

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

⊡XFI

| Product Status             | Obsolete                                                                       |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | ARM7®                                                                          |
| Core Size                  | 16/32-Bit                                                                      |
| Speed                      | 55MHz                                                                          |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, SPI, SSC, UART/USART, USB                           |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                          |
| Number of I/O              | 88                                                                             |
| Program Memory Size        | 512KB (512K x 8)                                                               |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 32K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.65V ~ 1.95V                                                                  |
| Data Converters            | A/D 8x10b                                                                      |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 128-LQFP                                                                       |
| Supplier Device Package    | 128-LQFP (20x14)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at91sam7se512-au-999 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 2. Block Diagram





## 3. Signal Description

| Table 3-1. | Signal Description List |
|------------|-------------------------|
|------------|-------------------------|

| Signal Name | Function                                          | Туре             | Active<br>Level | Comments                                        |  |
|-------------|---------------------------------------------------|------------------|-----------------|-------------------------------------------------|--|
|             | Pow                                               | ver              |                 |                                                 |  |
| VDDIN       | Voltage Regulator and ADC Power<br>Supply Input   | Power 3V to 3.6V |                 |                                                 |  |
| VDDOUT      | Voltage Regulator Output                          | Power            |                 | 1.85V                                           |  |
| VDDFLASH    | Flash and USB Power Supply                        | Power            |                 | 3V to 3.6V                                      |  |
| VDDIO       | I/O Lines Power Supply                            | Power            |                 | 3V to 3.6V or 1.65V to 1.95V                    |  |
| VDDCORE     | Core Power Supply                                 | Power            |                 | 1.65V to 1.95V                                  |  |
| VDDPLL      | PLL                                               | Power            |                 | 1.65V to 1.95V                                  |  |
| GND         | Ground                                            | Ground           |                 |                                                 |  |
|             | Clocks, Oscillat                                  | tors and PLLs    | 5               |                                                 |  |
| XIN         | Main Oscillator Input                             | Input            |                 |                                                 |  |
| XOUT        | Main Oscillator Output                            | Output           |                 |                                                 |  |
| PLLRC       | PLL Filter                                        | Input            | put             |                                                 |  |
| PCK0 - PCK2 | Programmable Clock Output                         | Output           |                 |                                                 |  |
|             | ICE and                                           | JTAG             |                 |                                                 |  |
| тск         | Test Clock                                        | Input            |                 | No pull-up resistor                             |  |
| TDI         | Test Data In                                      | Input            |                 | No pull-up resistor                             |  |
| TDO         | Test Data Out                                     | Output           |                 |                                                 |  |
| TMS         | Test Mode Select                                  | Input            |                 | No pull-up resistor.                            |  |
| JTAGSEL     | JTAG Selection                                    | Input            |                 | Pull-down resistor <sup>(1)</sup>               |  |
|             | Flash M                                           | emory            |                 |                                                 |  |
| ERASE       | Flash and NVM Configuration Bits Erase<br>Command | Input            | High            | Pull-down resistor <sup>(1)</sup>               |  |
|             | Reset                                             | /Test            |                 |                                                 |  |
| NRST        | Microcontroller Reset                             | I/O              | Low             | Open drain with pull-up resistor <sup>(1)</sup> |  |
| TST         | Test Mode Select                                  | Input            | High            | Pull-down resistor <sup>(1)</sup>               |  |
|             | Debug                                             | Unit             |                 |                                                 |  |
| DRXD        | Debug Receive Data                                | Input            |                 |                                                 |  |
| DTXD        | Debug Transmit Data                               | Output           |                 |                                                 |  |
|             | Al                                                | C                |                 |                                                 |  |
| IRQ0 - IRQ1 | External Interrupt Inputs                         | Input            |                 |                                                 |  |
| FIQ         | Fast Interrupt Input                              | Input            |                 |                                                 |  |



# SAM7SE512/256/32 Summary

| Signal Name                 | Function                           | Туре          | Active<br>Level | Comments                          |  |  |  |
|-----------------------------|------------------------------------|---------------|-----------------|-----------------------------------|--|--|--|
| Two-Wire Interface          |                                    |               |                 |                                   |  |  |  |
| TWD                         | Two-wire Serial Data               | I/O           |                 |                                   |  |  |  |
| ТWCK                        | Two-wire Serial Clock              | I/O           |                 |                                   |  |  |  |
| Analog-to-Digital Converter |                                    |               |                 |                                   |  |  |  |
| AD0-AD3                     | Analog Inputs                      | Analog        |                 | Digital pulled-up inputs at reset |  |  |  |
| AD4-AD7                     | Analog Inputs                      | Analog        |                 | Analog Inputs                     |  |  |  |
| ADTRG                       | ADC Trigger                        | Input         |                 |                                   |  |  |  |
| ADVREF                      | ADC Reference                      | Analog        |                 |                                   |  |  |  |
|                             | Fast Flash Progra                  | mming Interfa | се              |                                   |  |  |  |
| PGMEN0-PGMEN2               | Programming Enabling               | Input         |                 |                                   |  |  |  |
| PGMM0-PGMM3                 | Programming Mode                   | Input         |                 |                                   |  |  |  |
| PGMD0-PGMD15                | Programming Data                   | I/O           |                 |                                   |  |  |  |
| PGMRDY                      | Programming Ready                  | Output        | High            |                                   |  |  |  |
| PGMNVALID                   | Data Direction                     | Output        | Low             |                                   |  |  |  |
| PGMNOE                      | Programming Read                   | Input         | Low             |                                   |  |  |  |
| PGMCK                       | Programming Clock                  | Input         |                 |                                   |  |  |  |
| PGMNCMD                     | Programming Command                | Input         | Low             |                                   |  |  |  |
|                             | External Bus                       | s Interface   |                 |                                   |  |  |  |
| D[31:0]                     | Data Bus                           | I/O           |                 |                                   |  |  |  |
| A[22:0]                     | Address Bus                        | Output        |                 |                                   |  |  |  |
| NWAIT                       | External Wait Signal               | Input         | Low             |                                   |  |  |  |
| Static Memory Controller    |                                    |               |                 |                                   |  |  |  |
| NCS[7:0]                    | Chip Select Lines                  | Output        | Low             |                                   |  |  |  |
| NWR[1:0]                    | Write Signals                      | Output        | Low             |                                   |  |  |  |
| NRD                         | Read Signal                        | Output        | Low             |                                   |  |  |  |
| NWE                         | Write Enable                       | Output        | Low             |                                   |  |  |  |
| NUB                         | NUB: Upper Byte Select             | Output        | Low             |                                   |  |  |  |
| NLB                         | NLB: Lower Byte Select             | Output        | Low             |                                   |  |  |  |
|                             | EBI for Compact                    | Flash Suppor  | t               |                                   |  |  |  |
| CFCE[2:1]                   | CompactFlash Chip Enable           | Output        | Low             |                                   |  |  |  |
| CFOE                        | CompactFlash Output Enable         | Output        | Low             |                                   |  |  |  |
| CFWE                        | CompactFlash Write Enable          | Output        | Low             |                                   |  |  |  |
| CFIOR                       | CompactFlash I/O Read Signal       | Output        | Low             |                                   |  |  |  |
| CFIOW                       | CompactFlash I/O Write Signal      | Output        | Low             |                                   |  |  |  |
| CFRNW                       | CompactFlash Read Not Write Signal | Output        |                 |                                   |  |  |  |
| CFCS[1:0]                   | CompactFlash Chip Select Lines     | Output        | Low             |                                   |  |  |  |

## Table 3-1. Signal Description List (Continued)





## 4.4 144-ball LFBGA Pinout

| Pin | Signal Name | Pin | Signal Name   | Pin | Signal Name    | Pin | Signal Name    |
|-----|-------------|-----|---------------|-----|----------------|-----|----------------|
| A1  | PB7         | D1  | VDDCORE       | G1  | PC18           | K1  | PC11           |
| A2  | PB8         | D2  | VDDCORE       | G2  | PC16           | K2  | PC6            |
| A3  | PB9         | D3  | PB2           | G3  | PC17           | К3  | PC2            |
| A4  | PB12        | D4  | TDO           | G4  | PC9            | K4  | PC0            |
| A5  | PB13        | D5  | TDI           | G5  | VDDIO          | K5  | PA27/PGMD15    |
| A6  | PB16        | D6  | PB17          | G6  | GND            | K6  | PA26/PGMD14    |
| A7  | PB22        | D7  | PB26          | G7  | GND            | K7  | GND            |
| A8  | PB23        | D8  | PA14/PGMD2    | G8  | GND            | K8  | VDDCORE        |
| A9  | PB25        | D9  | PA12/PGMD0    | G9  | GND            | K9  | VDDFLASH       |
| A10 | PB29        | D10 | PA11/PGMM3    | G10 | AD4            | K10 | VDDIO          |
| A11 | PB30        | D11 | PA8/PGMM0     | G11 | VDDIN          | K11 | VDDIO          |
| A12 | PB31        | D12 | PA7/PGMNVALID | G12 | VDDOUT         | K12 | PA18/PGMD6/AD1 |
| B1  | PB6         | E1  | PC22          | H1  | PC15           | L1  | SDCK           |
| B2  | PB3         | E2  | PC23          | H2  | PC14           | L2  | PC7            |
| B3  | PB4         | E3  | NRST          | H3  | PC13           | L3  | PC4            |
| B4  | PB10        | E4  | тск           | H4  | VDDCORE        | L4  | PC1            |
| B5  | PB14        | E5  | ERASE         | H5  | VDDCORE        | L5  | PA29           |
| B6  | PB18        | E6  | TEST          | H6  | GND            | L6  | PA24/PGMD12    |
| B7  | PB20        | E7  | VDDCORE       | H7  | GND            | L7  | PA21/PGMD9     |
| B8  | PB24        | E8  | VDDCORE       | H8  | GND            | L8  | ADVREF         |
| B9  | PB28        | E9  | GND           | H9  | GND            | L9  | VDDFLASH       |
| B10 | PA4/PGMNCMD | E10 | PA9/PGMM1     | H10 | PA19/PGMD7/AD2 | L10 | VDDFLASH       |
| B11 | PA0/PGMEN0  | E11 | PA10/PGMM2    | H11 | PA20/PGMD8/AD3 | L11 | PA17/PGMD5/AD0 |
| B12 | PA1/PGMEN1  | E12 | PA13/PGMD1    | H12 | VDDIO          | L12 | GND            |
| C1  | PB0         | F1  | PC21          | J1  | PC12           | M1  | PC8            |
| C2  | PB1         | F2  | PC20          | J2  | PC10           | M2  | PC5            |
| C3  | PB5         | F3  | PC19          | J3  | PA30           | М3  | PC3            |
| C4  | PB11        | F4  | JTAGSEL       | J4  | PA28           | M4  | PA31           |
| C5  | PB15        | F5  | TMS           | J5  | PA23/PGMD11    | M5  | PA25/PGMD13    |
| C6  | PB19        | F6  | VDDIO         | J6  | PA22/PGMD10    | M6  | DM             |
| C7  | PB21        | F7  | GND           | J7  | AD6            | M7  | DP             |
| C8  | PB27        | F8  | GND           | J8  | AD7            | M8  | GND            |
| C9  | PA6/PGMNOE  | F9  | GND           | J9  | VDDCORE        | M9  | XIN/PGMCK      |
| C10 | PA5/PGMRDY  | F10 | AD5           | J10 | VDDCORE        | M10 | XOUT           |
| C11 | PA2/PGMEN2  | F11 | PA15/PGMD3    | J11 | VDDCORE        | M11 | PLLRC          |
| C12 | PA3         | F12 | PA16/PGMD4    | J12 | VDDIO          | M12 | VDDPLL         |

Table 4-2.SAM7SE512/256/32 Pinout for 144-ball LFBGA Package

## 12 SAM7SE512/256/32 Summary

## 5. Power Considerations

### 5.1 Power Supplies

The SAM7SE512/256/32 has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDOUT pin. It is the output of the 1.8V voltage regulator.
- VDDIO pin. It powers the I/O lines; two voltage ranges are supported:
  - from 3.0V to 3.6V, 3.3V nominal
  - or from 1.65V to 1.95V, 1.8V nominal.
- VDDFLASH pin. It powers the USB transceivers and a part of the Flash. It is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V, 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.
- VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.

In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case VDDOUT should be left unconnected.

No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

### 5.2 Power Consumption

The SAM7SE512/256/32 has a static current of less than 60  $\mu$ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. Activating the brownout detector adds 20  $\mu$ A static current.

The dynamic power consumption on VDDCORE is less than 80 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA.

### 5.3 Voltage Regulator

The SAM7SE512/256/32 embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than 100  $\mu$ A static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 20  $\mu$ A static current and draws 1 mA of output current.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel:

• One external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible.



## SAM7SE512/256/32 Summary

## 7. Processor and Architecture

## 7.1 ARM7TDMI Processor

- RISC processor based on ARMv4T Von Neumann architecture
  - Runs at up to 55 MHz, providing 0.9 MIPS/MHz (core supplied with 1.8V)
- Two instruction sets
  - ARM® high-performance 32-bit instruction set
  - Thumb<sup>®</sup> high code density 16-bit instruction set
- Three-stage pipeline architecture
  - Instruction Fetch (F)
  - Instruction Decode (D)
  - Execute (E)

### 7.2 Debug and Test Features

- EmbeddedICE<sup>™</sup> (Integrated embedded in-circuit emulator)
  - Two watchpoint units
  - Test access port accessible through a JTAG protocol
  - Debug communication channel
- Debug Unit
  - Two-pin UART
  - Debug communication channel interrupt handling
  - Chip ID Register
- IEEE1149.1 JTAG Boundary-scan on all digital pins

#### 7.3 Memory Controller

- Programmable Bus Arbiter
  - Handles requests from the ARM7TDMI and the Peripheral DMA Controller
- · Address decoder provides selection signals for
  - Four internal 1 Mbyte memory areas
  - One 256-Mbyte embedded peripheral area
  - Eight external 256-Mbyte memory areas
- Abort Status Registers
  - Source, Type and all parameters of the access leading to an abort are saved
  - Facilitates debug by detection of bad pointers
- Misalignment Detector
  - Alignment checking of all data accesses
  - Abort generation in case of misalignment
- Remap Command
  - Remaps the SRAM in place of the embedded non-volatile memory
  - Allows handling of dynamic exception vectors
- 16-area Memory Protection Unit (Internal Memory and peripheral protection only)





- Individually programmable size between 1K Byte and 1M Byte
- Individually programmable protection against write and/or user access
- Peripheral protection against write and/or user access
- Embedded Flash Controller
  - Embedded Flash interface, up to three programmable wait states
  - Prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required wait states
  - Key-protected program, erase and lock/unlock sequencer
  - Single command for erasing, programming and locking operations
  - Interrupt generation in case of forbidden operation

## 7.4 External Bus Interface

- Integrates Three External Memory Controllers:
  - Static Memory Controller
  - SDRAM Controller
  - ECC Controller
- Additional Logic for NAND Flash and CompactFlash<sup>®</sup> Support
  - NAND Flash support: 8-bit as well as 16-bit devices are supported
  - CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are supported but the signals \_IOIS16 (I/O and True IDE modes) and -ATA SEL (True IDE mode) are not handled.
- Optimized External Bus:
  - 16- or 32-bit Data Bus (32-bit Data Bus for SDRAM only)
  - Up to 23-bit Address Bus, Up to 8-Mbytes Addressable
  - Up to 8 Chip Selects, each reserved to one of the eight Memory Areas
  - Optimized pin multiplexing to reduce latencies on External Memories
- Configurable Chip Select Assignment:
  - Static Memory Controller on NCS0
  - SDRAM Controller or Static Memory Controller on NCS1
  - Static Memory Controller on NCS2, Optional CompactFlash Support
  - Static Memory Controller on NCS3, NCS5 NCS6, Optional NAND Flash Support
  - Static Memory Controller on NCS4, Optional CompactFlash Support
  - Static Memory Controller on NCS7

## 7.5 Static Memory Controller

- External memory mapping, 512-Mbyte address space
- 8-, or 16-bit Data Bus
- Up to 8 Chip Select Lines
- Multiple Access Modes supported
  - Byte Write or Byte Select Lines
  - Two different Read Protocols for each Memory Bank

## <sup>18</sup> SAM7SE512/256/32 Summary



## 7.8 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Eleven channels
  - Two for each USART
  - Two for the Debug Unit
  - Two for the Serial Synchronous Controller
  - Two for the Serial Peripheral Interface
  - One for the Analog-to-digital Converter
- · Low bus arbitration overhead
  - One Master Clock cycle needed for a transfer from memory to peripheral
  - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirements
- Peripheral DMA Controller (PDC) priority is as follows (from the highest priority to the lowest):

| Receive  | DBGU   |
|----------|--------|
| Receive  | USART0 |
| Receive  | USART1 |
| Receive  | SSC    |
| Receive  | ADC    |
| Receive  | SPI    |
| Transmit | DBGU   |
| Transmit | USART0 |
| Transmit | USART1 |
| Transmit | SSC    |
| Transmit | SPI    |
|          |        |



256 Bytes/64 registers

## SAM7SE512/256/32 Summary

256 MBytes

|                            | , ,                                    |                                |                                           |             |                    | ,                        | 0         | (1) Can                    | be ROM, Flash or | SRAM                    |
|----------------------------|----------------------------------------|--------------------------------|-------------------------------------------|-------------|--------------------|--------------------------|-----------|----------------------------|------------------|-------------------------|
| 0,0000 0000                | Internal Memories                      | 256 MBytes                     | 0x0000 0                                  | 0000        | Boot M<br>Flash be | lemory (1)<br>fore Remap | 1 MBytes  | depend                     | ling on GPNVM2 a | nd REMAP                |
| 0x0FFF FFFF<br>0x1000 0000 | EBI                                    |                                | 0x000F F<br>0x0010 0                      | FFF<br>0000 | OT IAM C           |                          |           |                            |                  |                         |
| 0x1FFF FFFF                | Chip Select 0<br>SMC                   | 256 MBytes                     | 0x001F F                                  | FFF         | Interr             | al Flash                 | 1 MBytes  |                            |                  |                         |
| 0x2000 0000                | EBI<br>Chip Select 1/                  | 256 MBytes                     | 0x002F F                                  | FFF         | Intern             | al SRAM                  | 1 MBytes  |                            |                  |                         |
| 0x2FFF FFFF<br>0x3000 0000 | SMC or SDRAMC                          |                                | 0x0030 0                                  | 0000        | Inter              | nal ROM                  | 1 MBytes  |                            |                  |                         |
| 0x3FFF FFFF                | Chip Select 2<br>SMC                   | 256 MBytes                     | 0x003F F<br>0x0040 0                      | FFF<br>0000 |                    |                          |           |                            |                  |                         |
| 0x4000 0000                | EBI<br>Chip Select 3<br>SMC/NANDFlash/ | 256 MBytes                     |                                           |             | Re                 | served                   | 252 MByte | s                          | em Controller Ma | nning                   |
| 0x4FFF FFFF<br>0x5000 0000 | SmartMedia<br>EBI                      |                                | 0x0FFF F                                  | FFF         |                    |                          |           |                            |                  | l                       |
|                            | Chip Select 4<br>SMC<br>Compact Flash  | 256 MBytes                     |                                           |             |                    |                          |           |                            | AIC              | 512 Bytes/128 registers |
| 0x6000 0000                | EBI<br>Chip Select 5<br>SMC            | 256 MBytes                     |                                           |             |                    |                          |           | 0xFFFF F1FF<br>0xFFFF F200 |                  |                         |
| 0x6FFF FFFF<br>0x7000 0000 | Compact Flash                          |                                |                                           |             |                    |                          |           |                            | DBGU             | 512 Bytes/128 registers |
|                            | EBI<br>Chip Select 6                   | 256 MBytes                     | Pe                                        | eriphera    | al Mappin          | g                        |           | 0xFFFF F3FF<br>0xFFFF F400 |                  |                         |
| 0x7FFF FFFF<br>0x8000 0000 | EBI                                    |                                | 0xF000 0000                               | Res         | served             |                          |           |                            | PIOA             | 512 Bytes/128 registers |
| 0x8FFF FFFF                | Chip Select 7                          | 256 MBytes                     | 0xFFF9 FFFF<br>0xFFFA 0000<br>0xFFFA 3FFF | TC0, T      | TC1, TC2           | 16 Kbytes                |           | 0xFFFF F5FF<br>0xFFFF F600 |                  |                         |
| 0x9000 0000                |                                        |                                | 0xFFFA 4000                               | Res         | served             |                          |           |                            | PIOB             | 512 Bytes/128 registers |
|                            |                                        |                                | 0xFFFB 3FFF<br>0xFFFB 4000                | Bos         | JDP                | 16 Kbytes                |           | 0xFFFF F800                | PIOC             | 512 Butes/128 registers |
|                            |                                        |                                | 0xFFFB 7FFF<br>0xFFFB 8000                | nea         |                    | 16 Khytos                |           | 0xFFFF F9FF                | 1100             | 512 Dytes/120 registers |
|                            |                                        |                                | 0xFFFB BFFF<br>0xFFFB C000                | Res         | served             | TO Royles                |           | 0xFFFF FA00                | Reserved         |                         |
|                            |                                        |                                | 0xFFFB FFFF<br>0xFFFC 0000                | US.         | ART0               | 16 Kbytes                |           | 0xFFFF FBFF<br>0xFFFF FC00 |                  |                         |
|                            | Undefined                              | 6 x 256 MBytes<br>1,536 MBytes | 0xFFFC 4000<br>0xFFFC 7FFF                | US.         | ART1               | 16 Kbytes                |           | 0xFFFF FCFF                | PMC              | 256 Bytes/64 registers  |
|                            | (Abort)                                | (Abort)                        | 0xFFFC 8000<br>0xFFFC BFFF                | Res         | served             |                          |           | 0xFFFF FD00<br>0xFFFF FD0F | RSTC             | 16 Bytes/4 registers    |
|                            |                                        |                                | 0xFFFC C000<br>0xFFFC FFFF<br>0xFFFD 0000 | PV          | VMC                | 16 Kbytes                |           | 0xFFFF FD20                | Reserved         |                         |
|                            |                                        |                                | 0xFFFD 3FFF<br>0xFFFD 4000                | Hes         | served             | 16 Khytos                |           | 0xFFFF FC2F<br>0xFFFF FD30 |                  | 16 Bytes/4 registers    |
|                            |                                        |                                | 0xFFFD 7FFF<br>0xFFFD 8000                | Δ           |                    | 16 Kbytes                |           | 0xFFFF FC3F<br>0xFFFF FD40 | WDT              | 16 Bytes/4 registers    |
|                            |                                        |                                | 0xFFFD BFFF<br>0xFFFD C000                | Res         | served             |                          |           | UXFFFF FD4F                | Reserved         |                         |
|                            |                                        |                                | 0xFFFD FFFF<br>0xFFFE 0000                |             | 201                | 16 Kbytee                |           | 0xFFFF FD60                | VREG             | 4 Bytes/1 register      |

SPI

Reserved

SYSC

0xFFFE 3FFF 0xFFFE 4000

0xFFFF EFFF

0xFFFF F000

0xFFFF FFFF

16 Kbytes

0xFFFF FC6F

0xFFFF FD70

0xFFFF FEFF

0xFFFF FF00

0xFFFF FFFF

Reserved

MC

Internal Memory Mapping

Note:

#### Figure 8-1. SAM7SE Memory Mapping

Address Memory Space

0xEFFF FFFF 0xF000 0000

0xFFFF FFFF

Internal Peripherals



The security bit can only be enabled through the Command "Set Security Bit" of the EFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1 and after a full flash erase is performed. When the security bit is deactivated, all accesses to the flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

#### 8.1.2.5 Non-volatile Brownout Detector Control

Two general purpose NVM (GPNVM) bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state.

These two GPNVM bits can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.

- GPNVM bit 0 is used as a brownout detector enable bit. Setting the GPNVM bit 0 enables the BOD, clearing it disables the BOD. Asserting ERASE clears the GPNVM bit 0 and thus disables the brownout detector by default.
- GPNVM bit 1 is used as a brownout reset enable signal for the reset controller. Setting the GPNVM bit 1 enables the brownout reset when a brownout is detected, Clearing the GPNVM bit 1 disables the brownout reset. Asserting ERASE disables the brownout reset by default.

#### 8.1.2.6 Calibration Bits

Sixteen NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

#### 8.1.3 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PA0 and PA1 pins are all tied high and PA2 tied to low.

- The Flash of the SAM7SE512 is organized in 2048 pages of 256 bytes (dual plane). It reads as 131,072 32-bit words.
- The Flash of the SAM7SE256 is organized in 1024 pages of 256 bytes (single plane). It reads as 65,536 32-bit words.
- The Flash of the SAM7SE32 is organized in 256 pages of 128 bytes (single plane). It reads as 32,768 32-bit words.
- The Flash of the SAM7SE512/256 contains a 256-byte write buffer, accessible through a 32bit interface.
- The Flash of the SAM7SE32 contains a 128-byte write buffer, accessible through a 32-bit interface.

#### 8.1.4 SAM-BA<sup>®</sup> Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device Port.

- Communication via the DBGU supports a wide range of crystals from 3 to 20 MHz via software auto-detection.
- Communication via the USB Device Port is limited to an 18.432 MHz crystal.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 2 is set to 0.

## 8.2 External Memories

The external memories are accessed through the External Bus Interface.

Refer to the memory map in Figure 8-1 on page 22.





## 9. System Controller

The System Controller manages all vital blocks of the microcontroller: interrupts, clocks, power, time, debug and reset.

The System Controller peripherals are all mapped to the highest 4 Kbytes of address space, between addresses 0xFFFF F000 and 0xFFFF FFFF.

Figure 9-1 on page 29 shows the System Controller Block Diagram.

Figure 8-1 on page 22 shows the mapping of the User Interface of the System Controller peripherals. Note that the Memory Controller configuration user interface is also mapped within this address space.



• Synchronous output, provides Set and Clear of several I/O lines in a single write

## 9.10 Voltage Regulator Controller

The purpose of this controller is to select the Power Mode of the Voltage Regulator between Normal Mode (bit 0 is cleared) or Standby Mode (bit 0 is set).



## 10.5 PIO Controller B Multiplexing

|          | PIO          | Controller B | Application U | sage     |          |
|----------|--------------|--------------|---------------|----------|----------|
| I/O Line | Peripheral A | Peripheral B | Comments      | Function | Comments |
| PB0      | TIOA0        | A0/NBS0      |               |          |          |
| PB1      | TIOB0        | A1/NBS2      |               |          |          |
| PB2      | SCK0         | A2           |               |          |          |
| PB3      | NPCS3        | A3           |               |          |          |
| PB4      | TCLK0        | A4           |               |          |          |
| PB5      | NPCS3        | A5           |               |          |          |
| PB6      | PCK0         | A6           |               |          |          |
| PB7      | PWM3         | A7           |               |          |          |
| PB8      | ADTRG        | A8           |               |          |          |
| PB9      | NPCS1        | A9           |               |          |          |
| PB10     | NPCS2        | A10          |               |          |          |
| PB11     | PWM0         | A11          |               |          |          |
| PB12     | PWM1         | A12          |               |          |          |
| PB13     | PWM2         | A13          |               |          |          |
| PB14     | PWM3         | A14          |               |          |          |
| PB15     | TIOA1        | A15          |               |          |          |
| PB16     | TIOB1        | A16/BA0      |               |          |          |
| PB17     | PCK1         | A17/BA1      |               |          |          |
| PB18     | PCK2         | D16          |               |          |          |
| PB19     | FIQ          | D17          |               |          |          |
| PB20     | IRQ0         | D18          |               |          |          |
| PB21     | PCK1         | D19          |               |          |          |
| PB22     | NPCS3        | D20          |               |          |          |
| PB23     | PWM0         | D21          |               |          |          |
| PB24     | PWM1         | D22          |               |          |          |
| PB25     | PWM2         | D23          |               |          |          |
| PB26     | TIOA2        | D24          |               |          |          |
| PB27     | TIOB2        | D25          |               |          |          |
| PB28     | TCLK1        | D26          |               |          |          |
| PB29     | TCLK2        | D27          |               |          |          |
| PB30     | NPCS2        | D28          |               |          |          |
| PB31     | PCK2         | D29          |               |          |          |

Table 10-3. Multiplexing on PIO Controller B

## 10.6 PIO Controller C Multiplexing

Multiplexing on PIO Controller C

|          | PIO C           | ontroller C   |          | Application Usag | е        |
|----------|-----------------|---------------|----------|------------------|----------|
| I/O Line | Peripheral A    | Peripheral B  | Comments | Function         | Comments |
| PC0      | D0              |               |          |                  |          |
| PC1      | D1              |               |          |                  |          |
| PC2      | D2              |               |          |                  |          |
| PC3      | D3              |               |          |                  |          |
| PC4      | D4              |               |          |                  |          |
| PC5      | D5              |               |          |                  |          |
| PC6      | D6              |               |          |                  |          |
| PC7      | D7              |               |          |                  |          |
| PC8      | D8              | RTS1          |          |                  |          |
| PC9      | D9              | DTR1          |          |                  |          |
| PC10     | D10             | PCK0          |          |                  |          |
| PC11     | D11             | PCK1          |          |                  |          |
| PC12     | D12             | PCK2          |          |                  |          |
| PC13     | D13             |               |          |                  |          |
| PC14     | D14             | NPCS1         |          |                  |          |
| PC15     | D15             | NCS3/NANDCS   |          |                  |          |
| PC16     | A18             | NWAIT         |          |                  |          |
| PC17     | A19             | NANDOE        |          |                  |          |
| PC18     | A20             | NANDWE        |          |                  |          |
| PC19     | A21/NANDALE     |               |          |                  |          |
| PC20     | A22/REG/NANDCLE | NCS7          |          |                  |          |
| PC21     |                 | NWR0/NWE/CFWE |          |                  |          |
| PC22     |                 | NRD/CFOE      |          |                  |          |
| PC23     | CFRNW           | NCS0          |          |                  |          |

### **10.7** Serial Peripheral Interface

- · Supports communication with external serial devices
  - Four chip selects with external decoder allow communication with up to 15 peripherals
  - Serial memories, such as DataFlash® and 3-wire EEPROMs
  - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
  - External co-processors
- Master or slave serial peripheral bus interface



- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

## 10.11 Timer Counter

- Three 16-bit Timer Counter Channels
  - Two output compare or one input capture per channel
- Wide range of functions including:
  - Frequency measurement
  - Event counting
  - Interval measurement
  - Pulse generation
  - Delay timing
  - Pulse Width Modulation
  - Up/down capabilities
- Each channel is user-configurable and contains:
  - Three external clock inputs
  - Five internal clock inputs, as defined in Table 10-4

#### Table 10-4. Timer Counter Clocks Assignment

| TC Clock input | Clock    |
|----------------|----------|
| TIMER_CLOCK1   | MCK/2    |
| TIMER_CLOCK2   | MCK/8    |
| TIMER_CLOCK3   | MCK/32   |
| TIMER_CLOCK4   | MCK/128  |
| TIMER_CLOCK5   | MCK/1024 |

- Two multi-purpose input/output signals
- Two global registers that act on all three TC channels

#### **10.12 PWM Controller**

- Four channels, one 16-bit counter per channel
- Common clock generator, providing thirteen different clocks
  - One Modulo n counter providing eleven clocks
  - Two independent linear dividers working on modulo n counter outputs
- Independent channel programming
  - Independent enable/disable commands
  - Independent clock selection
  - Independent period and duty cycle, with double buffering
  - Programmable selection of the output waveform polarity
  - Programmable center or left aligned output waveform





## 10.13 USB Device Port

- USB V2.0 full-speed compliant,12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints
- Eight endpoints
  - Endpoint 0: 64bytes
  - Endpoint 1 and 2: 64 bytes ping-pong
  - Endpoint 3: 64 bytes
  - Endpoint 4 and 5: 512 bytes ping-pong
  - Endpoint 6 and 7: 64 bytes ping-pong
  - Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints
- Suspend/resume logic
- Integrated Pull-up on DDP

## 10.14 Analog-to-Digital Converter

- 8-channel ADC
- 10-bit 384 Ksamples/sec. or 8-bit 583 Ksamples/sec. Successive Approximation Register ADC
- ±2 LSB Integral Non Linearity, ±1 LSB Differential Non Linearity
- Integrated 8-to-1 multiplexer, offering eight independent 3.3V analog inputs
- External voltage reference for better accuracy on low voltage inputs
- Individual enable and disable of each channel
- Multiple trigger sources
  - Hardware or software trigger
  - External trigger pin
  - Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
- Sleep Mode and conversion sequencer
  - Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels
- Each analog input shared with digital signals

## 11. Package Drawings









#### Figure 11-2. 144-ball LFBGA Package Drawing





0.4

0.70

All dimensions are in mm



#### **Headquarters**

*Atmel Corporation* 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 International

Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

#### Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

#### **Product Contact**

Web Site www.atmel.com www.atmel.com/AT91SAM **Technical Support** AT91SAM Support Atmel techincal support Sales Contacts www.atmel.com/contacts/

*Literature Requests* www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.



© 2011 Atmel Corporation. All rights reserved. Atmel<sup>®</sup>, Atmel logo and combinations thereof, SAMBA<sup>®</sup>, DataFlash<sup>®</sup>and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM<sup>®</sup>, ARMPowered<sup>®</sup>logo, Cortex<sup>®</sup>, Thumb<sup>®</sup>-2 and others are registered trademarks or trademarks of ARM Ltd. Windows<sup>®</sup> and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or other countries. Other terms and product names may be trademarks of others.