

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

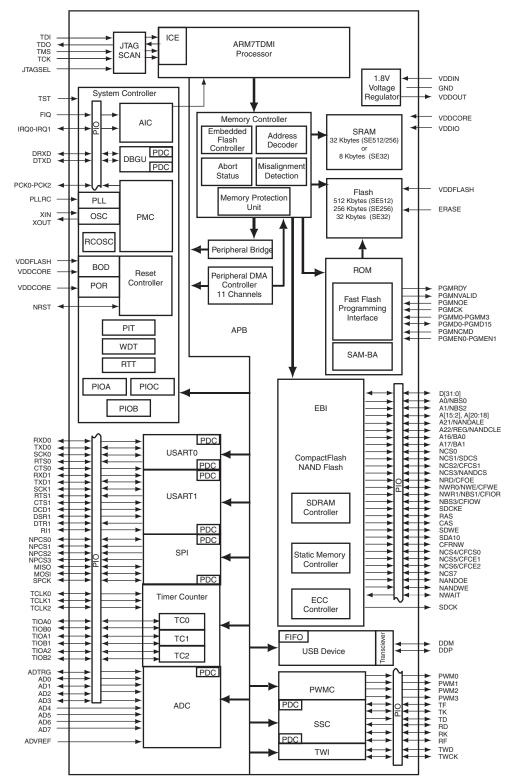
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	EBI/EMI, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	88
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7se512b-au

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Provides Reset or Interrupt Signals to the System
- Counter May Be Stopped While the Processor is in Debug State or in Idle Mode
- Real-time Timer (RTT)
 - 32-bit Free-running Counter with Alarm
 - Runs Off the Internal RC Oscillator
- Three Parallel Input/Output Controllers (PIO)
 - Eighty-eight Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os
 - Input Change Interrupt Capability on Each I/O Line
 - Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output
 - Schmitt Trigger on All inputs
- Eleven Peripheral DMA Controller (PDC) Channels
- One USB 2.0 Full Speed (12 Mbits per second) Device Port
 - On-chip Transceiver, Eight Endpoints, 2688-byte Configurable Integrated FIFOs
- One Synchronous Serial Controller (SSC)
 - Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
 - I²S Analog Interface Support, Time Division Multiplex Support
 - High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
- Two Universal Synchronous/Asynchronous Receiver Transmitters (USART)
 - Individual Baud Rate Generator, IrDA[®] Infrared Modulation/Demodulation
 - Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
 - Full Modem Line Support on USART1
- One Master/Slave Serial Peripheral Interfaces (SPI)
- 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
- One Three-channel 16-bit Timer/Counter (TC)
 - Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
 - Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
- One Four-channel 16-bit PWM Controller (PWMC)
- One Two-wire Interface (TWI)
 - Master, Multi-Master and Slave Mode Support, All Two-wire Atmel EEPROMs Supported
 - General Call Supported in Slave Mode
- One 8-channel 10-bit Analog-to-Digital Converter, Four Channels Multiplexed with Digital I/Os
- SAM-BA®
 - Default Boot program
 - Interface with SAM-BA Graphic User Interface
- IEEE[®] 1149.1 JTAG Boundary Scan on All Digital Pins
- Four High-current Drive I/O lines, Up to 16 mA Each
- Power Supplies
 - Embedded 1.8V Regulator, Drawing up to 100 mA for the Core and External Components
 - 1.8V or 3,3V VDDIO I/O Lines Power Supply, Independent 3.3V VDDFLASH Flash Power Supply
 - 1.8V VDDCORE Core Power Supply with Brownout Detector
- Fully Static Operation:
 - Up to 55 MHz at 1.8V and 85° C Worst Case Conditions
 - Up to 48 MHz at 1.65V and 85° C Worst Case Conditions
- Available in a 128-lead LQFP Green Package, or a 144-ball LFBGA RoHS-compliant Package

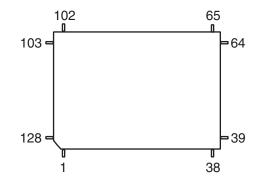
2. Block Diagram

Signal Name	Function	Туре	Active Level	Comments
	EBI for NAND F	lash Support		
NANDCS	NAND Flash Chip Select Line	Output	Low	
NANDOE	NAND Flash Output Enable	Output	Low	
NANDWE	NAND Flash Write Enable	Output	Low	
NANDCLE	NAND Flash Command Line Enable	Output	Low	
NANDALE	NAND Flash Address Line Enable	Output	Low	
	SDRAM C	ontroller		
SDCK	SDRAM Clock	Output		Tied low after reset
SDCKE	SDRAM Clock Enable	Output	High	
SDCS	SDRAM Controller Chip Select Line	Output	Low	
BA[1:0]	Bank Select	Output		
SDWE	SDRAM Write Enable	Output	Low	
RAS - CAS	RAS - CAS Row and Column Signal		Low	
NBS[3:0]	Byte Mask Signals	Output	Low	
SDA10	SDRAM Address 10 Line	Output		

Table 3-1. Signal Description List (Continued)

Note: 1. Refer to Section 6. "/O Lines Considerations" on page 15.

4. Package


The SAM7SE512/256/32 is available in:

- 20 x 14 mm 128-lead LQFP package with a 0.5 mm lead pitch.
- 10x 10 x 1.4 mm 144-ball LFBGA package with a 0.8 mm lead pitch

4.1 128-lead LQFP Package Outline

Figure 4-1 shows the orientation of the 128-lead LQFP package and a detailed mechanical description is given in the Mechanical Characteristics section of the full datasheet.

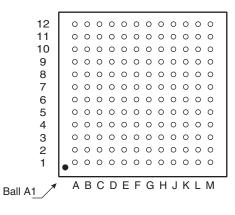
Figure 4-1. 128-lead LQFP Package Outline (Top View)

4.2 128-lead LQFP Pinout

Table 4-1.Pinout in 128-lead LQFP Package

1	ADVREF	
2	GND	
3	AD7	
4	AD6	
5	AD5	
6	AD4	
7	VDDOUT	
8	VDDIN	
9	PA20/PGMD8/AD3	
10	PA19/PGMD7/AD2	
11	PA18/PGMD6/AD1	
12	PA17/PGMD5/AD0	
13	PA16/PGMD4	
14	PA15/PGMD3	
15	PA14/PGMD2	
16	PA13/PGMD1	
17	PA12/PGMD0	
18	PA11/PGMM3	
19	PA10/PGMM2	
20	PA9/PGMM1	
21	VDDIO	
22	GND	
23	VDDCORE	
24	PA8/PGMM0	
25	PA7/PGMNVALID	
26	PA6/PGMNOE	
27	PA5/PGMRDY	
28	PA4/PGMNCMD	
29	PA3	
30	PA2/PGMEN2	
31	PA1/PGMEN1	
32	PA0/PGMEN0	

	ППаскауе			
33	PB31			
34	PB30			
35	PB29			
36	PB28			
37	PB27			
38	PB26			
39	PB25			
40	PB24			
41	PB23			
42	PB22			
43	PB21			
44	PB20			
45	GND			
46	VDDIO			
47	VDDCORE			
48	PB19			
49	PB18			
50	PB17			
51	PB16			
52	PB15			
53	PB14			
54	PB13			
55	PB12			
56	PB11			
57	PB10			
58	PB9			
59	PB8			
60	PB7			
61	PB6			
62	PB5			
63	PB4			
64	PB3			


65	TDI			
66	TDO			
67	PB2			
68	PB1			
69	PB0			
70	GND			
71	VDDIO			
72	VDDCORE			
73	NRST			
74	TST			
75	ERASE			
76	ТСК			
77	TMS			
78	JTAGSEL			
79	PC23			
80	PC22			
81	PC21			
82	PC20			
83	PC19			
84	PC18			
85	PC17			
86	PC16			
87	PC15			
88	PC14			
89	PC13			
90	PC12			
91	PC11			
92	PC10			
93	PC9			
94	GND			
95	VDDIO			
96	VDDCORE			
	-			

97	SDCK
98	PC8
99	PC7
100	PC6
101	PC5
102	PC4
103	PC3
104	PC2
105	PC1
106	PC0
107	PA31
108	PA30
109	PA29
110	PA28
111	PA27/PGMD15
112	PA26/PGMD14
113	PA25/PGMD13
114	PA24/PGMD12
115	PA23/PGMD11
116	PA22/PGMD10
117	PA21/PGMD9
118	VDDCORE
119	GND
120	VDDIO
121	DM
122	DP
123	VDDFLASH
124	GND
125	XIN/PGMCK
126	XOUT
127	PLLRC
128	VDDPLL

4.3 144-ball LFBGA Package Outline

Figure 4-2 shows the orientation of the 144-ball LFBGA package and a detailed mechanical description is given in the Mechanical Characteristics section.

4.4 144-ball LFBGA Pinout

Pin	Signal Name	Pin	Signal Name	Pin	Signal Name	Pin	Signal Name
A1	PB7	D1	VDDCORE	G1	PC18	K1	PC11
A2	PB8	D2	VDDCORE	G2	PC16	K2	PC6
A3	PB9	D3	PB2	G3	PC17	КЗ	PC2
A4	PB12	D4	TDO	G4	PC9	K4	PC0
A5	PB13	D5	TDI	G5	VDDIO	K5	PA27/PGMD15
A6	PB16	D6	PB17	G6	GND	K6	PA26/PGMD14
A7	PB22	D7	PB26	G7	GND	K7	GND
A8	PB23	D8	PA14/PGMD2	G8	GND	K8	VDDCORE
A9	PB25	D9	PA12/PGMD0	G9	GND	К9	VDDFLASH
A10	PB29	D10	PA11/PGMM3	G10	AD4	K10	VDDIO
A11	PB30	D11	PA8/PGMM0	G11	VDDIN	K11	VDDIO
A12	PB31	D12	PA7/PGMNVALID	G12	VDDOUT	K12	PA18/PGMD6/AD1
B1	PB6	E1	PC22	H1	PC15	L1	SDCK
B2	PB3	E2	PC23	H2	PC14	L2	PC7
B3	PB4	E3	NRST	НЗ	PC13	L3	PC4
B4	PB10	E4	ТСК	H4	VDDCORE	L4	PC1
B5	PB14	E5	ERASE	H5	VDDCORE	L5	PA29
B6	PB18	E6	TEST	H6	GND	L6	PA24/PGMD12
B7	PB20	E7	VDDCORE	H7	GND	L7	PA21/PGMD9
B8	PB24	E8	VDDCORE	H8	GND	L8	ADVREF
B9	PB28	E9	GND	H9	GND	L9	VDDFLASH
B10	PA4/PGMNCMD	E10	PA9/PGMM1	H10	PA19/PGMD7/AD2	L10	VDDFLASH
B11	PA0/PGMEN0	E11	PA10/PGMM2	H11	PA20/PGMD8/AD3	L11	PA17/PGMD5/AD0
B12	PA1/PGMEN1	E12	PA13/PGMD1	H12	VDDIO	L12	GND
C1	PB0	F1	PC21	J1	PC12	M1	PC8
C2	PB1	F2	PC20	J2	PC10	M2	PC5
C3	PB5	F3	PC19	JЗ	PA30	M3	PC3
C4	PB11	F4	JTAGSEL	J4	PA28	M4	PA31
C5	PB15	F5	TMS	J5	PA23/PGMD11	M5	PA25/PGMD13
C6	PB19	F6	VDDIO	J6	PA22/PGMD10	M6	DM
C7	PB21	F7	GND	J7	AD6	M7	DP
C8	PB27	F8	GND	J8	AD7	M8	GND
C9	PA6/PGMNOE	F9	GND	J9	VDDCORE	M9	XIN/PGMCK
C10	PA5/PGMRDY	F10	AD5	J10	VDDCORE	M10	XOUT
C11	PA2/PGMEN2	F11	PA15/PGMD3	J11	VDDCORE	M11	PLLRC
C12	PA3	F12	PA16/PGMD4	J12	VDDIO	M12	VDDPLL

Table 4-2.SAM7SE512/256/32 Pinout for 144-ball LFBGA Package

12 SAM7SE512/256/32 Summary

5. Power Considerations

5.1 Power Supplies

The SAM7SE512/256/32 has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDOUT pin. It is the output of the 1.8V voltage regulator.
- VDDIO pin. It powers the I/O lines; two voltage ranges are supported:
 - from 3.0V to 3.6V, 3.3V nominal
 - or from 1.65V to 1.95V, 1.8V nominal.
- VDDFLASH pin. It powers the USB transceivers and a part of the Flash. It is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V, 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.
- VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.

In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case VDDOUT should be left unconnected.

No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

5.2 Power Consumption

The SAM7SE512/256/32 has a static current of less than 60 μ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. Activating the brownout detector adds 20 μ A static current.

The dynamic power consumption on VDDCORE is less than 80 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA.

5.3 Voltage Regulator

The SAM7SE512/256/32 embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than 100 μ A static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 20 μ A static current and draws 1 mA of output current.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel:

• One external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible.

- One external 2.2 μF (or 3.3 $\mu F)$ X7R capacitor should be connected between VDDOUT and GND.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. The input decoupling capacitor should be placed close to the chip. For example, two capacitors can be used in parallel: 100 nF NPO and 4.7 μ F X7R.

5.4 Typical Powering Schematics

The SAM7SE512/256/32 supports a 3.3V single supply mode. The internal regulator input connected to the 3.3V source and its output feeds VDDCORE and the VDDPLL. Figure 5-1 shows the power schematics to be used for USB bus-powered systems.

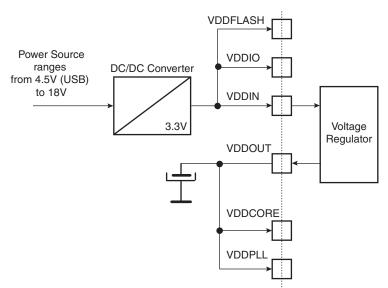


Figure 5-1. 3.3V System Single Power Supply Schematic

7.8 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Eleven channels
 - Two for each USART
 - Two for the Debug Unit
 - Two for the Serial Synchronous Controller
 - Two for the Serial Peripheral Interface
 - One for the Analog-to-digital Converter
- · Low bus arbitration overhead
 - One Master Clock cycle needed for a transfer from memory to peripheral
 - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirements
- Peripheral DMA Controller (PDC) priority is as follows (from the highest priority to the lowest):

Receive	DBGU
Receive	USART0
Receive	USART1
Receive	SSC
Receive	ADC
Receive	SPI
Transmit	DBGU
Transmit	USART0
Transmit	USART1
Transmit	SSC
Transmit	SPI

SAM7SE512/256/32 Summary

8. Memories

- 512 Kbytes of Flash Memory (SAM7SE512)
 - dual plane
 - two contiguous banks of 1024 pages of 256 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 write cycles, 10-year data retention capability
 - 32 lock bits, each protecting 32 lock regions of 64 pages
 - Protection Mode to secure contents of the Flash
- 256 Kbytes of Flash Memory (SAM7SE256)
 - single plane
 - one bank of 1024 pages of 256 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 cycles, 10-year data retention capability
 - 16 lock bits, each protecting 16 lock regions of 64 pages
 - Protection Mode to secure contents of the Flash
- 32 Kbytes of Flash Memory (SAM7SE32)
 - single plane
 - one bank of 256 pages of 128 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 cycles, 10-year data retention capability
 - 8 lock bits, each protecting 8 lock regions of 32 pages
 - Protection Mode to secure contents of the Flash
- 32 Kbytes of Fast SRAM (SAM7SE512/256)
 - Single-cycle access at full speed
- 8 Kbytes of Fast SRAM (SAM7SE32)
 - Single-cycle access at full speed

	0x0000 0000 0x000F FFFF 0x0010 0000	ROM Before Remap SRAM After Remap		1 M Bytes
	0x001F FFFF 0x0020 0000	Internal FLASH		1 M Bytes
256M Bytes	0x002F FFFF	Internal SRAM		1 M Bytes
	0x0030 0000 0x003F FFFF	Internal ROM		1 M Bytes
	0x0040 0000	Undefined Areas (Abort)		252 M Bytes
	0x0FFF FFFF			

Figure 8-2. Internal Memory Mapping with GPNVM Bit 2 = 0 (default)

Figure 8-3. Internal Memory Mapping with GPNVM Bit 2 = 1

	0x0000 0000 0x000F FFFF 0x0010 0000	Flash Before Remap SRAM After Remap		1 M Bytes
	0x001F FFFF 0x0020 0000	Internal FLASH		1 M Bytes
256M Bytes	0x002F FFFF 0x0030 0000	Internal SRAM		1 M Bytes
	0x0036 FFFF	Internal ROM		1 M Bytes
	0x0040 0000	Undefined Areas (Abort)		252 M Bytes
	0x0FFF FFFF			¢

8.1.2 Embedded Flash

8.1.2.1 Flash Overview

The Flash of the SAM7SE512 is organized in two banks (dual plane) of 1024 pages of 256 bytes. It reads as 131,072 32-bit words.

The Flash of the SAM7SE256 is organized in 1024 pages (single plane) of 256 bytes. It reads as 65,536 32-bit words.

The Flash of the SAM7SE32 is organized in 256 pages (single plane) of 128 bytes. It reads as 8192 32-bit words.

The Flash of the SAM7SE32 contains a 128-byte write buffer, accessible through a 32-bit interface.

The Flash of the SAM7SE512/256 contains a 256-byte write buffer, accessible through a 32-bit interface.

The security bit can only be enabled through the Command "Set Security Bit" of the EFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1 and after a full flash erase is performed. When the security bit is deactivated, all accesses to the flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

8.1.2.5 Non-volatile Brownout Detector Control

Two general purpose NVM (GPNVM) bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state.

These two GPNVM bits can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.

- GPNVM bit 0 is used as a brownout detector enable bit. Setting the GPNVM bit 0 enables the BOD, clearing it disables the BOD. Asserting ERASE clears the GPNVM bit 0 and thus disables the brownout detector by default.
- GPNVM bit 1 is used as a brownout reset enable signal for the reset controller. Setting the GPNVM bit 1 enables the brownout reset when a brownout is detected, Clearing the GPNVM bit 1 disables the brownout reset. Asserting ERASE disables the brownout reset by default.

8.1.2.6 Calibration Bits

Sixteen NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

8.1.3 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PA0 and PA1 pins are all tied high and PA2 tied to low.

- The Flash of the SAM7SE512 is organized in 2048 pages of 256 bytes (dual plane). It reads as 131,072 32-bit words.
- The Flash of the SAM7SE256 is organized in 1024 pages of 256 bytes (single plane). It reads as 65,536 32-bit words.
- The Flash of the SAM7SE32 is organized in 256 pages of 128 bytes (single plane). It reads as 32,768 32-bit words.
- The Flash of the SAM7SE512/256 contains a 256-byte write buffer, accessible through a 32bit interface.
- The Flash of the SAM7SE32 contains a 128-byte write buffer, accessible through a 32-bit interface.

8.1.4 SAM-BA[®] Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the DBGU or the USB Device Port.

- Communication via the DBGU supports a wide range of crystals from 3 to 20 MHz via software auto-detection.
- Communication via the USB Device Port is limited to an 18.432 MHz crystal.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 2 is set to 0.

8.2 External Memories

The external memories are accessed through the External Bus Interface.

Refer to the memory map in Figure 8-1 on page 22.

9. System Controller

The System Controller manages all vital blocks of the microcontroller: interrupts, clocks, power, time, debug and reset.

The System Controller peripherals are all mapped to the highest 4 Kbytes of address space, between addresses 0xFFFF F000 and 0xFFFF FFFF.

Figure 9-1 on page 29 shows the System Controller Block Diagram.

Figure 8-1 on page 22 shows the mapping of the User Interface of the System Controller peripherals. Note that the Memory Controller configuration user interface is also mapped within this address space.

• Synchronous output, provides Set and Clear of several I/O lines in a single write

9.10 Voltage Regulator Controller

The purpose of this controller is to select the Power Mode of the Voltage Regulator between Normal Mode (bit 0 is cleared) or Standby Mode (bit 0 is set).

10.4 PIO Controller A Multiplexing

	P	IO Controller A	Application Usage		
I/O Line	Peripheral A Peripheral B Comments		Function	Comments	
PA0	PWM0	A0/NBS0	High-Drive		
PA1	PWM1	A1/NBS2	High-Drive		
PA2	PWM2	A2	High-Drive		
PA3	TWD	A3	High-Drive		
PA4	ТѠСК	A4			
PA5	RXD0	A5			
PA6	TXD0	A6			
PA7	RTS0	A7			
PA8	CTS0	A8			
PA9	DRXD	A9			
PA10	DTXD	A10			
PA11	NPCS0	A11			
PA12	MISO	A12			
PA13	MOSI	A13			
PA14	SPCK	A14			
PA15	TF	A15			
PA16	ТК	A16/BA0			
PA17	TD	A17/BA1	AD0		
PA18	RD	NBS3/CFIOW	AD1		
PA19	RK	NCS4/CFCS0	AD2		
PA20	RF	NCS2/CFCS1	AD3		
PA21	RXD1	NCS6/CFCE2			
PA22	TXD1	NCS5/CFCE1			
PA23	SCK1	NWR1/NBS1/CFIOR			
PA24	RTS1	SDA10			
PA25	CTS1	SDCKE			
PA26	DCD1	NCS1/SDCS			
PA27	DTR1	SDWE			
PA28	DSR1	CAS			
PA29	RI1	RAS			
PA30	IRQ1	D30			
PA31	NPCS1	D31			

Table 10-2. Multiplexing on PIO Controller A

10.5 PIO Controller B Multiplexing

	PIC	O Controller B	Application Usage			
I/O Line Peripheral A		Peripheral A Peripheral B Comments		Function	Comments	
PB0	TIOA0	A0/NBS0				
PB1	TIOB0	A1/NBS2				
PB2	SCK0	A2				
PB3	NPCS3	A3				
PB4	TCLK0	A4				
PB5	NPCS3	A5				
PB6	PCK0	A6				
PB7	PWM3	A7				
PB8	ADTRG	A8				
PB9	NPCS1	A9				
PB10	NPCS2	A10				
PB11	PWM0	A11				
PB12	PWM1	A12				
PB13	PWM2	A13				
PB14	PWM3	A14				
PB15	TIOA1	A15				
PB16	TIOB1	A16/BA0				
PB17	PCK1	A17/BA1				
PB18	PCK2	D16				
PB19	FIQ	D17				
PB20	IRQ0	D18				
PB21	PCK1	D19				
PB22	NPCS3	D20				
PB23	PWM0	D21				
PB24	PWM1	D22				
PB25	PWM2	D23				
PB26	TIOA2	D24				
PB27	TIOB2	D25				
PB28	TCLK1	D26				
PB29	TCLK2	D27				
PB30	NPCS2	D28				
PB31	PCK2	D29				

Table 10-3. Multiplexing on PIO Controller B

- 8- to 16-bit programmable data length per chip select
- Programmable phase and polarity per chip select
- Programmable transfer delays per chip select, between consecutive transfers and between clock and data
- Programmable delay between consecutive transfers
- Selectable mode fault detection
- Maximum frequency at up to Master Clock

10.8 Two Wire Interface

- Master, Multi-Master and Slave Mode Operation
- · Compatibility with standard two-wire serial memories
- One, two or three bytes for slave address
- · Sequential read/write operations
- Bit Rate: Up to 400 Kbit/s
- General Call Supported in Slave Mode

10.9 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode
 - 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB or LSB first
 - Optional break generation and detection
 - By 8 or by 16 over-sampling receiver frequency
 - Hardware handshaking RTS CTS
 - Modem Signals Management DTR-DSR-DCD-RI on USART1
 - Receiver time-out and transmitter timeguard
 - Multi-drop Mode with address generation and detection
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
 - NACK handling, error counter with repetition and iteration limit
- IrDA[®] modulation and demodulation
 - Communication at up to 115.2 Kbps
- Test Modes
 - Remote Loopback, Local Loopback, Automatic Echo

10.10 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications
- · Contains an independent receiver and transmitter and a common clock divider

40 SAM7SE512/256/32 Summary

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1) (408) 441-0311 Fax: (+1) (408) 487-2600 International

Atmel Asia Limited Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 JAPAN Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com www.atmel.com/AT91SAM **Technical Support** AT91SAM Support Atmel techincal support Sales Contacts www.atmel.com/contacts/

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, SAMBA[®], DataFlash[®]and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM[®], ARMPowered[®]logo, Cortex[®], Thumb[®]-2 and others are registered trademarks or trademarks of ARM Ltd. Windows[®] and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or other countries. Other terms and product names may be trademarks of others.