

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	56800
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 16
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 15x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pc56f8006vwl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Three internal address buses
- Four internal data buses
- Instruction set supports DSP and controller functions
- Controller-style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/enhanced on-chip emulation (EOnCE) for unobtrusive, processor speed-independent, real-time debugging

3.1.2 Operation Range

- 1.8 V to 3.6 V operation (power supplies and I/O)
- From power-on-reset: approximately 1.9 V to 3.6 V
- Ambient temperature operating range:
 - −40 °C to 125 °C

3.1.3 Memory

- Dual Harvard architecture permits as many as three simultaneous accesses to program and data memory
- Flash security and protection that prevent unauthorized users from gaining access to the internal flash
- On-chip memory
 - 16 KB of program flash for 56F8006 and 12 KB of program flash for 56F8002
 - 2 KB of unified data/program RAM
- EEPROM emulation capability using flash

3.1.4 Interrupt Controller

- Five interrupt priority levels
 - Three user programmable priority levels for each interrupt source: Level 0, 1, 2
 - Unmaskable level 3 interrupts include: illegal instruction, hardware stack overflow, misaligned data access, SWI3 instruction. Maskable level 3 interrupts include: EOnCE step counter, EOnCE breakpoint unit, EOnCE trace buffer
 - Lowest-priority software interrupt: level LP
- Allow nested interrupt that higher priority level interrupt request can interrupt lower priority interrupt subroutine
- The masking of interrupt priority level is managed by the 56800E core
- One programmable fast interrupt that can be assigned to any interrupt source
- Notification to system integration module (SIM) to restart clock out of wait and stop states
- Ability to relocate interrupt vector table

3.1.5 Peripheral Highlights

- One multi-function, six-output pulse width modulator (PWM) module
 - Up to 96 MHz PWM operating clock
 - 15 bits of resolution
 - Center-aligned and edge-aligned PWM signal mode
 - Phase shifting PWM pulse generation

Signal/Connection Descriptions

In Table 4, peripheral pins in bold identify reset state.

Table 4. 56F8006/56F8002 Pins

	Pin N	umber								P	eripherals					
28 SOIC	32 LQFP	32 PSDIP	48 LQFP	Pin Name	GPIO	l ² C	SCI	SPI	ADC	PGA	СОМР	Dual Timer	PWM	Power and Ground	JTAG	Misc.
26	1	29	1	GPIOB6/RXD/SDA/ANA13 and CMP0_P2/CLKIN	B6	SDA	RXD		ANA13 ¹		CMP0_P2					CLKIN
27	2	30	2	GPIOB1/ SS /SDA/ANA12 andCMP2_P3	B1	SDA		SS	ANA12 ¹		CMP2_P3					
	3	31	3	GPIOB7/TXD/SCL/ANA11 and CMP2_M3	B7	SCL	TXD		ANA11 ¹		CMP2_M3					
	4	32	4	GPIOB5/T1/FAULT3/SCLK	B5			SCLK				T1	FAULT3			
			5	GPIOE0	E0											
			6	GPIOE1/ANB9 and CMP0_P1	E1				ANB9 ¹		CMP0_P1					
28	5	1	7	ANB8 and PGA1+ and CMP0_M2/GPIOC4	C4				ANB8 ¹	PGA1+	CMP0_M2					
			8	GPIOE2/ANB7 and CMP0_M1	E2				ANB7 ¹		CMP0_M1					
1	6	2	9	ANB6 and PGA1- and CMP0_P4/GPIOC5	C5				ANB6 ¹	PGA1-	CMP0_P4					
			10	GPIOC7/ANB5 and CMP1_M2	C7				ANB5 ¹		CMP1_M2					
2	7	3	11	ANB4 and CMP1_P1/ <i>GPIOC6/PWM2</i>	C6				ANB4 ¹		CMP1_P1		PWM2			
3	8	4	12	V _{DDA}										V _{DDA}		
4	9	5	13	V _{SSA}										V _{SSA}		
			14	GPIOE3/ANA10 and CMP2_M1	E3				ANA10 ¹		CMP2_M1					
5	10	6	15	ANA9 and PGA0– and CMP2_P4/ <i>GPIOC2</i>	C2				ANA9 ¹	PGA0-	CMP2_P4					
			16	GPIOE5/ANA8 and CMP2_P1	E5				ANA8 ¹		CMP2_P1					
6	11	7	17	ANA7 and PGA0+ and CMP2_M2/GPIOC1	C1				ANA7 ¹	PGA0+	CMP2_M2					
			18	GPIOE4/ANA6 and CMP2_P2	E4				ANA6 ¹		CMP2_P2					
7	12	8	19	ANA5 and CMP1_M1/ <i>GPIOC0/FAULT0</i>	C0				ANA5 ¹		CMP1_M1		FAULT0			
8	13	9	20	V _{SS}										V _{SS}		
			21	V _{DD}										V _{DD}		
9	14	10	22	TCK/GPIOD2/ANA4 and CMP1_P2/CMP2_OUT	D2				ANA4 ¹		CMP1_P2, CMP2_OUT				ТСК	
10	15	11	23	RESET/GPIOA7	A7											RESET
11	16	12	24	GPIOB3/MOSI/TIN3/ANA3 and ANB3/PWM5/CMP1_OUT	B3			MOSI	ANA3 ¹ and ANB3 ¹		CMP1_OUT	TIN3	PWM5			
	17	13	25	GPIOB2/MISO/TIN2/ANA2 and ANB2/CMP0_OUT	B2			MISO	ANA2 and ANB2		CMP0_OUT	TIN2				
12	18	14	26	GPIOA6/FAULT0/ANA1 and ANB1/SCL/TXD/CLKO_1	A6	SCL	TXD		ANA1 and ANB1				FAULT0			CLKO_1
13	19	15	27	GPIOB4/T0/CLKO_0/MISO/ SDA/RXD/ANA0 and ANB0	B4	SDA	RXD	MISO	ANA0 and ANB0			TO				CLKO_0

Figure 13. Connecting an External Clock Signal Using XTAL

6.4.4 Alternate External Clock Input

The recommended method of connecting an external clock is illustrated in Figure 14. The external clock source is connected to GPIOB6/RXD/SDA/ANA13 and CMP0_P2/CLKIN while EXT_SEL bit in OSCTL register is set and corresponding bits in GPIOB_PER register GPIO module and GPSB1 register in the system integration module (SIM) are set to the correct values. The external clock input must be generated using a relatively low impedance driver with maximum frequency not greater than 64 MHz.

Figure 14. Connecting an External Clock Signal Using GPIO

6.5 Interrupt Controller

The 56F8006/56F8002 interrupt controller (INTC) module arbitrates the various interrupt requests (IRQs). The INTC signals to the 56800E core when an interrupt of sufficient priority exists and what address to jump to to service this interrupt.

The interrupt controller contains registers that allow up to three interrupt sources to be set to priority level 1 and other up to three interrupt sources to be set to priority level 2. By default, all peripheral interrupt sources are set to priority level 0. Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numeric value of the active interrupt requests for that level. Within a given priority level, the lowest vector number is the highest priority and the highest vector number is the lowest.

The highest vector number, a user assignable vector USER6 (vector 50), can be defined as a fast interrupt if the instruction located in this vector location is not a JSR or BSR instruction. Please see section 9.3.3.3 of *DSP56800E 16-Bit Core Reference Manual* for detail.

6.6 System Integration Module (SIM)

The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls distribution of resets and clocks and provides a number of control features including the pin muxing control; inter-module connection control (for example connecting comparator output to PWM fault input); individual peripheral enable/disable; PWM, timer, and SCI clock rate control; enabling peripheral operation in stop mode; port configuration overwrite protection. For further information, see the *MC56F8006 Peripheral Reference Manual*.

The SIM is responsible for the following functions:

- Chip reset sequencing
- Core and peripheral clock control and distribution
- Stop/wait mode control
- System status control

8.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified Table 12 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Characteristic	Symbol	Notes	Min	Мах	Unit
Supply Voltage Range	V _{DD}		-0.3	3.8	V
Analog Supply Voltage Range	V _{DDA}		-0.3	3.6	V
Voltage difference V_{DD} to V_{DDA}	ΔV_{DD}		-0.3	0.3	V
Voltage difference V_{SS} to V_{SSA}	ΔV_{SS}		-0.3	0.3	V
Digital Input Voltage Range	V _{IN}	Pin Groups 1, 2	-0.3	V _{DD} +0.3	V
Oscillator Voltage Range	V _{OSC}	Pin Group 4	TBD	TBD	V
Analog Input Voltage Range	V _{INA}	Pin Group 3	-0.3	3.6	V
Input clamp current, per pin $(V_{IN} < 0)^{1 \ 2 \ 3}$	V _{IC}		_	-25.0	mA
Output clamp current, per pin $(V_0 < 0)^{123}$	V _{OC}		_	-20.0	mA
Output Voltage Range (Normal Push-Pull mode)	V _{OUT}	Pin Group 1	-0.3	V _{DD}	V
Ambient Temperature Industrial	T _A		-40	105	°C
Storage Temperature Range (Extended Industrial)	T _{STG}		-55	150	°C

Table 12: Aboolate maximum matinge	Table	12.	Absolute	Maximum	Ratings
------------------------------------	-------	-----	----------	---------	---------

 $(V_{SS} = 0 \text{ V}, V_{SSA} = 0 \text{ V})$

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} loads shunt current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present or if the clock rate is low (which would reduce overall power consumption).

8.2.1 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM), and the charge device model (CDM).

Figure 19. Typical High-Side (Source) Characteristics — Low Drive (GPIO_x_DRIVEn = 0)

Figure 20. Typical High-Side (Source) Characteristics — High Drive (GPIO_x_DRIVEn = 1)

- Tri-stated, when a bus or signal is placed in a high impedance state
- Data Valid state, when a signal level has reached $V_{\rm OL}$ or $V_{\rm OH}$
- Data Invalid state, when a signal level is in transition between V_{OL} and V_{OH}

8.13.1 Serial Peripheral Interface (SPI) Timing

Characteristic	Symbol	Min	Мах	Unit	See Figure
Cycle time Master Slave	tc	125 62.5		ns ns	Figure 27, Figure 28, Figure 29, Figure 30
Enable lead time Master Slave	t _{ELD}	 31		ns ns	Figure 30
Enable lag time Master Slave	t _{ELG}	 125		ns ns	Figure 30
Clock (SCK) high time Master Slave	^t CH	50 31		ns ns	Figure 27, Figure 28, Figure 29, Figure 30
Clock (SCK) low time Master Slave	t _{CL}	50 31		ns ns	Figure 30
Data set-up time required for inputs Master Slave	t _{DS}	20 0	_	ns ns	Figure 27, Figure 28, Figure 29, Figure 30
Data hold time required for inputs Master Slave	t _{DH}	0 2		ns ns	Figure 27, Figure 28, Figure 29, Figure 30
Access time (time to data active from high-impedance state) Slave	t _A	4.8	15	ns	Figure 30
Disable time (hold time to high-impedance state) Slave	t _D	3.7	15.2	ns	Figure 30

Table 29. SPI Timing¹

8.13.3 Inter-Integrated Circuit Interface (I²C) Timing

Table 31. I²C Timing

Characteristic	Symbol	Standar	rd Mode	Upit
	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	100	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD; STA}	4.0	_	μs
LOW period of the SCL clock	t _{LOW}	4.7	—	μs
HIGH period of the SCL clock	t _{HIGH}	4.0	—	μS
Set-up time for a repeated START condition	^t SU; STA	4.7	—	μs
Data hold time for I ² C bus devices	t _{HD; DAT}	0 ¹	3.45 ²	μS
Data set-up time	t _{SU; DAT}	250	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	ns
Fall time of SDA and SCL signals	t _f	—	300	ns
Set-up time for STOP condition	t _{SU; STO}	4.0	—	μS
Bus free time between STOP and START condition	t _{BUF}	4.7	—	μS
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	ns

¹ The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

² The maximum $t_{HD; DAT}$ must be met only if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

8.13.5 Dual Timer Timing

Table 33. Timer Timing^{1, 2}

Characteristic	Symbol	Min	Мах	Unit	See Figure
Timer input period	P _{IN}	2T + 6	_	ns	Figure 36
Timer input high/low period	P _{INHL}	1T + 3	_	ns	Figure 36
Timer output period	P _{OUT}	125	_	ns	Figure 36
Timer output high/low period	POUTHL	50		ns	Figure 36

¹ In the formulas listed, T = the clock cycle. For 32 MHz operation, T = 31.25ns.

2. Parameters listed are guaranteed by design.

Design Considerations

9 Design Considerations

9.1 Thermal Design Considerations

An estimation of the chip junction temperature, T_I, can be obtained from the equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$
 Eqn. 3

where:

 $T_A = Ambient temperature for the package (°C)$ $<math>R_{\theta JA} = Junction-to-ambient thermal resistance (°C/W)$ $P_D = Power dissipation in the package (W)$

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low-power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

where:

 $R_{\theta JC}$ is device related and cannot be adjusted. You control the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, you can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_{J} = T_{T} + (\Psi_{JT} \times P_{D})$$
 Eqn. 5

where:

 T_T = Thermocouple temperature on top of package (°C) Ψ_{JT} = Thermal characterization parameter (°C/W) P_D = Power dissipation in package (W)

The thermal characterization parameter is measured per JESD51–2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the

Package Mechanical Outline Drawings

10.2 32-pin LQFP

Interrupt Vector Table

Peripheral	Vector Number	User Encoding	Priority Level	Vector Base Address +	Interrupt Function
Core				P:0x00	Reserved for Reset Overlay ²
Core				P:0x02	Reserved for COP Reset Overlay
Core	2	N/A	3	P:0x04	Illegal Instruction
Core	3	N/A	3	P:0x06	HW Stack Overflow
Core	4	N/A	3	P:0x08	Misaligned Long Word Access
Core	5	N/A	3	P:0x0A	EOnCE Step Counter
Core	6	N/A	3	P:0x0C	EOnCE Breakpoint Unit
Core	7	N/A	3	P:0x0E	EOnCE Trace Buffer
Core	9	N/A	3	P:0x10	EOnCE Transmit Register Empty
Core	9	N/A	3	P:0x12	EOnCE Receive Register Full
PMC	10	0x0A	0	P:0x14	Low-Voltage Detector
PLL	11	0x0B	0	P:0x16	Phase-Locked Loop Loss of Locks and Loss of Clock
ADCA	12	0x0C	0	P:0x18	ADCA Conversion Complete
ADCB	13	0x0D	0	P:0x1A	ADCB Conversion Complete
PWM	14	0x0E	0	P:0x1C	Reload PWM and/or PWM Faults
CMP0	15	0x0F	0	P:0x1E	Comparator 0 Rising/Falling Flag
CMP1	16	0x10	0	P:0x20	Comparator 1 Rising/Falling Flag
CMP2	17	0x11	0	P:0x22	Comparator 2 Rising/Falling Flag
FM	18	0x12	0	P:0x24	Flash Memory Access Status
SPI	19	0x13	0	P:0x26	SPI Receiver Full
SPI	20	0x14	0	P:0x28	SPI Transmitter Empty
SCI	21	0x15	0	P:0x2A	SCI Transmitter Empty/Idle
SCI	22	0x16	0	P:0x2C	SCI Receiver Full/Overrun/Errors
l ² C	23	0x17	0	P:0x2E	I ² C Interrupt
PIT	24	0x18	0	P:0x30	Interval Timer Interrupt
TMR0	25	0x19	0	P:0x32	Dual Timer, Channel 0 Interrupt
TMR1	26	0x1A	0	P:0x34	Dual Timer, Channel 1 Interrupt
GPIOA	27	0x1B	0	P:0x36	GPIOA Interrupt
GPIOB	28	0x1C	0	P:0x38	GPIOB Interrupt
GPIOC	29	0x1D	0	P:0x3A	GPIOC Interrupt
GPIOD	30	0x1E	0	P:0x3C	GPIOD Interrupt
GPIOE	29	0x1F	0	P:0x3E	GPIOE Interrupt
GPIOF	30	0x20	0	P:0x40	GPIOF Interrupt
RTC	33	0x21	0	P:0x42	Real Time Clock

Table 43. Interrupt Vector Table Contents¹

Appendix B Peripheral Register Memory Map and Reset Value

NOTE

In Table 44, ADC0 stands for ADCA, ADC1 stands for ADCB, and GPIOn is the same as GPIO_n (for example, GPIOA_PUR is the same as GPIO_A_PUR).

Table 44. Detailed Peripheral Memory Map

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
00	0000	TMR0	TMR0_ COMP1							С	OMPA	RISON_	1						
01	0000	TMR0	TMR0_ COMP2							С	OMPA	RISON_	_2						
02	0000	TMR0	TMR0_ CAPT								CAP	TURE							
03	0000	TMR0	TMR0_ LOAD								LO	AD							
04	0000	TMR0	TMR0_ HOLD		HOLD														
05	0000	TMR0	TMR0_ CNTR								COU	NTER							
06	0000	TMR0	TMR0_ CTRL		СМ			P	CS		S	CS	ONCE	LENGTH	DIR	Co_INIT		ОМ	
07	0000	TMR0	TMR0_ SCTRL	TCF	TCF Image: Head of the second secon										OEN				
08	0000	TMR0	TMR0_ CMPLD1		COMPARATOR_LOAD_1														
09	0000	TMR0	TMR0_ CMPLD2		COMPARATOR_LOAD_2														

Peripheral Register Memory Map and Reset Value

NP

88

Table 44. Detailed Peripheral Memory Map (continued)

Peripheral Register Memory Map and Reset Value

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
1A	0000	TMR1	TMR1_ CSCTRL	DBG	_EN	FAULT	ALT_LOAD	0	0	0	0	TCF2EN	TCF1EN	TCF2	TCF1	C	L2	CI	_1
1B	0000	TMR1	TMR1_ FILT	0	0	0	0	0	F	ILT_CN	Т				FILT_	PER			
1C–1F	—	TMR1	Reserved								RESE	RVED							
20	0000	PWM	PWM_ CTRL		$LDFQ \qquad HALF \begin{bmatrix} C \\ C$												PWMEN		
21	0000	PWM	PWM_ FCTRL	0	0 0 0 0 ET CLARANCE CONCERNMENT OF CONCERNMENT.											FMODE0			
22	0000	PWM	PWM_ FLTACK	FPIN3	FFLAG3	FPIN2	FFLAG2	FPIN1	FFLAG1	FPINO	FFLAGO		FTACK3		FTACK2		FTACK1		FTACK0
23	0000	PWM	PWM_ OUT	PAD_EN	0	OUTCTL5	OUTCTL4	оитсті	OUTCTL2	OUTCTL1	ουτςτιο	0	0	OUT5	OUT4	OUT3	OUT2	OUT1	OUTO
24	0000	PWM	PWM_ CNTR	0								CR		-					
25	0000	PWM	PWM_ CMOD	0							F	PWMCN	1						
26	0000	PWM	PWM_ VAL0	PMVAL															
27	0000	PWM	PWM_ VAL1	PMVAL															
28	0000	PWM	PWM_ VAL2	PMVAL															

MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4

Freescale Semiconductor

90

Table 44. Detailed Peripheral Memory Map (continued)

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
35	0000	PWM	PWM_ SYNC	SYNC_OUT_EN							SYN	C_WINI	DOW						
36	0000	PWM	PWM_ FFILT0	GSTRO	0	0	0	0	FI	LT0_CN	IT				FILT0	_PER			
37	0000	PWM	PWM_ FFILT1	GSTR1	0	0	0	0	FI	LT1_CN	IT				FILT1	_PER			
38	0000	PWM	PWM_ FFILT2	GSTR2	0	0	0	0	FI	LT2_CN	IT	FILT2_PER							
39	0000	PWM	PWM_ FFILT3	GSTR3	0	0	0	0	FI	LT3_CN	IT				FILT3	_PER			
3B–3F	—	PWM	Reserved								RESE	RVED							
40	0000	INTC	INTC_ ICSR	INT	IP	IC				VAB				SIQ_TVI	ERRF	ETRE	TRBUF	ВКРТ	STPCNT
41	0000	INTC	INTC_ VBA	0	0						VECTO	DR_BAS	SE_ADE	DRESS					
42	0000	INTC	INTC_ IAR0	0	0			USI	ER2			0	0			USE	ER1		
43	0000	INTC	INTC_ IAR1	0	0			USI	ER4			0	0			USE	ER3		
44	0000	INTC	INTC_ IAR2	0	0			USI	ER6			0	0			USE	ER5		
45–5F	—	INTC	Reserved								RESE	RVED							
60	001F	ADC0	ADC0_ ADCSC1A	0	0	0	0	0	0	0	0	coco	AIEN	ADCO	ADCH				

Peripheral Register Memory Map and Reset Value

Freescale Semiconductor

Freescale Semiconductor

MC56F8006/MC56F8002 Digital Signal Controller, Rev. 4

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	2 1			
61	0000	ADC0	ADC0_ ADCSC2	0	0	0	0	0	0	0	0	ADACT	ADTRG	0	0	0	ECC	REF	SEL		
62–65		ADC0	Reserved								RESE	RVED									
66	0000	ADC0	ADC0_ ADCCFG	0	0	0	0	0	0	0	0	ADLPC	AD	NV	ADLSMP	МС	DE	ADI	CLK		
67–69		ADC0	Reserved								RESE	RVED									
6A	001F	ADC0	ADC0_ ADCSC1B	0	0	0	0	0	0	0	0	coco	AIEN	ADCO			ADCH				
6B	0000	ADC0	ADC0_ ADCRA	0	ADR11	ADR10	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	0	0	0		
6C	0000	ADC0	ADC0_ ADCRB	0	ADR11	ADR10	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADRO	0	0	0		
6D–6F	_	ADC0	Reserved								RESE	RVED									
80	001F	ADC1	ADC1_ ADCSC1A	0	0	0	0	0	0	0	0	coco	AIEN	ADCO			ADCH				
81	0000	ADC1	ADC1_ ADCSC2	0	0	0	0	0	0	0	0	ADACT	ADTRG	0	0	0	ECC	REF	SEL		
82–85	_	ADC1	Reserved								RESE	RVED									
86	0000	ADC1	ADC1_ ADCCFG	0	0	0	0	0	0	0	0	ADLPC	AD	NV	ADLSMP	МС	DE	DE ADICL			
87–89	_	ADC1	Reserved		-	-		-			RESE	RVED									
8A	001F	ADC1	ADC1_ ADCSC1B	0	0	0	0	0	0	0	0	сосо	AIEN	ADCO			ADCH				

Table 44. Detailed Peripheral Memory Map (continued)

Peripheral Register Memory Map and Reset Value

91

92

Table 44. Detailed Peripheral Memory Map (continued)

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
8B	0000	ADC1	ADC1_ ADCRA	0	ADR11	ADR10	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADRO	0	0	0
8C	0000	ADC1	ADC1_ ADCRB	0	ADR11	ADR10	ADR9	ADR8	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0	0	0	0
8D-8F	—	ADC1	Reserved	RESERVED															
A0	0000	PGA0	PGA0_ CNTL0	0	0	0	0	0	0	0	0	ТМ	GAINSEL				LP	EN	
A1	0002	PGA0	PGA0_ CNTL1	0	0	0	0	0	0	0	0	PPDIS	PARMODE	0	CALN	NODE	CPD		
A2	000E	PGA0	PGA0_ CNTL2	0	0	0	0	0	0	0	0	0	0 HE NUM_CLK_GS				ADIV		
A3	0000	PGA0	PGA0_STS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	RUNNING	STCOMP
A4–BF	_	PGA0	Reserved								RESE	RVED							
C0	0000	PGA1	PGA1_ CNTL0	0	0	0	0	0	0	0	0	ТМ		G	GAINSE	ïL		LP	EN
C1	0002	PGA1	PGA1_ CNTL1	0	0	0	0	0	0	0	0	PPDIS	HI O CALMODE				CPD		
C2	000E	PGA1	PGA1_ CNTL2	0	0	0	0	0	0	0	0	0	0	SWTRIG	NUI	M_CLK	_GS	ADIV	

Peripheral Register Memory Map and Reset Value

Freescale Semiconductor

86

Table 44. Detailed Peripheral Memory Map (continued)

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0				
C9	—	GPIOC	Reserved		1		1	1	1		RESE	RVED			<u> </u>								
CA	0000	GPIOC	GPIOC_ RAWDATA	0	0	0	0	0	0	0	0	RAWDATA											
СВ	0000	GPIOC	GPIOC_ DRIVE	0	0	0	0	0	0	0	0	DRIVE											
СС	00FF	GPIOC	GPIOC_ IFE	0	0	0	0	0	0	0	0	IFE											
CD	0000	GPIOC	GPIOC_ SLEW	0	0	0	0	0	0	0	0	SLEW											
CE-DF	—	GPIOC	Reserved								RESE	ERVED											
E0	00FF	GPIOD	GPIOD_ PUR	0	0	0	0	0	0	0	0	0	0	0	0	PUR							
E1	0000	GPIOD	GPIOD_DR	0	0	0	0	0	0	0	0	0	0	0	0	DR							
E2	0000	GPIOD	GPIOD_ DDR	0	0	0	0	0	0	0	0	0	0	0	0	DDR							
E3	0080	GPIOD	GPIOD_ PER	0	0	0	0	0	0	0	0	0	0	0	0		PI	ER					
E4	—	GPIOD	Reserved								RESE	RVED											
E5	0000	GPIOD	GPIOD_ IENR	0	0	0	0	0	0	0	0	0	0	0	0		IE	NR					
E6	0000	GPIOD	GPIOD_ IPOLR	0	0	0	0	0	0	0	0	0	0	0	0		IPC	DLR					
E7	0000	GPIOD	GPIOD_ IPR	0	0	0	0	0	0	0	0	0	0	0	0		IF	'nR					
E8	0000	GPIOD	GPIOD_ IESR	0	0	0	0	0	0	0	0	0	0	0	0	IESR							
E9		GPIOD	Reserved								RESE	RVED											
EA	0000	GPIOD	GPIOD_ RAWDATA	0	0	0	0	0	0	0	0	0	0	0	0		RAW	DATA					

Peripheral Register Memory Map and Reset Value

Freescale Semiconductor

_		

-	
0	
4	

Table 44. Detailed Peripheral Memory Map (continued)

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0			
02	0000	PDB	PDB_ DELAYB								DEL	AYB			•							
03	FFFF	PDB	PDB_MOD								M	DD										
04	FFFF	PDB	PDB_ COUNT		COUNT																	
05–1F	—	PDB	Reserved	RESERVED																		
20	0000	RTC	RTC_SC	0	0	0	0	0	0	0	0	RTIF	RTC	ICLKS RTIE RTCPS								
21	0000	RTC	RTC_CNT	0	0	0	0	0	0	0	0		RTCCNT									
22	0000	RTC	RTC_MOD	0	0	0	0	0	0	0	0		RTCMOD									
23–FF	—	RTC	Reserved								RESE	RSERVED										
00	0000	HFM	FM_ CLKDIV	0	0	0	0	0	0	0	0	DIVLD	PRDIV8	DIV								
01	0000	HFM	FM_CNFG	0	0	0	0	0	LOCK	0	AEIE	CBEIE	CCIE	KEYACC	0	0	0	LBTS	BTS			
03	-000 ³	HFM	FM_SECHI	КЕҮЕN	SECSTAT	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
04	0000	HFM	FM_ SECLO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SE	EC			
06–0F	—	HFM	Reserved		•			•			RESE	RVED	•					•				
10	FFFF ⁶	HFM	FM_PROT								PRO	TECT										
11	—	HFM	Reserved								RESE	RVED										
13	00C0	HFM	FM_USTAT	0	0	0	0	0	0	0	0	CBEIF	CCIF	PVIOL	ACCERR	0	BLANK	0	0			
14	0000	HFM	FM_CMD	0	0	0	0	0	0	0	0	0				CMD	•					

Peripheral Register Memory Map and Reset Value

Freescale Semiconductor

Table 44. Detailed Peripheral Memory Map (continued)

Offset Addr. (Hex)	Reset Value (Hex)	Periph.	Register	Bit 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	Bit 0
17	—	HFM	Reserved		RESERVED														
18	0000	HFM	FM_DATA		FMDATA														
19	—	HFM	Reserved		RESERVED														
1A	FFFF ⁴	HFM	FM_OPT0								IFR_	OPT0							
1B	FFFF ⁵	HFM	FM_OPT1								IFR_	OPT1							
1D	FFFF ⁶	HFM	FM_ TSTSIG		TST_AREA_SIG														
1E–3F	_	HFM	Reserved								RESE	RVED							

¹ The binary reset value of this register is 0000 0000 0UUU UUUU, where U represents an undefined value. Spaces have been added to the value for clarity.

² The binary reset value of this register is 0000 0000 111NC NC NC NC NC. Spaces have been added to the value for clarity.

³ The binary reset value of this register is FS00 0000 0000 0000, where F indicates that the reset state is loaded from the flash array during reset, and where S indicates that the reset state is determined by the security state of the module. Spaces have been added to the value for clarity.

Peripheral Register Memory Map and Reset Value

⁴ The reset state is loaded from the flash array during reset.

⁵ The reset state is loaded from the flash array during reset.

⁶ The reset state is loaded from the flash array during reset.