

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM7®
Core Size	16/32-Bit
Speed	55MHz
Connectivity	EBI/EMI, I ² C, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	88
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 1.95V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam7se512b-aur

1. Description

Atmel's SAM7SE Series is a member of its Smart ARM Microcontroller family based on the 32-bit ARM7[™] RISC processor and high-speed Flash memory.

- SAM7SE512 features a 512-Kbyte high-speed Flash and a 32 Kbyte SRAM.
- SAM7SE256 features a 256-Kbyte high-speed Flash and a 32 Kbyte SRAM.
- SAM7SE32 features a 32-Kbyte high-speed Flash and an 8 Kbyte SRAM.

It also embeds a large set of peripherals, including a USB 2.0 device, an External Bus Interface (EBI), and a complete set of system functions minimizing the number of external components.

The EBI incorporates controllers for synchronous DRAM (SDRAM) and Static memories and features specific circuitry facilitating the interface for NAND Flash, SmartMedia and CompactFlash.

The device is an ideal migration path for 8/16-bit microcontroller users looking for additional performance, extended memory and higher levels of system integration.

The embedded Flash memory can be programmed in-system via the JTAG-ICE interface or via a parallel interface on a production programmer prior to mounting. Built-in lock bits and a security bit protect the firmware from accidental overwrite and preserve its confidentiality.

The SAM7SE Series system controller includes a reset controller capable of managing the power-on sequence of the microcontroller and the complete system. Correct device operation can be monitored by a built-in brownout detector and a watchdog running off an integrated RC oscillator.

By combining the ARM7TDMI processor with on-chip Flash and SRAM, and a wide range of peripheral functions, including USART, SPI, External Bus Interface, Timer Counter, RTT and Analog-to-Digital Converters on a monolithic chip, the SAM7SE512/256/32 is a powerful device that provides a flexible, cost-effective solution to many embedded control applications.

1.1 Configuration Summary of the SAM7SE512, SAM7SE256 and SAM7SE32

The SAM7SE512, SAM7SE256 and SAM7SE32 differ in memory sizes and organization. Table 1-1 below summarizes the configurations for the three devices.

Table 1-1. Configuration Summary

Device	Flash Size	Flash Organization	RAM Size
SAM7SE512	512K bytes	dual plane	32K bytes
SAM7SE256	256K bytes	single plane	32K bytes
SAM7SE32	32K bytes	single plane	8K bytes

2. **Block Diagram**

TDI TDO TMS TCK ICE ARM7TDMI JTAG Processor **SCAN** JTAGSEL 1.8V VDDIN Voltage GND System Controller VDDOUT Regulato TST FIQ VDDCORE Memory Controller AIC VDDIO IRQ0-IRQ1 Embedded SRAM Address 32 Kbytes (SE512/256) or 8 Kbytes (SE32) Flash DBGU PDC DRXD DTXD Misalignmer PDC Status Detection PCK0-PCK2 VDDELASH Flash Memory Protection PLLRC 512 Kbytes (SE512) 256 Kbytes (SE256) 32 Kbytes (SE32) PLL Unit ERASE XIN osc PMC XOUT RCOSC Peripheral Bridge VDDFLASH BOD ROM VDDCORE Reset Peripheral DMA Controller POR Controller **VDDCORE PGMRDY** PGMNVALID PGMNOE PGMCK 11 Channels Fast Flash NRST Programming PGMCK PGMM0-PGMM3 PGMD0-PGMD15 PGMNCMD PGMEN0-PGMEN1 Interface PIT APB WDT SAM-BA RTT PIOC PIOA D[31:0]
A0/NBS0
A1/NBS2
A1/NBS2
A1/NBS2
A1/S21, A[20:18]
A21/NANDALE
A22/REG/NANDCLE
A16/BA0
A17/BA1
NCS0
NCS1/SDCS
NCS2/CFCS1
NCS2/MANDCS
NRD/CFOE
NWR0/NWE/CFWB
NWR1/NBS1/CFION
NBS3/CFIOW
SDCKE
RAS PIOB FBI RXD0 TXD0 SCK0 RTS0 CTS0 RXD1 TXD1 SCK1 RTS1 DCD1 DSR1 DTR1 RI1 PDC USART0 CompactFlash PDC NAND Flash PDC USART1 SDRAM Controller SDCRE
RAS
CAS
SDWE
SDA10
CFRNW
NCS4/CFCS0
NCS5/CFCE1
NCS6/CFCE2
NCS7
NANDOWE PDC RI1 NPCS0 NPCS1 NPCS2 NPCS3 MISO MOSI SPCK PDC SPI Static Memory Controller NANDWE NWAIT TCLK0 TCLK1 TCLK2 Timer Counter ECC SDCK Controller TIOA0 TC0 TIOA0 TIOA1 TIOA1 TIOA2 TIOA2 TC1 FIFO **USB** Device TC2 ADTRG AD0 AD1 AD2 AD3 AD4 AD5 AD6 AD7 PDC PWM0 PWM1 PWM2 PWM3 TF TK TD RD RK RF **PWMC** ADC SSC PDC ADVREF TWD TWCK TWI

Figure 2-1. SAM7SE512/256/32 Block Diagram Signal Description

 Table 3-1.
 Signal Description List (Continued)

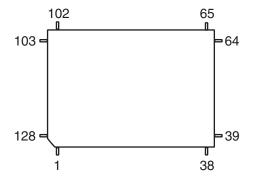
Signal Name	Function	Туре	Active Level	Comments				
PIO								
PA0 - PA31	Parallel IO Controller A	I/O		Pulled-up input at reset				
PB0 - PB31	Parallel IO Controller B	I/O		Pulled-up input at reset				
PC0 - PC23	Parallel IO Controller C	I/O		Pulled-up input at reset				
	USB Device Port							
DDM	USB Device Port Data -	Analog						
DDP	USB Device Port Data +	Analog						
	USA	ART						
SCK0 - SCK1	Serial Clock	I/O						
TXD0 - TXD1	Transmit Data	I/O						
RXD0 - RXD1	Receive Data	Input						
RTS0 - RTS1	Request To Send	Output						
CTS0 - CTS1	Clear To Send	Input						
DCD1	Data Carrier Detect	Input						
DTR1	Data Terminal Ready	Output						
DSR1	Data Set Ready	Input						
RI1	Ring Indicator	Input						
	Synchronous S	erial Controlle	r					
TD	Transmit Data	Output						
RD	Receive Data	Input						
TK	Transmit Clock	I/O						
RK	Receive Clock	I/O						
TF	Transmit Frame Sync	I/O						
RF	Receive Frame Sync	I/O						
	Timer/0	Counter	1					
TCLK0 - TCLK2	External Clock Inputs	Input						
TIOA0 - TIOA2	Timer Counter I/O Line A	I/O						
TIOB0 - TIOB2	Timer Counter I/O Line B	I/O						
	PWM Co	ontroller	1					
PWM0 - PWM3	PWM Channels	Output						
	Serial Periph	eral Interface						
MISO	Master In Slave Out	I/O						
MOSI	Master Out Slave In	I/O						
SPCK	SPI Serial Clock	I/O						
NPCS0	SPI Peripheral Chip Select 0	I/O	Low					
NPCS1-NPCS3	SPI Peripheral Chip Select 1 to 3	Output	Low					

 Table 3-1.
 Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Comments		
EBI for NAND Flash Support						
NANDCS	NAND Flash Chip Select Line	Output	Low			
NANDOE	NAND Flash Output Enable	Output	Low			
NANDWE	NAND Flash Write Enable	Output	Low			
NANDCLE	NAND Flash Command Line Enable	Output	Low			
NANDALE	NAND Flash Address Line Enable	Output	Low			
	SDRAM	Controller				
SDCK	SDRAM Clock	Output		Tied low after reset		
SDCKE	SDRAM Clock Enable	Output	High			
SDCS	SDRAM Controller Chip Select Line	Output	Low			
BA[1:0] Bank Select		Output				
SDWE	SDRAM Write Enable	Output	Low			
RAS - CAS Row and Column Signal		Output	Low			
NBS[3:0]	Byte Mask Signals	Output	Low			
SDA10	SDRAM Address 10 Line	Output				

Note: 1. Refer to Section 6. "/O Lines Considerations" on page 15.

4. Package


The SAM7SE512/256/32 is available in:

- 20 x 14 mm 128-lead LQFP package with a 0.5 mm lead pitch.
- 10x 10 x 1.4 mm 144-ball LFBGA package with a 0.8 mm lead pitch

4.1 128-lead LQFP Package Outline

Figure 4-1 shows the orientation of the 128-lead LQFP package and a detailed mechanical description is given in the Mechanical Characteristics section of the full datasheet.

Figure 4-1. 128-lead LQFP Package Outline (Top View)

4.4 144-ball LFBGA Pinout

Table 4-2. SAM7SE512/256/32 Pinout for 144-ball LFBGA Package

Table	4-2. SAIVI7 SEST2/2
Pin	Signal Name
A1	PB7
A2	PB8
A3	PB9
A4	PB12
A 5	PB13
A6	PB16
A7	PB22
A8	PB23
A9	PB25
A10	PB29
A11	PB30
A12	PB31
B1	PB6
B2	PB3
В3	PB4
B4	PB10
B5	PB14
В6	PB18
B7	PB20
B8	PB24
В9	PB28
B10	PA4/PGMNCMD
B11	PA0/PGMEN0
B12	PA1/PGMEN1
C1	PB0
C2	PB1
СЗ	PB5
C4	PB11
C5	PB15
C6	PB19
C7	PB21
C8	PB27
C9	PA6/PGMNOE
C10	PA5/PGMRDY
C11	PA2/PGMEN2
C12	PA3

6/32 Pinout for 144-ball LFI Pin Signal Name				
_	Signal Name			
D1	VDDCORE			
D2	VDDCORE			
D3	PB2			
D4	TDO			
D5	TDI			
D6	PB17			
D7	PB26			
D8	PA14/PGMD2			
D9	PA12/PGMD0			
D10	PA11/PGMM3			
D11	PA8/PGMM0			
D12	PA7/PGMNVALID			
E1	PC22			
E2	PC23			
E3	NRST			
E4	TCK			
E5	ERASE			
E6	TEST			
E7	VDDCORE			
E8	VDDCORE			
E9	GND			
E10	PA9/PGMM1			
E11	PA10/PGMM2			
E12	PA13/PGMD1			
F1	PC21			
F2	PC20			
F3	PC19			
F4	JTAGSEL			
F5	TMS			
F6	VDDIO			
F7	GND			
F8	GND			
F9	GND			
F10	AD5			
F11	PA15/PGMD3			
F12	PA16/PGMD4			

~	<u> Раскаде</u>					
	Pin Signal Name					
	G1	PC18				
	G2	PC16				
	G3	PC17				
	G4	PC9				
	G5	VDDIO				
	G6	GND				
	G7	GND				
	G8	GND				
	G9	GND				
	G10	AD4				
	G11	VDDIN				
	G12	VDDOUT				
	H1	PC15				
	H2	PC14				
	НЗ	PC13				
	H4	VDDCORE				
	H5 VDDCORE					
	H6	GND				
	H7	GND				
	Н8	GND				
	H9	GND				
	H10	PA19/PGMD7/AD2				
	H11	PA20/PGMD8/AD3				
	H12	VDDIO				
	J1	PC12				
	J2	PC10				
	J3	PA30				
	J4	PA28				
	J5	PA23/PGMD11				
	J6	PA22/PGMD10				
	J7	AD6				
	J8	AD7				
	J9	VDDCORE				
	J10	VDDCORE				
	J11	VDDCORE				
	J12	VDDIO				

Signal Name	
PC11	
PC6	
PC2	
PC0	
PA27/PGMD15	
PA26/PGMD14	
GND	
VDDCORE	
VDDFLASH	
VDDIO	
VDDIO	
PA18/PGMD6/AD1	
SDCK	
PC7	
PC4	
PC1	
PA29	
PA24/PGMD12	
PA21/PGMD9	
ADVREF	
VDDFLASH	
VDDFLASH	
PA17/PGMD5/AD0	
GND	
PC8	
PC5	
PC3	
PA31	
PA25/PGMD13	
DM	
DP	
GND	
XIN/PGMCK	
XOUT	
PLLRC	
VDDPLL	

5. Power Considerations

5.1 Power Supplies

The SAM7SE512/256/32 has six types of power supply pins and integrates a voltage regulator, allowing the device to be supplied with only one voltage. The six power supply pin types are:

- VDDIN pin. It powers the voltage regulator and the ADC; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDOUT pin. It is the output of the 1.8V voltage regulator.
- VDDIO pin. It powers the I/O lines; two voltage ranges are supported:
 - from 3.0V to 3.6V, 3.3V nominal
 - or from 1.65V to 1.95V, 1.8V nominal.
- VDDFLASH pin. It powers the USB transceivers and a part of the Flash. It is required for the Flash to operate correctly; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDCORE pins. They power the logic of the device; voltage ranges from 1.65V to 1.95V,
 1.8V typical. It can be connected to the VDDOUT pin with decoupling capacitor. VDDCORE is required for the device, including its embedded Flash, to operate correctly.
- VDDPLL pin. It powers the oscillator and the PLL. It can be connected directly to the VDDOUT pin.

In order to decrease current consumption, if the voltage regulator and the ADC are not used, VDDIN, ADVREF, AD4, AD5, AD6 and AD7 should be connected to GND. In this case VDDOUT should be left unconnected.

No separate ground pins are provided for the different power supplies. Only GND pins are provided and should be connected as shortly as possible to the system ground plane.

5.2 Power Consumption

The SAM7SE512/256/32 has a static current of less than 60 μ A on VDDCORE at 25°C, including the RC oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. Activating the brownout detector adds 20 μ A static current.

The dynamic power consumption on VDDCORE is less than 80 mA at full speed when running out of the Flash. Under the same conditions, the power consumption on VDDFLASH does not exceed 10 mA.

5.3 Voltage Regulator

The SAM7SE512/256/32 embeds a voltage regulator that is managed by the System Controller.

In Normal Mode, the voltage regulator consumes less than 100 μA static current and draws 100 mA of output current.

The voltage regulator also has a Low-power Mode. In this mode, it consumes less than 20 μ A static current and draws 1 mA of output current.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel:

 One external 470 pF (or 1 nF) NPO capacitor should be connected between VDDOUT and GND as close to the chip as possible.

6.5 SDCK Pin

The SDCK pin is dedicated to the SDRAM Clock and is an output-only without pull-up. Maximum Output Frequency of this pad is 48 MHz at 3.0V and 25 MHz at 1.65V with a maximum load of 30 pF.

6.6 PIO Controller lines

All the I/O lines PA0 to PA31, PB0 to PB31, PC0 to PC23 integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the PIO controllers.

Typical pull-up value is 100 k Ω

All the I/O lines have schmitt trigger inputs.

6.7 I/O Lines Current Drawing

The PIO lines PA0 to PA3 are high-drive current capable. Each of these I/O lines can drive up to 16 mA permanently.

The remaining I/O lines can draw only 8 mA.

However, the total current drawn by all the I/O lines cannot exceed 300 mA.

7. Processor and Architecture

7.1 ARM7TDMI Processor

- RISC processor based on ARMv4T Von Neumann architecture
 - Runs at up to 55 MHz, providing 0.9 MIPS/MHz (core supplied with 1.8V)
- Two instruction sets
 - ARM® high-performance 32-bit instruction set
 - Thumb® high code density 16-bit instruction set
- Three-stage pipeline architecture
 - Instruction Fetch (F)
 - Instruction Decode (D)
 - Execute (E)

7.2 Debug and Test Features

- EmbeddedICE[™] (Integrated embedded in-circuit emulator)
 - Two watchpoint units
 - Test access port accessible through a JTAG protocol
 - Debug communication channel
- Debug Unit
 - Two-pin UART
 - Debug communication channel interrupt handling
 - Chip ID Register
- IEEE1149.1 JTAG Boundary-scan on all digital pins

7.3 Memory Controller

- Programmable Bus Arbiter
 - Handles requests from the ARM7TDMI and the Peripheral DMA Controller
- · Address decoder provides selection signals for
 - Four internal 1 Mbyte memory areas
 - One 256-Mbyte embedded peripheral area
 - Eight external 256-Mbyte memory areas
- Abort Status Registers
 - Source, Type and all parameters of the access leading to an abort are saved
 - Facilitates debug by detection of bad pointers
- Misalignment Detector
 - Alignment checking of all data accesses
 - Abort generation in case of misalignment
- Remap Command
 - Remaps the SRAM in place of the embedded non-volatile memory
 - Allows handling of dynamic exception vectors
- 16-area Memory Protection Unit (Internal Memory and peripheral protection only)

- Individually programmable size between 1K Byte and 1M Byte
- Individually programmable protection against write and/or user access
- Peripheral protection against write and/or user access
- Embedded Flash Controller
 - Embedded Flash interface, up to three programmable wait states
 - Prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required wait states
 - Key-protected program, erase and lock/unlock sequencer
 - Single command for erasing, programming and locking operations
 - Interrupt generation in case of forbidden operation

7.4 External Bus Interface

- Integrates Three External Memory Controllers:
 - Static Memory Controller
 - SDRAM Controller
 - ECC Controller
- Additional Logic for NAND Flash and CompactFlash® Support
 - NAND Flash support: 8-bit as well as 16-bit devices are supported
 - CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are supported but the signals _IOIS16 (I/O and True IDE modes) and -ATA SEL (True IDE mode) are not handled.
- Optimized External Bus:
 - 16- or 32-bit Data Bus (32-bit Data Bus for SDRAM only)
 - Up to 23-bit Address Bus, Up to 8-Mbytes Addressable
 - Up to 8 Chip Selects, each reserved to one of the eight Memory Areas
 - Optimized pin multiplexing to reduce latencies on External Memories
- Configurable Chip Select Assignment:
 - Static Memory Controller on NCS0
 - SDRAM Controller or Static Memory Controller on NCS1
 - Static Memory Controller on NCS2, Optional CompactFlash Support
 - Static Memory Controller on NCS3, NCS5 NCS6, Optional NAND Flash Support
 - Static Memory Controller on NCS4, Optional CompactFlash Support
 - Static Memory Controller on NCS7

7.5 Static Memory Controller

- External memory mapping, 512-Mbyte address space
- 8-, or 16-bit Data Bus
- Up to 8 Chip Select Lines
- Multiple Access Modes supported
 - Byte Write or Byte Select Lines
 - Two different Read Protocols for each Memory Bank

7.8 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Eleven channels
 - Two for each USART
 - Two for the Debug Unit
 - Two for the Serial Synchronous Controller
 - Two for the Serial Peripheral Interface
 - One for the Analog-to-digital Converter
- · Low bus arbitration overhead
 - One Master Clock cycle needed for a transfer from memory to peripheral
 - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirements

Receive

• Peripheral DMA Controller (PDC) priority is as follows (from the highest priority to the lowest):

DRGH

neceive	DBGU
Receive	USART0
Receive	USART1
Receive	SSC
Receive	ADC
Receive	SPI
Transmit	DBGU
Transmit	USART0
Transmit	USART1
Transmit	SSC
Transmit	SPI

8. Memories

- 512 Kbytes of Flash Memory (SAM7SE512)
 - dual plane
 - two contiguous banks of 1024 pages of 256 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 write cycles, 10-year data retention capability
 - 32 lock bits, each protecting 32 lock regions of 64 pages
 - Protection Mode to secure contents of the Flash
- 256 Kbytes of Flash Memory (SAM7SE256)
 - single plane
 - one bank of 1024 pages of 256 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 cycles, 10-year data retention capability
 - 16 lock bits, each protecting 16 lock regions of 64 pages
 - Protection Mode to secure contents of the Flash
- 32 Kbytes of Flash Memory (SAM7SE32)
 - single plane
 - one bank of 256 pages of 128 bytes
 - Fast access time, 30 MHz single-cycle access in Worst Case conditions
 - Page programming time: 6 ms, including page auto-erase
 - Page programming without auto-erase: 3 ms
 - Full chip erase time: 15 ms
 - 10,000 cycles, 10-year data retention capability
 - 8 lock bits, each protecting 8 lock regions of 32 pages
 - Protection Mode to secure contents of the Flash
- 32 Kbytes of Fast SRAM (SAM7SE512/256)
 - Single-cycle access at full speed
- 8 Kbytes of Fast SRAM (SAM7SE32)
 - Single-cycle access at full speed

SAM7SE512/256/32 Summary

A first level of address decoding is performed by the Memory Controller, i.e., by the implementation of the Advanced System Bus (ASB) with additional features.

Decoding splits the 4G bytes of address space into 16 areas of 256M bytes. The areas 1 to 8 are directed to the EBI that associates these areas to the external chip selects NC0 to NCS7. The area 0 is reserved for the addressing of the internal memories, and a second level of decoding provides 1M byte of internal memory area. The area 15 is reserved for the peripherals and provides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master requesting such an access.

8.1 Embedded Memories

8.1.1 Internal Memories

8.1.1.1 Internal SRAM

The SAM7SE512/256 embeds a high-speed 32-Kbyte SRAM bank. The SAM7SE32 embeds a high-speed 8-Kbyte SRAM bank. After reset and until the Remap Command is performed, the SRAM is only accessible at address 0x0020 0000. After Remap, the SRAM also becomes available at address 0x0.

8.1.1.2 Internal ROM

The SAM7SE512/256/32 embeds an Internal ROM. At any time, the ROM is mapped at address 0x30 0000. The ROM contains the FFPI and the SAM-BA boot program.

8.1.1.3 Internal Flash

- The SAM7SE512 features two banks of 256 Kbytes of Flash.
- The SAM7SE256 features one bank of 256 Kbytes of Flash.
- The SAM7SE32 features one bank of 32 Kbytes of Flash.

At any time, the Flash is mapped to address 0x0010 0000.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

This GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.

Setting the GPNVM bit 2 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears the GPNVM bit 2 and thus selects the boot from the ROM by default.

The security bit can only be enabled through the Command "Set Security Bit" of the EFC User Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1 and after a full flash erase is performed. When the security bit is deactivated, all accesses to the flash are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is safer to connect it directly to GND for the final application.

8.1.2.5 Non-volatile Brownout Detector Control

Two general purpose NVM (GPNVM) bits are used for controlling the brownout detector (BOD), so that even after a power loss, the brownout detector operations remain in their state.

These two GPNVM bits can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EFC User Interface.

- GPNVM bit 0 is used as a brownout detector enable bit. Setting the GPNVM bit 0 enables the BOD, clearing it disables the BOD. Asserting ERASE clears the GPNVM bit 0 and thus disables the brownout detector by default.
- GPNVM bit 1 is used as a brownout reset enable signal for the reset controller. Setting the GPNVM bit 1 enables the brownout reset when a brownout is detected, Clearing the GPNVM bit 1 disables the brownout reset. Asserting ERASE disables the brownout reset by default.

8.1.2.6 Calibration Bits

Sixteen NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

8.1.3 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang-programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when the TST pin and the PA0 and PA1 pins are all tied high and PA2 tied to low.

- The Flash of the SAM7SE512 is organized in 2048 pages of 256 bytes (dual plane). It reads as 131,072 32-bit words.
- The Flash of the SAM7SE256 is organized in 1024 pages of 256 bytes (single plane). It reads as 65,536 32-bit words.
- The Flash of the SAM7SE32 is organized in 256 pages of 128 bytes (single plane). It reads as 32,768 32-bit words.
- The Flash of the SAM7SE512/256 contains a 256-byte write buffer, accessible through a 32-bit interface.
- The Flash of the SAM7SE32 contains a 128-byte write buffer, accessible through a 32-bit interface.

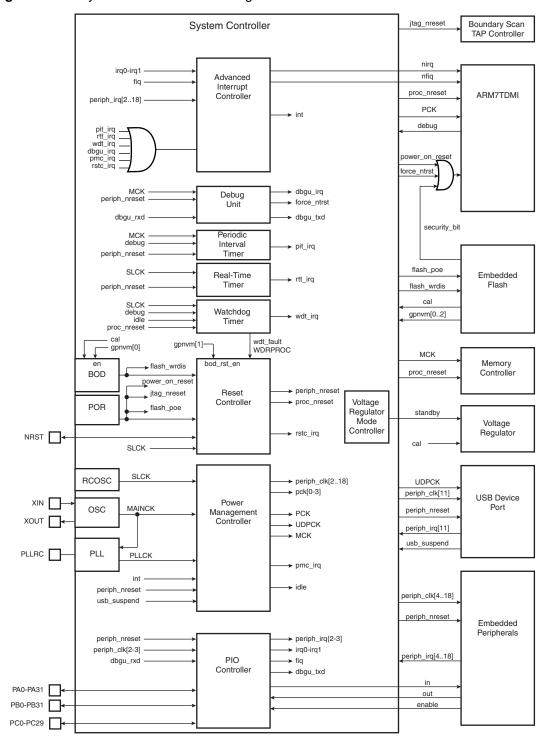


Figure 9-1. System Controller Block Diagram

• Synchronous output, provides Set and Clear of several I/O lines in a single write

9.10 Voltage Regulator Controller

The purpose of this controller is to select the Power Mode of the Voltage Regulator between Normal Mode (bit 0 is cleared) or Standby Mode (bit 0 is set).

10. Peripherals

10.1 User Interface

The User Peripherals are mapped in the 256 MBytes of the address space between 0xF000 0000 and 0xFFFF EFFF. Each peripheral is allocated 16 Kbytes of address space.

A complete memory map is presented in Figure 8-1 on page 22.

10.2 Peripheral Identifiers

The SAM7SE512/256/32 embeds a wide range of peripherals. Table 10-1 defines the Peripheral Identifiers of the SAM7SE512/256/32. Unique peripheral identifiers are defined for both the Advanced Interrupt Controller and the Power Management Controller.

Table 10-1. Peripheral Identifiers

Peripheral ID	Peripheral Mnemonic	Peripheral Name	External Interrupt
0	AIC	Advanced Interrupt Controller	FIQ
1	SYSC ⁽¹⁾		
2	PIOA	Parallel I/O Controller A	
3	PIOB	Parallel I/O Controller B	
4	PIOC	Parallel I/O Controller C	
5	SPI	Serial Peripheral Interface 0	
6	US0	USART 0	
7	US1	USART 1	
8	SSC	Synchronous Serial Controller	
9	TWI	Two-wire Interface	
10	PWMC	PWM Controller	
11	UDP	USB Device Port	
12	TC0	Timer/Counter 0	
13	TC1	Timer/Counter 1	
14	TC2	Timer/Counter 2	
15	ADC ⁽¹⁾	Analog-to Digital Converter	
16-28	reserved		
29	AIC	Advanced Interrupt Controller	IRQ0
30	AIC	Advanced Interrupt Controller IRQ1	

Note: 1. Setting SYSC and ADC bits in the clock set/clear registers of the PMC has no effect. The System Controller is continuously clocked. The ADC clock is automatically started for the first conversion. In Sleep Mode the ADC clock is automatically stopped after each conversion.

10.4 PIO Controller A Multiplexing

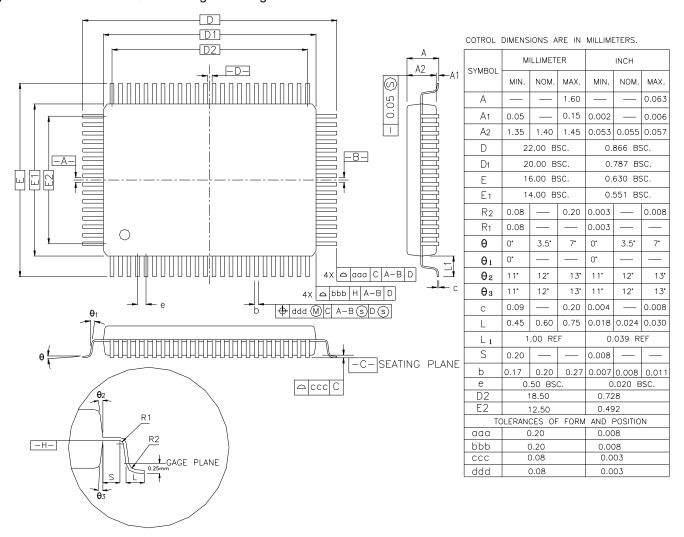
Table 10-2. Multiplexing on PIO Controller A

PIO Controller A			Application U	Application Usage		
I/O Line	Peripheral A	Peripheral B	Comments	Function	Comments	
PA0	PWM0	A0/NBS0	High-Drive			
PA1	PWM1	A1/NBS2	High-Drive			
PA2	PWM2	A2	High-Drive			
PA3	TWD	A3	High-Drive			
PA4	TWCK	A4				
PA5	RXD0	A5				
PA6	TXD0	A6				
PA7	RTS0	A7				
PA8	CTS0	A8				
PA9	DRXD	A9				
PA10	DTXD	A10				
PA11	NPCS0	A11				
PA12	MISO	A12				
PA13	MOSI	A13				
PA14	SPCK	A14				
PA15	TF	A15				
PA16	TK	A16/BA0				
PA17	TD	A17/BA1	AD0			
PA18	RD	NBS3/CFIOW	AD1			
PA19	RK	NCS4/CFCS0	AD2			
PA20	RF	NCS2/CFCS1	AD3			
PA21	RXD1	NCS6/CFCE2				
PA22	TXD1	NCS5/CFCE1				
PA23	SCK1	NWR1/NBS1/CFIOR				
PA24	RTS1	SDA10				
PA25	CTS1	SDCKE				
PA26	DCD1	NCS1/SDCS				
PA27	DTR1	SDWE				
PA28	DSR1	CAS				
PA29	RI1	RAS				
PA30	IRQ1	D30				
PA31	NPCS1	D31				

10.6 PIO Controller C Multiplexing

Multiplexing on PIO Controller C

PIO Controller C				Application U	sage
I/O Line	Peripheral A	Peripheral B	Comments	Function	Comments
PC0	D0				
PC1	D1				
PC2	D2				
PC3	D3				
PC4	D4				
PC5	D5				
PC6	D6				
PC7	D7				
PC8	D8	RTS1			
PC9	D9	DTR1			
PC10	D10	PCK0			
PC11	D11	PCK1			
PC12	D12	PCK2			
PC13	D13				
PC14	D14	NPCS1			
PC15	D15	NCS3/NANDCS			
PC16	A18	NWAIT			
PC17	A19	NANDOE			
PC18	A20	NANDWE			
PC19	A21/NANDALE				
PC20	A22/REG/NANDCLE	NCS7			
PC21		NWR0/NWE/CFWE			
PC22		NRD/CFOE			
PC23	CFRNW	NCS0			


10.7 Serial Peripheral Interface

- Supports communication with external serial devices
 - Four chip selects with external decoder allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash® and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- Master or slave serial peripheral bus interface

11. Package Drawings

Figure 11-1. 128-lead LQFP Package Drawing

