 0x002F FFFF	Internal SRAM	1 MBytes			
0x2FFF FFFF 0x3000 0000	SMC or SDRAMC EBI Chip Select 2	256 MBytes	0x0030 0000 0x003F FFFF	Internal ROM	1 MBytes			
0x3FFF FFFF 0x4000 0000	EBI Chip Select 3		0x0040 0000	Reserved	252 MBytes	S		
0x4FFF FFFF 0x5000 0000	SMC/NANDFlash/ SmartMedia EBI	256 MBytes	0x0FFF FFFF			1	em Controller Ma	pping
0x5FFF FFFF	Chip Select 4 SMC Compact Flash	256 MBytes				0xFFFF F000	AIC	512 Bytes/128 registers
0x6000 0000 0x6FFF FFFF	EBI Chip Select 5 SMC Compact Flash	256 MBytes				0xFFFF F1FF 0xFFFF F200	DBGU	512 Bytes/128 registers
0x7000 0000	EBI Chip Select 6	256 MBytes	Periphe	ral Mapping		0xFFFF F3FF 0xFFFF F400		
0x7FFF FFFF 0x8000 0000	EBI Chip Select 7	256 MBytes	0xFFF9 FFFF	served		0xFFFF F5FF 0xFFFF F600	PIOA	512 Bytes/128 registers
0x8FFF FFFF 0x9000 0000			0xFFFA 3FFF 0xFFFA 4000	TC1, TC2 16 Kbytes			PIOB	512 Bytes/128 registers
			0xFFFB 0000 0xFFFB 3FFF 0xFFFB 4000	UDP 16 Kbytes		0xFFFF F7FF 0xFFFF F800	PIOC	512 Bytes/128 registers
			0xFFFB 7FFF	TWI 16 Kbytes		0xFFFF F9FF 0xFFFF FA00		,
			0xFFFB FFFF	SART0 16 Kbytes		0xFFFF FBFF 0xFFFF FC00	Reserved	
	Undefined (Abort)	6 x 256 MBytes 1,536 MBytes	0xFFFC 4000 US	SART1 16 Kbytes		0xFFFF FCFF 0xFFFF FD00	PMC RSTC	256 Bytes/64 registers 16 Bytes/4 registers
	, <i>,</i>		0xFFFC BFFF	WMC 16 Kbytes		0xFFFF FD0F	Reserved	TO Dytes/4 registers
			0xFFFD 3FFF	SSC 16 Khytos		0xFFFF FD20 0xFFFF FC2F 0xFFFF FD30	RTT	16 Bytes/4 registers
			0xFFFD 7FFF 0xFFFD 8000	ADC 16 Kbytes		0xFFFF FC3F 0xFFFF FD40 0xFFFF FD4F	PIT WDT	16 Bytes/4 registers 16 Bytes/4 registers
			0xFFFD BFFF	served		0xFFFF FD60	Reserved	
			0xFFFE 0000 0xFFFE 3FFF	SPI 16 Kbytes		0xFFFF FC6F 0xFFFF FD70	VREG	4 Bytes/1 register

Internal Memory Mapping

Note:

0xFFFF FD70

0xFFFF FEFF

0xFFFF FF00

0xFFFF FFFF

Reserved

MC

Figure 8-1. SAM7SE Memory Mapping

Address Memory Space

22

0xEFFF FFFF 0xF000 0000

0xFFFF FFFF

Internal Peripherals

A first level of address decoding is performed by the Memory Controller, i.e., by the implementation of the Advanced System Bus (ASB) with additional features.

Decoding splits the 4G bytes of address space into 16 areas of 256M bytes. The areas 1 to 8 are directed to the EBI that associates these areas to the external chip selects NC0 to NCS7. The area 0 is reserved for the addressing of the internal memories, and a second level of decoding provides 1M byte of internal memory area. The area 15 is reserved for the peripherals and provides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master requesting such an access.

8.1 Embedded Memories

8.1.1 Internal Memories

8.1.1.1 Internal SRAM

The SAM7SE512/256 embeds a high-speed 32-Kbyte SRAM bank. The SAM7SE32 embeds a high-speed 8-Kbyte SRAM bank. After reset and until the Remap Command is performed, the SRAM is only accessible at address 0x0020 0000. After Remap, the SRAM also becomes available at address 0x0.

8.1.1.2 Internal ROM

The SAM7SE512/256/32 embeds an Internal ROM. At any time, the ROM is mapped at address 0x30 0000. The ROM contains the FFPI and the SAM-BA boot program.

8.1.1.3 Internal Flash

- The SAM7SE512 features two banks of 256 Kbytes of Flash.
- The SAM7SE256 features one bank of 256 Kbytes of Flash.
- The SAM7SE32 features one bank of 32 Kbytes of Flash.

At any time, the Flash is mapped to address 0x0010 0000.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

This GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.

Setting the GPNVM bit 2 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears the GPNVM bit 2 and thus selects the boot from the ROM by default.

256M Bytes	0x0000 0000 0x000F FFFF 0x0010 0000	ROM Before Remap SRAM After Remap		1 M Bytes
	0x001F FFFF 0x0020 0000	Internal FLASH		1 M Bytes
	0x002F FFFF	Internal SRAM		1 M Bytes
	0x0030 0000 0x003F FFFF	Internal ROM		1 M Bytes
	0x0040 0000	Undefined Areas (Abort)		252 M Bytes
	0x0FFF FFFF			

Figure 8-2. Internal Memory Mapping with GPNVM Bit 2 = 0 (default)

Figure 8-3. Internal Memory Mapping with GPNVM Bit 2 = 1

	0x0000 0000 0x000F FFFF 0x0010 0000	Flash Before Remap SRAM After Remap		1 M Bytes
256M Bytes	0x001F FFFF 0x0020 0000	Internal FLASH		1 M Bytes
	0x002F FFFF 0x0030 0000	Internal SRAM		1 M Bytes
		Internal ROM		1 M Bytes
	0x0040 0000	Undefined Areas (Abort)		252 M Bytes
	0x0FFF FFFF		,	¢

8.1.2 Embedded Flash

8.1.2.1 Flash Overview

The Flash of the SAM7SE512 is organized in two banks (dual plane) of 1024 pages of 256 bytes. It reads as 131,072 32-bit words.

The Flash of the SAM7SE256 is organized in 1024 pages (single plane) of 256 bytes. It reads as 65,536 32-bit words.

The Flash of the SAM7SE32 is organized in 256 pages (single plane) of 128 bytes. It reads as 8192 32-bit words.

The Flash of the SAM7SE32 contains a 128-byte write buffer, accessible through a 32-bit interface.

The Flash of the SAM7SE512/256 contains a 256-byte write buffer, accessible through a 32-bit interface.

8.1.4 SAM-BA[®] Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device Port.

- Communication via the DBGU supports a wide range of crystals from 3 to 20 MHz via software auto-detection.
- Communication via the USB Device Port is limited to an 18.432 MHz crystal.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 2 is set to 0.

8.2 External Memories

The external memories are accessed through the External Bus Interface.

Refer to the memory map in Figure 8-1 on page 22.

9.1 Reset Controller

- Based on one power-on reset cell and a double brownout detector
- Status of the last reset, either Power-up Reset, Software Reset, User Reset, Watchdog Reset, Brownout Reset
- Controls the internal resets and the NRST pin output
- Allows to shape a signal on the NRST line, guaranteeing that the length of the pulse meets any requirement.

9.1.1 Brownout Detector and Power On Reset

The SAM7SE512/256/32 embeds one brownout detection circuit and a power-on reset cell. The power-on reset is supplied with and monitors VDDCORE.

Both signals are provided to the Flash to prevent any code corruption during power-up or powerdown sequences or if brownouts occur on the VDDCORE power supply.

The power-on reset cell has a limited-accuracy threshold at around 1.5V. Its output remains low during power-up until VDDCORE goes over this voltage level. This signal goes to the reset controller and allows a full re-initialization of the device.

The brownout detector monitors the VDDCORE and VDDFLASH levels during operation by comparing it to a fixed trigger level. It secures system operations in the most difficult environments and prevents code corruption in case of brownout on the VDDCORE or VDDFLASH.

When the brownout detector is enabled and VDDCORE decreases to a value below the trigger level (Vbot18-, defined as Vbot18 - hyst/2), the brownout output is immediately activated.

When VDDCORE increases above the trigger level (Vbot18+, defined as Vbot18 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about $1\mu s$.

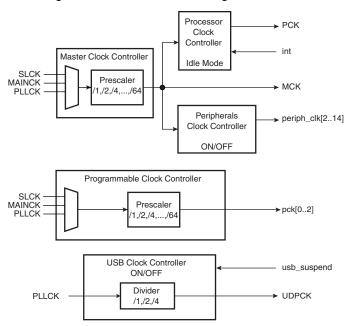
The VDDCORE threshold voltage has a hysteresis of about 50 mV, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 1.68V with an accuracy of \pm 2% and is factory calibrated.

When the brownout detector is enabled and VDDFLASH decreases to a value below the trigger level (Vbot33-, defined as Vbot33 - hyst/2), the brownout output is immediately activated.

When VDDFLASH increases above the trigger level (Vbot33+, defined as Vbot33 + hyst/2), the reset is released. The brownout detector only detects a drop if the voltage on VDDCORE stays below the threshold voltage for longer than about 1µs.

The VDDFLASH threshold voltage has a hysteresis of about 50 mV, to ensure spike free brownout detection. The typical value of the brownout detector threshold is 2.80V with an accuracy of \pm 3.5% and is factory calibrated.

The brownout detector is low-power, as it consumes less than 20 μ A static current. However, it can be deactivated to save its static current. In this case, it consumes less than 1 μ A. The deactivation is configured through the GPNVM bit 0 of the Flash.


9.2 Clock Generator

The Clock Generator embeds one low-power RC Oscillator, one Main Oscillator and one PLL with the following characteristics:

• RC Oscillator ranges between 22 KHz and 42 KHz

30 SAM7SE512/256/32 Summary

Figure 9-3. Power Management Controller Block Diagram

9.4 Advanced Interrupt Controller

- · Controls the interrupt lines (nIRQ and nFIQ) of an ARM Processor
- Individually maskable and vectored interrupt sources
 - Source 0 is reserved for the Fast Interrupt Input (FIQ)
 - Source 1 is reserved for system peripherals (RTT, PIT, EFC, PMC, DBGU, etc.)
 - Other sources control the peripheral interrupts or external interrupts
 - Programmable edge-triggered or level-sensitive internal sources
 - Programmable positive/negative edge-triggered or high/low level-sensitive external sources
- 8-level Priority Controller
 - Drives the normal interrupt nIRQ of the processor
 - Handles priority of the interrupt sources
 - Higher priority interrupts can be served during service of lower priority interrupt
- Vectoring
 - Optimizes interrupt service routine branch and execution
 - One 32-bit vector register per interrupt source
 - Interrupt vector register reads the corresponding current interrupt vector
- Protect Mode
 - Easy debugging by preventing automatic operations
- Fast Forcing
 - Permits redirecting any interrupt source on the fast interrupt
- General Interrupt Mask
 - Provides processor synchronization on events without triggering an interrupt

10.6 PIO Controller C Multiplexing

Multiplexing on PIO Controller C

	PIO C	Application Usage			
I/O Line	Peripheral A	Peripheral B	Comments	Function	Comments
PC0	D0				
PC1	D1				
PC2	D2				
PC3	D3				
PC4	D4				
PC5	D5				
PC6	D6				
PC7	D7				
PC8	D8	RTS1			
PC9	D9	DTR1			
PC10	D10	PCK0			
PC11	D11	PCK1			
PC12	D12	PCK2			
PC13	D13				
PC14	D14	NPCS1			
PC15	D15	NCS3/NANDCS			
PC16	A18	NWAIT			
PC17	A19	NANDOE			
PC18	A20	NANDWE			
PC19	A21/NANDALE				
PC20	A22/REG/NANDCLE	NCS7			
PC21		NWR0/NWE/CFWE			
PC22		NRD/CFOE			
PC23	CFRNW	NCS0			

10.7 Serial Peripheral Interface

- · Supports communication with external serial devices
 - Four chip selects with external decoder allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash® and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- Master or slave serial peripheral bus interface

- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

10.11 Timer Counter

- Three 16-bit Timer Counter Channels
 - Two output compare or one input capture per channel
- Wide range of functions including:
 - Frequency measurement
 - Event counting
 - Interval measurement
 - Pulse generation
 - Delay timing
 - Pulse Width Modulation
 - Up/down capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs, as defined in Table 10-4

Table 10-4. Timer Counter Clocks Assignment

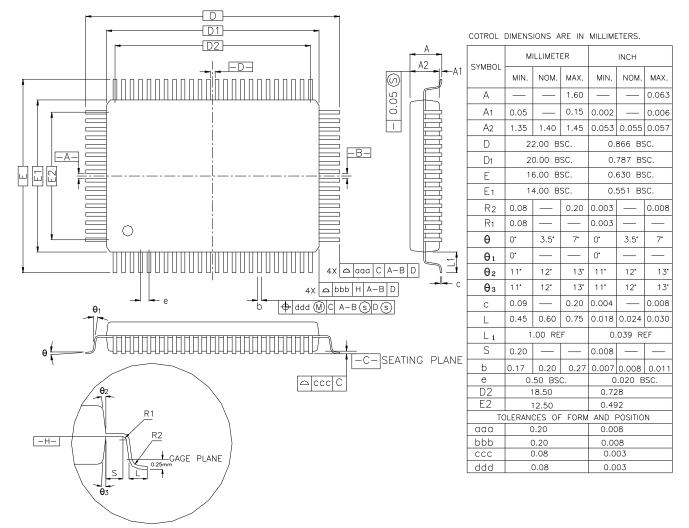
TC Clock input	Clock
TIMER_CLOCK1	MCK/2
TIMER_CLOCK2	MCK/8
TIMER_CLOCK3	MCK/32
TIMER_CLOCK4	MCK/128
TIMER_CLOCK5	MCK/1024

- Two multi-purpose input/output signals
- Two global registers that act on all three TC channels

10.12 PWM Controller

- Four channels, one 16-bit counter per channel
- · Common clock generator, providing thirteen different clocks
 - One Modulo n counter providing eleven clocks
 - Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
 - Independent enable/disable commands
 - Independent clock selection
 - Independent period and duty cycle, with double buffering
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform

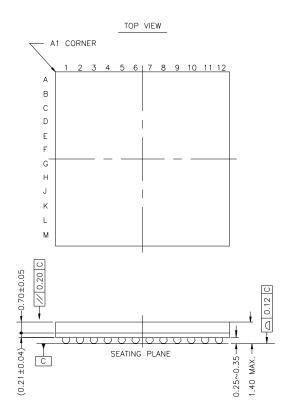
10.13 USB Device Port


- USB V2.0 full-speed compliant,12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- Eight endpoints
 - Endpoint 0: 64bytes
 - Endpoint 1 and 2: 64 bytes ping-pong
 - Endpoint 3: 64 bytes
 - Endpoint 4 and 5: 512 bytes ping-pong
 - Endpoint 6 and 7: 64 bytes ping-pong
 - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP

10.14 Analog-to-Digital Converter

- 8-channel ADC
- 10-bit 384 Ksamples/sec. or 8-bit 583 Ksamples/sec. Successive Approximation Register ADC
- ±2 LSB Integral Non Linearity, ±1 LSB Differential Non Linearity
- Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs
- External voltage reference for better accuracy on low voltage inputs
- Individual enable and disable of each channel
- Multiple trigger sources
 - Hardware or software trigger
 - External trigger pin
 - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
- Sleep Mode and conversion sequencer
 - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels
- Each analog input shared with digital signals

11. Package Drawings



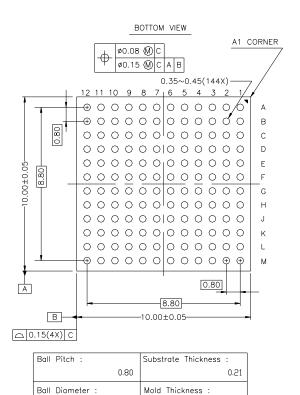


Figure 11-2. 144-ball LFBGA Package Drawing

0.4

0.70

All dimensions are in mm