
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART
Peripherals	PWM, WDT
Number of I/O	38
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-SQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f2w48avu-sqfp-h

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Minimum instruction cycle time

• 250ns (12MHz) VDD=2.7 to 5.5V

■Ports

• Normal withstand voltage I/O ports Ports I/O direction can be designated in 1-bit units

- Dedicated oscillator ports/input ports
- Reset pin
- On-chip Debugger pin
- Power pins
- ■Timers
 - Timer 0: 16 bit timer / counter with capture register
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3: 16-bit counter (with a 16-bit capture register)
 - Timer 1: 16-bit timer/counter that supports PWM/toggle outputs
 - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)

+ 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

- Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
- Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
 - (toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

- (The lower-order 8 bits can be used as PWM.)
- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base Timer
 - (1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - (2) Interrupts are programmable in 5 different time schemes
- ■High-speed Clock Counter
 - 1) Can count clocks with a maximum clock rate of 20MHz (at a main clock of 10MHz).
 - 2) Can generate output real-time.
- Serial Interface
 - SIO 0: 8-bit synchronous serial interface
 - (1) LSB first/MSB first mode selectable
 - (2) Built-in 8-bit baudrate generator (maximum transfer clock cycle=4/3 tCYC)
 - (3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1-bit units, suspension and resumption of data transmission possible in 1-byte units)
 - SIO 1: 8-bit asynchronous / synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8-data bits, 1-stop bit, 8 to 2048 tCYC baudrates)
 - Mode 2: Bus mode 1 (start bit, 8-data bits, 2 to 512 tCYC transfer clocks)
 - Mode 3: Bus mode 2 (start detect, 8-data bits, stop detect)

No.A1869-2/26

PWM0, PWM1, XT2, CF2) 2 (<u>XT1</u>, CF1) 1 (RES)

38 (P0n, P1n, P2n, P31 to P36, P70 to P73,

- 1 (OWP0)
- 6 (VSS1 to 3, VDD1 to 3)

■Oscillation Circuits

- Internal oscillation circuits
 - 1) Low-speed RC oscillation circuit: For system clock (100kHz)
 - 2) Medium-speed RC oscillation circuit: For system clock (1MHz)
 - 3) Frequency variable RC oscillation circuit: For system clock (6 to 10MHz)
 - (1) Adjustable in $\pm 0.5\%$ (typ) step from a selected center frequency.
 - (2) Measures oscillation clock using a input signal from XT1 as a reference.
- External oscillation circuits
 - 1) Low speed crystal oscillation circuit:
 - For low-speed system clock, with internal Rf
 - 2) Hi-speed CF oscillation circuit: For system clock, with internal Rf (1) Both the CF and crystal oscillator circuits stop operation on a system reset.
- ■System Clock Divider function
 - Can run on low current.
 - The minimum instruction cycle selectable from 300ns, 600ns, 1.2µs, 2.4µs, 4.8µs, 9.6µs, 19.2µs, 38.4µs, and 76.8µs (at a main clock rate of 10MHz).
- ■Standby Function
 - HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) There are three ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer
 - (3) Occurrence of an interrupt
 - HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4, or INT5
 - * INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0
 - X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except base timer and infrared remote controller receiver circuit.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are six ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by watchdog timer
 - (3) Having an interrupt source established at either INT0, INT1, INT2, INT4, or INT5
 - * INT0 and INT1 X'tal HOLD mode reset is available only when level detection is set.
 - (4) Having an interrupt source established at port 0
 - (5) Having an interrupt source established in the base timer circuit
 - (6) Having an interrupt source established in the infrared remote controller receiver circuit

Onchip Debugger

• Supports software debugging with the IC mounted on the target board.

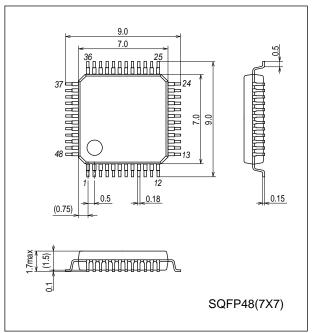
Data Security Function (Flash versions only)

• Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.

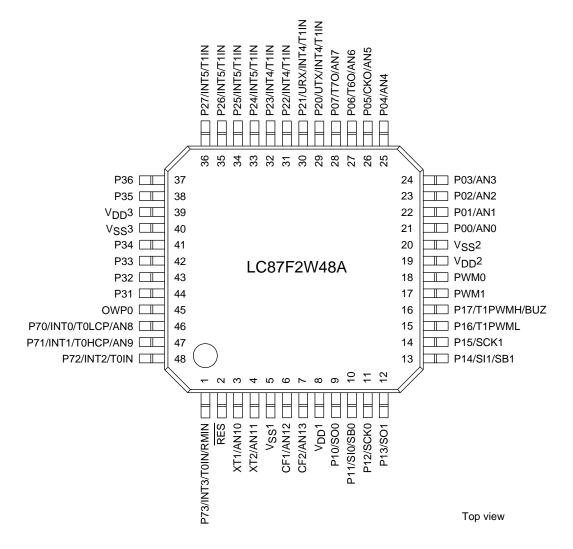
■Package Form

• SQFP48 (7×7) (Lead-/Halogen-free type)

■Development Tools

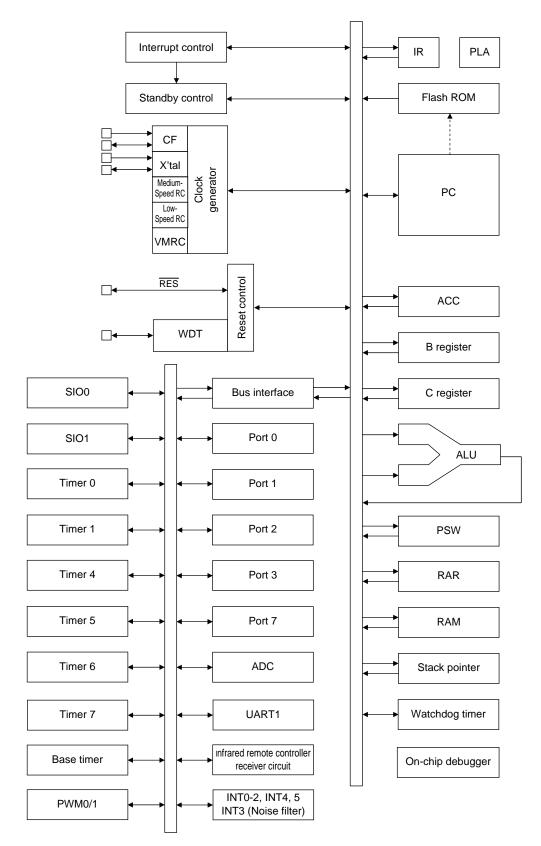

• On-chip-debugger: TCB87-TypeC (1 wire version) + LC87F2W48A

■Flash ROM Programming Boards


Package	Programming boards
SQFP48 (7×7)	W87F55256SQ

Package Dimensions

unit : mm (typ) 3163B


Pin Assignment

SQIP48	(7×7)	"Lead-/Halogen-free typ	e"
--------	-------	-------------------------	----

SQFP	NAME	SQFP	NAME	SQFP	NAME
1	P73/INT3/T0IN/RMIN	17	PWM1	33	P24/INT5/T1IN
2	RES	18	PWM0	34	P25/INT5/T1IN
3	XT1/AN10	19	V _{DD} 2	35	P26/INT5/T1IN
4	XT2/AN11	20	V _{SS} 2	36	P27/INT5/T1IN
5	V _{SS} 1	21	P00/AN0	37	P36
6	CF1/AN12	22	P01/AN1	38	P35
7	CF2/AN13	23	P02/AN2	39	V _{DD} 3
8	V _{DD} 1	24	P03/AN3	40	V _{SS} 3
9	P10/SO0	25	P04/AN4	41	P34
10	P11/SI0/SB0	26	P05/CKO/AN5	42	P33
11	P12/SCK0	27	P06/T6O/AN6	43	P32
12	P13/SO1	28	P07/T7O/AN7	44	P31
13	P14/SI1/SB1	29	P20/UTX/INT4/T1IN	45	OWP0
14	P15/SCK1	30	P21/URX/INT4/T1IN	46	P70/INT0/T0LCP/AN8
15	P16/T1PWML	31	P22/INT4/T1IN	47	P71/INT1/T0HCP/AN9
16	P17/T1PWMH/BUZ	32	P23/INT4/T1IN	48	P72/INT2/T0IN

System Block Diagram

Pin Description

Pin Name	I/O				Description			Option
V_{SS} 1 to V_{SS} 3	-	- power supply	pins					No
V _{DD} 1 to V _{DD} 3	-	+ power supply	power supply pin					
Port 0	I/O	• 8-bit I/O port	8-bit I/O port					
P00 to P07		 I/O specifiabl 	e in 1-bit unit	S				
		Pull-up resist	ors can be tu	rned on and off i	n 1-bit units.			
		• HOLD reset i	nput					
		Port 0 interru	ot input					
		Pin functions						
		P05: System	clock output					
		P06: Timer 6	toggle outpu	t				
		P07: Timer 7	toggle outpu	t				
		P00(AN0) to	P07(AN7): A	D converter inpu	t			
Port 1	I/O	• 8-bit I/O port						Yes
P10 to P17		 I/O specifiabl 	e in 1-bit unit	s				
		 Pull-up resist 	ors can be tu	rned on and off i	n 1-bit units.			
		Pin functions						
		P10: SIO0 da	ta output					
		P11: SIO0 da	ta input/bus	I/O				
		P12: SIO0 clo	ock I/O					
		P13: SIO1 data output						
		P14: SIO1 da	ta input/bus	I/O				
		P15: SIO1 clo	ock I/O					
		P16: Timer 1	PWML outpu	t				
		P17: Timer 1	PWMH outpu	it/beeper output				
Port 2	I/O	8-bit I/O port						Yes
P20 to P27		 I/O specifiabl 	e in 1-bit unit	S				
		 Pull-up resist 	ors can be tu	rned on and off i	n 1-bit units.			
		 Pin functions 						
		P20: UART ti	ansmit					
		P21: UART r						
			-		mer 1 event input	/timer 0L capture	input/	
			imer 0H capt	•				
			•	•	mer 1 event input	/timer 0L capture	input/	
			imer 0H capt	-				
		 Interrupt ackr 	nowledge typ	е	I	[
			Rising	Falling	Rising &	H level	L level	
				0	Falling			
		INT4	enable	enable	enable	disable	disable	
		INT5	enable	enable	enable	disable	disable	
Port 3	I/O	• 6-bit I/O port						Yes
P31 to P36		 I/O specifiabl 	e in 1-bit unit	s				
		Pull-up resist	ors can be tu	rned on and off i	n 1-bit units.			

Continued on next page.

On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 On-chip Debugger Installation Manual"

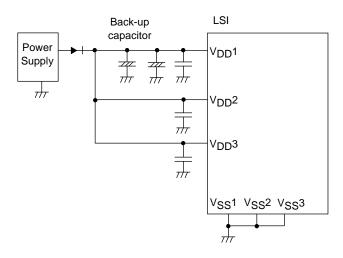
Recommended Unused Pin Connections

Port Name	Recommended Unu	used Pin Connections		
Port Name	Board	Software		
P00 to P07	Open	Output low		
P10 to P17	Open	Output low		
P20 to P27	Open	Output low		
P31 to P36	Open	Output low		
P70 to P73	Open	Output low		
PWM0, PWM1	Open	Output low		
XT1	Pulled low with a 100k Ω resistor or less	General-purpose input port		
XT2	Open	Output low		
CF1	Pulled low with a 100k Ω resistor or less	General-purpose input port		
CF2	Open	Output low		

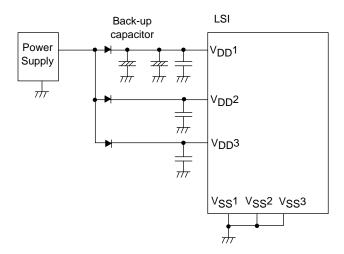
Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
		1	CMOS	Programmable (Note 1)
P00 to P07	1 bit	2	Nch-open drain	Programmable (Note 1)
		1	CMOS	Programmable
P10 to P17	1 bit	2	Nch-open drain	Programmable
500 / 507		1	CMOS	Programmable
P20 to P27	1 bit	2	Nch-open drain	Programmable
Da 4 4 Da 6		1	CMOS	Programmable
P31 to P36	1 bit	2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
PWM0, PWM1	-	No	CMOS	No
XT1	-	No	Input for 32.768kHz crystal oscillator (Input only)	No
XT2	-	No	Output for 32.768kHz crystal oscillator (Nch-open drain when in general-purpose output mode)	No
CF1	-	No	Input for ceramic resonator oscillator (Input only)	No
CF2	-	No	Output for ceramic resonator oscillator (Nch-open drain when in general-purpose output mode)	No


Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low- and high-impedance pull-up connection is exercised in 1-bit units.

User Option Table


Option name	Option to be Applied on	Flash-ROM Version	Option Selected in Units of	Option selection
Port output type	P00 to P07	0	4 1-14	CMOS
		0	1 bit	Nch-open drain
	P10 to P17	0		CMOS
		0	1 bit	Nch-open drain
	P20 to P27	0		CMOS
		0	1 bit	Nch-open drain
	P31 to P36	0		CMOS
		0	1 bit	Nch-open drain
Program start		0		00000h
address	-	0	-	0FE00h

Note: To reduce $V_{DD}1$ signal noise and to increase the duration of the backup battery supply, $V_{SS}1$, $V_{SS}2$, and $V_{SS}3$ should connect to each other and they should also be grounded.

Example 1: During backup in hold mode, port output 'H' level is supplied from the back-up capacitor.

Example 2: During backup in hold mode, output is not held high and its value in unsettled.

Deremeter	Cumhal	Din/Demerke	Conditions			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating supply voltage	V _{DD}	V _{DD} 1=V _{DD} 2=V _{DD} 3	0.245μs≤tCYC≤200μs		2.7		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents sustained in HOLD mode.		2.0		5.5	
High level input voltage	V _{IH} (1)	Ports 1, 2, 3 P71 to P73 P70 port input/ interrupt side PWM0, PWM1		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (2)	Port 0		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	V _{IH} (3)	Port 70 watchdog timer side		2.7 to 5.5	0.9V _{DD}		V _{DD}	
	V _{IH} (4)	XT1, XT2, CF1, CF2 RES		2.7 to 5.5	0.75V _{DD}		V _{DD}	V
Low level input voltage	V _{IL} (1)	Ports 1, 2, 3 P71 to P73		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
		P70 port input/ interrupt side PWM0, PWM1		2.7 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Port 0		4.0 to 5.5	V _{SS}		0.15V _{DD} +0.4	
				2.7 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	Port 70 watchdog timer side		2.7 to 5.5	V _{SS}		0.8V _{DD} -1.0	
	V _{IL} (4)	XT1, XT2, CF1, CF2 RES		2.7 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle time	tCYC (Note 2-1)			2.7 to 5.5	0.245		200	μs
External system clock frequency	FEXCF	CF1	CF2 pin open System clock frequency division ratio=1/1 External system clock duty=50±5%	2.7 to 5.5	0.1		12	
			CF2 pin open System clock frequency division ratio=1/2 External system clock duty=50±5%	3.0 to 5.5	0.2		24.4	
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		12		N411-
range (Note 2-2)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation See Fig. 1.	2.7 to 5.5		10		MHz
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1.	2.7 to 5.5		4		
			4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.7 to 5.5		4		

Allowable Operating Conditions at Ta=-40 to $+85^{\circ}$ C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0$ V

Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Continued on next page.

Devenueter	Cumph of	Dia (Dia ante	Que dition o		Specification				
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Oscillation frequency range	FmVMRC		Frequency variable RC oscillation. (VM3FRQ1/0=0/1) (Note 2-3)	2.7 to 5.5		8.0		MHz	
(Note 2-2)	FmRC		Internal Medium-speed RC oscillation	2.7 to 5.5	0.5	1.0	2.0		
	FmSRC		Internal Low-speed RC oscillation	2.7 to 5.5	50	100	200		
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 3.	2.7 to 5.5		32.768		kHz	
Frequency variable RC oscillation usable range	OpVMRC		Frequency variable RC oscillation. (VM3FRQ1/0=0/1)	2.7 to 5.5	6	8	10	MHz	
Frequency variable RC	VmADJ(1)		Each step of V3RCHBn	2.7 to 5.5	3.6	7.0	11		
oscillation	VmADJ(2)		Each step of V3FCHBn	2.7 to 5.5	0.7	1.5	2.3	%	
adjustment range	VmADJ(3)		Each step of V3DCHn	2.7 to 5.5	0.2	0.5	1.1		

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Note 2-3: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the multifrequency RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

Deremeter	Cumbal	Pin/Remarks	Conditions			Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	uni
ligh level butput voltage	l _{IH} (1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1	Output disabled Pull-up resistor off V _{IN} =V _{DD} (Including output Tr's off leakage current)	2.7 to 5.5			1	
	I _{IH} (2)	XT1, XT2, CF2	Input port selected VIN=VDD	2.7 to 5.5			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.7 to 5.5			15	
Low level input current	I _{IL} (1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.7 to 5.5	-1			μΑ
	I _{IL} (2)	XT1, XT2, CF2	Input port selected	2.7 to 5.5	-1			
	I _{IL} (3)	CF1	V _{IN} =V _{SS}	2.7 to 5.5	-15			1
High level output voltage	V _{OH} (1)	Ports 0, 1, 2, 3 P71 to P73	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (2)		I _{OH} =-0.35mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (3)	PWM0, PWM1 P05(System clock	I _{OH} =-6mA	4.5 to 5.5	V _{DD} -1			
	V _{OH} (4)	output function used)	I _{OH} =-1.4mA	2.7 to 5.5	V _{DD} -0.4			V
Low level	V _{OL} (1)	Ports 0, 1, 2, 3	I _{OL} =10mA	4.5 to 5.5			1.5	Ī
output voltage	V _{OL} (2)	PWM0, PWM1	I _{OL} =1.4mA	2.7 to 5.5			0.4	1
	V _{OL} (3)	P00, P01	I _{OL} =25mA	4.5 to 5.5			1.5	1
	V _{OL} (4)		I _{OL} =4mA	2.7 to 5.5			0.4	
	V _{OL} (5)	Port 7, XT2, CF2	I _{OL} =1.4mA	2.7 to 5.5			0.4	1
Pull-up	Rpu(1)	Ports 0, 1, 2, 3	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
resistance	Rpu(2)	Port 7	When Port 0 selected low-impedance pull-up.	2.7 to 5.5	18	50	230	k۵
	Rpu(3)	Port 0	V _{OH} =0.9V _{DD} When Port 0 selected high-impedance pull-up.	2.7 to 5.5	100	210	400	~ ~ ~
Hysteresis voltage	VHYS	Ports 1, 2, 3, 7 RES, XT2		2.7 to 5.5		0.1V _{DD}		v
Pin capacitance	CP	All pins	For pins other than that under test: VIN=V _{SS} , f=1MHz, Ta=25°C	2.7 to 5.5		10		pF

Electrical Characteristics at Ta=-40 to $+85^{\circ}$ C, V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

		D	Ourseland I	Pin/Remarks	Oradikirar			Specif	ication	
	ŀ	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK1(P15)	See Fig. 6.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.7 to 5.5	1			101/0
Serial clock	Inpi	High level pulse width	tSCKH(3)				1			tCYC
erial	¥	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected		2			
ũ	Output clock	Low level pulse width	tSCKL(4)		See Fig. 6.	2.7 to 5.5		1/2		
	-	High level pulse width	tSCKH(4)					1/2		tSCK
put	Da	ata setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of		0.05			
Serial input	Da	ata hold time	thDI(2)		SIOCLK. See Fig. 6.	2.7 to 5.5	0.05			
Serial output	Ou	itput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.	2.7 to 5.5			(1/3)tCYC +0.08	μs

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

5						Spec	ification	
Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min	typ	max	unit
High/low level	tPIH(1)	INT0(P70),	Interrupt source flag can be set.					
pulse width	tPIL(1)	INT1(P71),	Event inputs for timer 0 or 1 are					
		INT2(P72),	enabled.	2.7 to 5.5	1			
		INT4(P20 to P23),						
		INT5(P24 to P27)						
	tPIH(2)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(2)	noise filter time	Event inputs for timer 0 are enabled.	2.7 to 5.5	2			101/0
		constant is 1/1						tCYC
	tPIH(3)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(3)	noise filter time	Event inputs for timer 0 are enabled.	2.7 to 5.5	64			
		constant is 1/32						
	tPIH(4)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(4)	noise filter time	Event inputs for timer 0 are enabled.	2.7 to 5.5	256			
		constant is 1/128						
	tPIH(5)	RMIN(P73)	Recognized by the infrared remote	2.7 to 5.5	4			RMCK
	tPIL(5)		controller receiver circuit as a signal.	2.7 10 5.5	4			(Note 5-1
	tPIL(6)	RES	Resetting is enabled.	2.7 to 5.5	200			μs

Note 5-1: Represents the period of the reference clock (1 to 128 tCYC or the source frequency of the subclock) for the infrared remote controller receiver circuit.

AD Converter Characteristics at $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

<12bits AD Converter Mode at Ta = -40 to $+85^{\circ}C>$

Demonster	O week at	Pin/Remarks	Oraditions			Specif	ication		
Parameter	Symbol		Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	Ν	AN0(P00) to		2.7 to 5.5		12		bit	
Absolute	ET	AN7(P07),	(Note 6-1)	3.0 to 5.5			±16	1.05	
accuracy		AN8(P70),	(Note 6-1)	2.7 to 3.6			±20	±20 LSB	
Conversion	TCAD	AN9(P71), AN10(XT1),	See Conversion time calculation	4.5 to 5.5	32		115		
time		AN11(XT2),	formulas. (Note 6-2)	3.0 to 5.5	64		115	μs	
	AN12(CF1), AN13(CF2)		See Conversion time calculation formulas. (Note 6-2)	2.7 to 3.6	410		425	μs	
Analog input voltage range	VAIN			2.7 to 5.5	V _{SS}		V _{DD}	V	
Analog port	IAINH(1)	analog channel	VAIN=V _{DD}	2.7 to 5.5			1		
input current	put current IAINL(1) except AN12 IAINH(2) AN12		VAIN=V _{SS}	2.7 to 5.5	-1				
			VAIN=V _{DD}	2.7 to 5.5			15	μA	
	IAINL(2)		VAIN=V _{SS}	2.7 to 5.5	-15				

<8bits AD Converter Mode at Ta = -40 to +85°C>

Deverseter	O week al	Pin/Remarks			Specification				
Parameter	Symbol		Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	Ν	AN0(P00) to		2.7 to 5.5		8		bit	
Absolute accuracy	ET	AN7(P07), AN8(P70),	(Note 6-1)	2.7 to 5.5			±1.5	LSB	
Conversion	TCAD	AN9(P71),	See Conversion time calculation	4.5 to 5.5	20		70		
time		AN10(XT1), AN11(XT2),	formulas. (Note 6-2)	3.0 to 5.5	40		70	μs	
		AN12(CF1), AN13(CF2)	See Conversion time calculation formulas. (Note 6-2)	2.7 to 3.6	250		265	μO	
Analog input voltage range	VAIN	/////0(012)		2.7 to 5.5	V _{SS}		V _{DD}	V	
Analog port	IAINH(1)	analog channel	VAIN=V _{DD}	2.7 to 5.5			1		
input current	IAINL(1)	except AN12	VAIN=V _{SS}	2.7 to 5.5	-1				
	IAINH(2)	AN12	VAIN=V _{DD}	2.7 to 5.5			15	μA	
	IAINL(2)]	VAIN=V _{SS}	2.7 to 5.5	-15				

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time)= $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time)= $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External	Operating supply	System division ratio	o Cycle time	AD division	AD conversion time (TCAD)		
oscillation (FmCF)	voltage range (V _{DD})	(SYSDIV)	(tCYC)	ratio (ADDIV)	12bit AD	8bit AD	
CF-12MHz	4.5V to 5.5V	1/1	250ns	1/8	34.8µs	21.5µs	
	3.0V to 5.5V	1/1	250ns	1/16	69.5µs	42.8µs	
	4.5V to 5.5V	1/1	300ns	1/8	41.8µs	25.8µs	
CF-10MHz	3.0V to 5.5V	1/1	300ns	1/16	83.4µs	51.4µs	
CF-4MHz	3.0V to 5.5V	1/1	750ns	1/8	104.5µs	64.5µs	
	2.7V to 3.6V	1/1	750ns	1/32	416.5µs	256.5µs	

Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

Consumption Current Characteristics at Ta = -40°C to +85°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/ Remarks	Conditions		Specification				
Falametei			Conditions	V _{DD} [V]	min	typ	max	unit	
Normal mode consumption current	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	2.7 to 5.5		4.5	9.5		
(Note 7-1)			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 	2.7 to 3.6		2.7	6.5		
	IDDOP(2)		 1/1 frequency division ratio CF1=24MHz external clock FsX'tal=32.768kHz crystal oscillation mode System clock set to CF1 side 	3.0 to 5.5		5	10.5		
			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	3.0 to 3.6		3	7.2		
	IDDOP(3)		FmCF=10MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 10MHz side Internal Low speed and Medium speed RC	2.7 to 5.5		4	8.2		
			 Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		2.4	5.8		
	IDDOP(4)		FmCF=4MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 4MHz side	2.7 to 5.5		2	4.3		
			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		1.3	3	mA	
	IDDOP(5)		 CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode 	2.7 to 5.5		0.8	2.1		
			 System clock set to 4MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	2.7 to 3.6		0.5	1.2		
	IDDOP(6)		External FmCF oscillation stopped. FsX'tal=32.768kHz Crystal oscillation mode System clock set to internal Medium speed RC	2.7 to 5.5		0.5	1.8		
			 oscillation. Internal Low speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		0.3	0.95		
	IDDOP(7)		 External FmCF oscillation stopped. FsX'tal=32.768kHz crystal oscillation mode System clock set to 8MHz with Frequency 	2.7 to 5.5		3.5	6.8		
			 variable RC oscillation Internal Low speed and Medium speed RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		2.3	5.2		
	IDDOP(8)		 External FsX'tal and FmCF oscillation stopped. System clock set to internal Low speed RC oscillation. 	2.7 to 5.5		58	200	μA	
			 Internal Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		37	135	μΑ	

Note 7-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

Parameter	Symbol	Pin/	Conditions		Specification				
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Normal mode consumption current	IDDOP(9)	V_{DD}^{1} = V_{DD}^{2} = V_{DD}^{3}	External FmCF oscillation stopped. FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal Law append and Medium append BC	2.7 to 5.5		38	130		
(Note 7-1)			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		12	65	μA	
HALT mode consumption current (Note 7-1)	IDDHALT(1)	V_{DD}^{1} = V_{DD}^{2} = V_{DD}^{3}	HALT mode • FmCF=12MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 12MHz side	2.7 to 5.5		2	3.1		
(Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		0.9	1.7		
	IDDHALT(2)		HALT mode • CF1=24MHz external clock • FsX'tal=32.768kHz crystal oscillation mode • System clock set to CF1 side	3.0 to 5.5		2.2	3.5		
			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	3.0 to 3.6		1	2		
	IDDHALT(3)		HALT mode • FmCF=10MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 10MHz side	2.7 to 5.5		1.8	2.8		
			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		0.8	1.5		
	IDDHALT(4)		HALT mode • FmCF=4MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 4MHz side	2.7 to 5.5		1	1.6	mA	
			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		0.4	0.8		
	IDDHALT(5)		HALT mode • CF oscillation low amplifier size selected. (CFLAMP=1) • FmCF=4MHz ceramic oscillation mode • FsX'tal=32.768kHz crystal oscillation mode	2.7 to 5.5		0.5	1		
			 System clock set to 4MHz side Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	2.7 to 3.6		0.2	0.5		
	IDDHALT(6)		HALT mode • External FmCF oscillation stopped. • FsX'tal=32.768kHz crystal oscillation mode • System clock set to internal Medium speed RC	2.7 to 5.5		0.35	0.8		
			 oscillation Internal Low speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		0.15	0.4		

Note 7-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Continued on next page.

Continued from J	preceding page	I							
Parameter	Symbol	Pin/	Conditions		Specification				
	,	remarks	V _{DD} [V]		min.	typ.	max.	unit	
HALT mode consumption current (Note 7-1)	consumption		HALT mode • External FmCF oscillation stopped. • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 8MHz with Frequency	2.7 to 5.5		1.5	2.4		
			 variable RC oscillation Internal Low speed and Medium speed RC oscillation stopped. 1/1 frequency division ratio 			1	1.6	mA	
	IDDHALT(8)		 HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal Low speed RC oscillation. 	2.7 to 5.5		18	74		
			 Internal Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		9	40		
	IDDHALT(9)		HALT mode • External FmCF oscillation stopped. • FsX'tal=32.768kHz crystal oscillation mode • System clock set to 32.768 kHz side	2.7 to 5.5		27	95	μΑ	
			 Internal Low speed and Medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		5.5	42		
HOLD mode consumption	IDDHOLD(1)	V _{DD} 1 = V _{DD} 2	HOLD mode • CF1=V _{DD} or open	2.7 to 5.5		0.04	20		
current (Note 7-1)		= V _{DD} 3	(External clock mode)	2.7 to 3.6		0.03	10		
Timer HOLD mode	IDDHOLD(2)		Timer HOLD mode • CF1=VDD or open (External clock mode) • CoViet 22 2604 to control coolidation mode	2.7 to 5.5		25	88	μA	
consumption current (Note 7-1)			FsX'tal=32.768kHz crystal oscillation mode	2.7 to 3.6		4.5	38		

Note 7-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Descenter	Ourseland.	Die (Demonto	Conditions	_	Specification				
Parameter Symbol		Pin/Remarks Conditions		V _{DD} [V]	min	typ	max	unit	
Onboard	IDDFW	V _{DD} 1	Only current of the Flash block.						
programming		= V _{DD} 2		2.7 to 5.5	to 5.5	5	10	mA	
current		= V _{DD} 3							
Programming	tFW(1)		Erasing time	074555		20	30	ms	
time	tFW(2)		Programming time	2.7 to 5.5		40	60	μs	

 CF oscilla 	• CF oscillation low amplifier size selected (CFLAMP=1)										
Nominal Vendor Frequency Name		Oscillator Name		Circuit (Constant		Operating Voltage Range	Oscillation Stabilization Time (Symbol: tmsCF)		Remarks	
Frequency	Indifie	e	C1	C2	Rf1	Rd1	[V]	typ	max		
			[pF]	[pF]	[Ω]	[Ω]		[ms]	[ms]		
45411-		MURATA CSTCR4M00G53-R0 CSTLS4M00G53-B0	(15)	(15)	Open	1.0k	2.7 to 5.5	0.07		Internal	
4MHz	MURATA		(15)	(15)	Open	1.0k	2.7 to 5.5	0.05		C1,C2	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after an instruction for starting the main clock oscillation circuit or the time interval that is required for the oscillation to get stabilized (when oscillation is enabled before HOLD or X'tal HOLD mode is entered) after that mode is released (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sam	ple Subsystem Clock Oscillator	Circuit with a Crystal Oscillator
1 uolo 2 chuluctoristics of a suit	ipie Subsystem Clock Obemator	Circuit with a Crystar Osemator

Nominal Frequency	Vendor Name	Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time (Symbol: tmsXtal)		Remarks
			C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]	Range [V]	typ [s]	max [s]	
32.768kHz	EPSON TOYOCOM	MC-306	18	18	Open	560k	2.7 to.5.5	1.5	3.0	Applicable CL value= 12.5pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit or the time interval that is required for the oscillation to get stabilized (when oscillation is enabled before HOLD mode is entered) after that mode is released (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

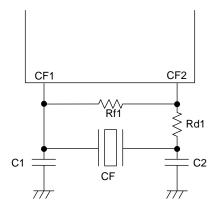


Figure 1 CF Oscillator Circuit

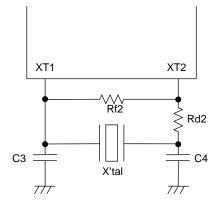


Figure 2 XT Oscillator Circuit

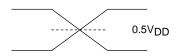
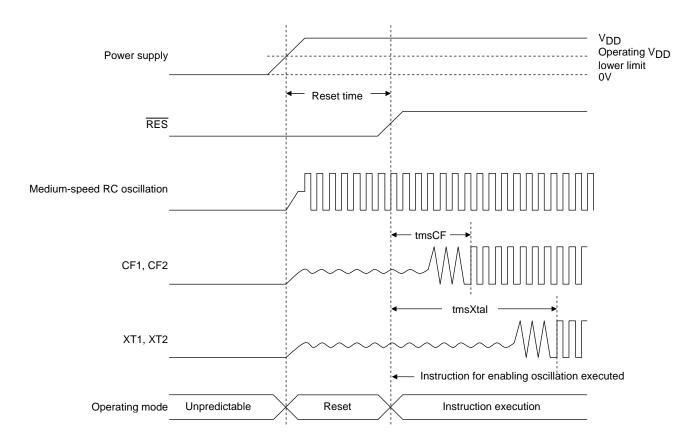
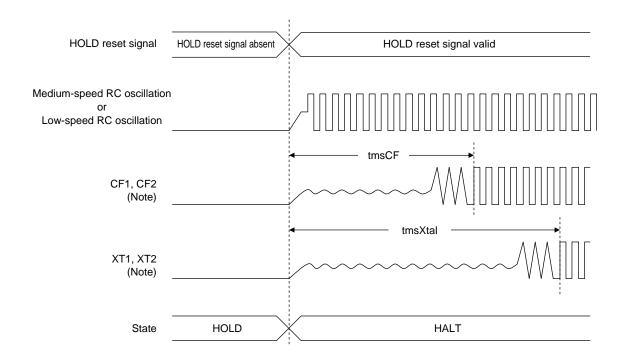
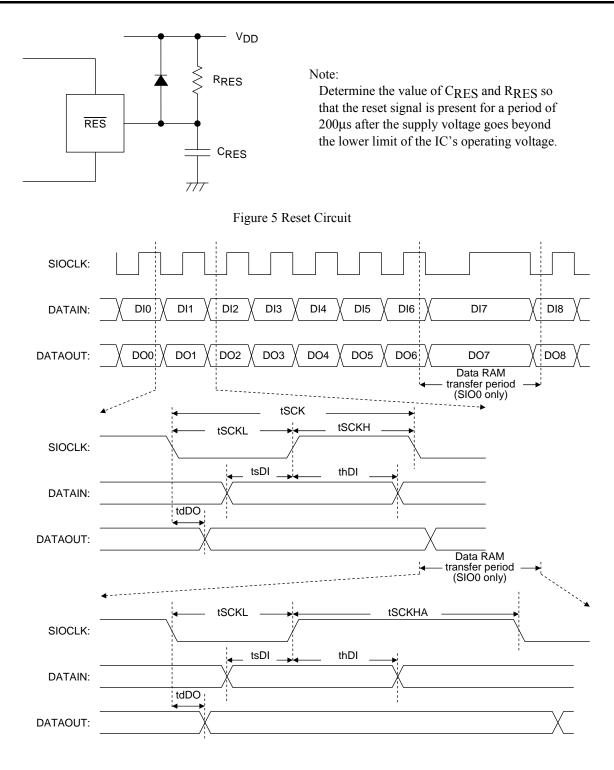




Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilizing Time

HOLD Release Signal and Oscillation Stabilization Time (Note: When oscillation is enabled before HOLD mode is entered.)

Figure 4 Oscillation Stabilization Times

Figure 6 Serial Input/Output Wave Forms

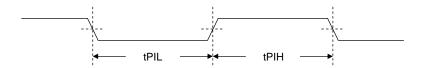


Figure 7 Pulse Input Timing Signal Waveform

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal