

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f060

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6. Controller Area Network

The C8051F060/1/2/3 devices feature a Controller Area Network (CAN) controller that implements serial communication using the CAN protocol. The CAN controller facilitates communication on a CAN network in accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). The CAN controller consists of a CAN Core, Message RAM (separate from the C8051 RAM), a message handler state machine, and control registers.

The CAN controller can operate at bit rates up to 1 Mbit/second. Silicon Labs CAN has 32 message objects each having its own identifier mask used for acceptance filtering of received messages. Incoming data, message objects and identifier masks are stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is performed by the CAN controller and not by the C8051 MCU. In this way, minimal CPU bandwidth is used for CAN communication. The C8051 configures the CAN controller, accesses received data, and passes data for transmission via Special Function Registers (SFR) in the C8051.

Figure 1.11. CAN Controller Overview

5.3. ADC Modes of Operation

ADC0 and ADC1 have a maximum conversion speed of 1 Msps. The conversion clocks for the ADCs are derived from the system clock. The ADCnSC bits in the ADCnCF register determine how many system clocks (from 1 to 16) are used for each conversion clock.

5.3.1. Starting a Conversion

For ADC0, conversions can be initiated in one of four ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. For ADC0, conversions may be initiated by:

- 1. Writing a '1' to the AD0BUSY bit of ADC0CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR0;
- 4. A Timer 2 overflow (i.e. timed continuous conversions).

ADC1 conversions can be initiated in five different ways, according to the ADC1 Start of Conversion Mode bits (AD1CM2-AD1CM0) in ADC1CN. For ADC1, conversions may be initiated by:

- 1. Writing a '1' to the AD1BUSY bit of ADC1CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR1;
- 4. A Timer 2 overflow (i.e. timed continuous conversions);
- 5. Writing a '1' to the AD0BUSY bit of ADC0CN.

The ADnBUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete. The falling edge of ADnBUSY triggers an interrupt (when enabled) and sets the ADnINT interrupt flag (ADCnCN.5). In single-ended mode, the converted data for ADCn is available in the ADCn data word MSB and LSB registers, ADCnH, ADCnL. In differential mode, the converted data (combined from ADC0 and ADC1) is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L.

When initiating conversions by writing a '1' to ADnBUSY, the ADnINT bit should be polled to determine when a conversion has completed (ADCn interrupts may also be used). The recommended polling procedure is shown below.

Step 1. Write a '0' to ADnINT; Step 2. Write a '1' to ADnBUSY; Step 3. Poll ADnINT for '1';

Step 4. Process ADCn data.

When an external start-of-conversion source is required in differential mode the two pins (CNVSTR0 and CNVSTR1) should be tied together.

5.3.2. Tracking Modes

The ADnTM bit in register ADCnCN controls the ADCn track-and-hold mode. When the ADC is enabled, the ADC input is continuously tracked when a conversion is not in progress. When the ADnTM bit is logic 1, each conversion is preceded by a tracking period (after the start-of-conversion signal). When the CNVSTRn signal is used to initiate conversions, the ADC will track until a rising edge occurs on the CNVSTRn pin (see Figure 5.4 and Table 5.1 for conversion timing parameters). Setting ADnTM to 1 can be useful to ensure that settling time requirements are met when an external multiplexer is used on the analog input (see Section "5.3.3. Settling Time Requirements" on page 56).

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
AD1SC3	AD1SC2	AD1SC1	AD1SC0	AD1SCAL	AD1GCAL	AD1LCAL	AD10CAL	11110000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J					
	SFR Addre												
	SFR Page: 1												
Bits 7-4:	4: AD1SC3-0: ADC1 SAR Conversion Clock Period Bits.												
	SAR Conver	sion clock i	s divided de	own from th	e system cl	ock accordi	ing to the Al	D1SC bits					
	(AD1SC3-0)	. The numb	er of syster	n clocks us	ed for each	SAR conve	ersion clock	is equal to					
	AD1SC + 1.	(Note: the /	ADC1 SAR	Conversion	Clock sho	uld be less i	than or equa	al to					
D:+ 2.	25 MHZ). Se	e Table 5.1	TOT CONVERS	sion timing (detalls.								
DIL J.	ADTSCAL. 3	ound and r	oforence ve	ultage are u	end for offer	at and gain	calibration						
	1. External y	oltages car	he used fo	or offset and	aain calibr	ation	calibration.						
Bit 2:	AD1GCAL: (Gain Calibra	ation.		gain bailbi								
	Read:												
	0: Gain Calib	pration is co	mpleted or	not yet star	ted.								
	1: Gain Calib	pration is in	, progress.										
	Write:												
	0: No Effect.												
	1: Initiates a	gain calibra	ation if ADC	1 is idle.									
Bit 1:	AD1LCAL: L	inearity Cal	libration										
	Read			1									
	0: Linearity (Calibration I	s complete	d or not yet	started								
	1. Linearity C		s in progres	55									
	0: No Effect												
	1: Initiates a	linearity ca	libration if A	ADC1 is idle									
Bit 0:	AD10CAL: (Offset Calib	ration.										
	Read:												
	0: Offset Cal	ibration is c	completed c	or not yet sta	arted.								
	1: Offset Cal	ibration is i	n progress.										
	Write:												
	0: No Effect.												
	1: Initiates a	n offset cali	bration if Al	DC1 is idle.									

Figure 5.8. ADC1CF: ADC1 Configuration Register

Figure 5.16. ADC1H: ADC1 Data Word MSB Register

Figure 5.18. ADC1 Data Word Example

For differential mode, the differential data word appears in ADC0H and ADC0L. The singleended ADC1 results are always present in ADC1H and ADC1L, regardless of the operating mode.

7. 10-Bit ADC (ADC2, C8051F060/1/2/3)

The ADC2 subsystem for the C8051F060/1/2/3 consists of an analog multiplexer (referred to as AMUX2), and a 200 ksps, 10-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 7.1). The AMUX2, data conversion modes, and window detector can all be configured from within software via the Special Function Registers shown in Figure 7.1. ADC2 operates in both Single-ended and Differential modes, and may be configured to measure any of the pins on Port 1, or the Temperature Sensor output. The ADC2 subsystem is enabled only when the AD2EN bit in the ADC2 Control register (ADC2CN) is set to logic 1. The ADC2 subsystem is in low power shutdown when this bit is logic 0.

C8051F060/1/2/3/4/5/6/7

Figure 7.13. ADC2LTH: ADC2 Less-Than Data High Byte Register

Figure 7.14. ADC2LTL: ADC2 Less-Than Data Low Byte Register

Programming and Debugging Support

A JTAG-based serial interface is provided for in-system programming of the Flash program memory and communication with on-chip debug support logic. The re-programmable Flash can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints and watch points, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debug is completely non-intrusive and non-invasive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) which interfaces to the CIP-51 via its JTAG port to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

13.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set; standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

13.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 13.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

13.1.2. MOVX Instruction and Program Memory

In the CIP-51, the MOVX instruction serves three purposes: accessing on-chip XRAM, accessing off-chip XRAM, and writing to on-chip program Flash memory. The Flash access feature provides a mechanism for user software to update program code and use the program memory space for non-volatile data storage (see Section "16. Flash Memory" on page 177). The External Memory Interface provides a fast access to off-chip XRAM (or memory-mapped peripherals) via the MOVX instruction. Refer to Section "17. External Data Memory Interface and On-Chip XRAM" on page 187 for details.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CY	AC	F0	RS1	RS0	OV	F1	PARITY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address SFR Page	s: 0xD0 e: All Pages
Bit7:	CY: Carry	Flag.						
	This bit is	set when t	he last arithmet	tic operatio	on resulted	d in a carry (a	addition) or a	a borrow
	(subtractio	on). It is cle	eared to 0 by all	other arit	nmetic ope	erations.		
Bit6:	AC: Auxilia	ary Carry I	-lag.					
	I NIS DIT IS	set when t	ne last arithmet	ic operations of the second	n resulted	to 0 by all o	ther arithme	fic opera-
	tions.	505110010	i) the high blue					
Bit5:	F0: User F	lag 0.						
	This is a b	it-address	able, general pu	urpose flag	g for use u	nder softwar	e control.	
Bits4-3:	RS1-RS0:	Register I	Bank Select.		-l			
	I nese bits	select wh	ich register ban	ik is used	auring reg	ister accesse	es.	
	RS1	RS0	Register Bank	Add	ress			
	0	0	0	0x00	· 0x07			
	0	1	1	0x08	0x0F			
	1	0	2	0x10	0x17			
	1	1	3	0x18	· 0x1F			
Bit2:	OV: Overfl	ow Flag.	dor the followin		lanaaa			
			SI IBB instructi	on causes	ances.	ange overflo	\ \ /	
	• A MUL ir	struction	esults in an ove	erflow (res	ult is great	ter than 255)		
	• A DIV ins	struction c	auses a divide-b	by-zerò co	ndition.	,		
	The OV bi	t is cleared	to 0 by the AD	D, ADDC,	SUBB, M	UL, and DIV	instructions	in all other
D'14	cases.	1						
Bit1:	F1: User F	·lag 1. it₋addross	able, general p	urposo flav	n for use u	nder softwar	e control	
Bit0:	PARITY: P	Parity Flag	able, general po	uipuse na	g ioi use u	nuel soltwar	e control.	
	This bit is :	set to 1 if t	he sum of the ei	ight bits in	the accum	nulator is odd	and cleared	l if the sum
	is even.							

Figure 13.16. PSW: Program Status Word

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
PDMA0	PS1	PCAN0	PADC2	PWADC2	PT4	PADC1	PT3	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
	SFR Address											
	SFR Page: All F											
D:+7.	PDMA0: DMA0 Interrupt Priority Control											
DIL7.	This bit sots	the priority	of the DMA	0 interrunt								
	0: DMA0 interrupt set to low priority											
	1: DMA0 inte	errupt set to	high priorit	v. V								
Bit6:	PS1: UART1	Interrupt F	riority Cont	rol.								
	This bit sets	the priority	of the UAR	T1 interrupt								
	0: UART1 int	terrupt set t	o low priori	ty.								
	1: UART1 in	terrupt set t	o high prior	ity.								
Bit5:	PCAN0: CAN	N Interrupt I	Priority Con	trol.								
	This bit sets	the priority	of the CAN	Interrupt.								
	0: CAN Inter	rupt set to I	ow priority l	evel.								
5.4	1: CAN Inter	rupt set to h	high priority	level.								
Bit4:	PADC2: ADC	C2 End Of (Interrupt Pr	Iority Contr	Ol.						
		the priority	of the ADC	2 End of Co	nversion ir	nterrupt.						
	1: ADC2 End	d of Conver	sion interru	pt set to hig	h priority.							
Bit3.		DC2 Windo	w Compara	pr ser to nig	t Priority C	ontrol						
Dito.	0. ADC2 Wir	ndow interru	int set to lo	w priority		ontroi.						
	1: ADC2 Wir	ndow interru	upt set to hi	ah priority.								
Bit2:	PT4: Timer 4	Interrupt F	riority Cont	rol.								
	This bit sets	the priority	of the Time	r 4 interrupt								
	0: Timer 4 in	terrupt set t	to low priori	ty.								
	1: Timer 4 in	terrupt set t	to high prioi	rity.								
Bit1:	PADC1: ADC	C End of Co	onversion In	terrupt Prio	rity Control							
	This bit sets	the priority	of the ADC	1 End of Co	nversion Ir	nterrupt.						
	0: ADC1 End	d of Conver	sion interru	pt set to low	priority lev	vel.						
D:+O:	1: ADC1 End	D OT CONVER	sion interru	pt set to hig	n priority ie	evel.						
DILU.	This bit sets	the priority	of the Time	. I UI. Ir 3 interrunt	·c							
	0. Timer 3 in	terrunt set f	to low priori	tv level								
	1: Timer 3 in	terrupt set f	to high prior	itv level.								

Figure 13.24. EIP2: Extended Interrupt Priority 2

162

Table 14.1.	Reset	Electrical	Characteristics
-------------	-------	------------	-----------------

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
/RST Output Low Voltage	I _{OL} = 8.5 mA, VDD = 2.7 V to 3.6 V			0.6	V
/RST Input High Voltage		0.7 x VDD			V
/RST Input Low Voltage				0.3 x VDD	
/RST Input Leakage Current	/RST = 0.0 V		50		μA
VDD for /RST Output Valid		1.0			V
AV+ for /RST Output Valid		1.0			V
VDD POR Threshold (V _{RST})		2.40	2.55	2.70	V
Minimum /RST Low Time to Generate a System Reset		10			ns
Reset Time Delay	/RST rising edge after VDD crosses V _{RST} threshold	80	100	120	ms
Missing Clock Detector Time- out	Time from last system clock to reset initiation	100	220	500	μs

R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value
XTLVLD	XOSCM	D2 XOSCMD1	XOSCMD0	-	XFCN2	XFCN1	XFCN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address SFR Page	:: 0x8C :: F
Bit7:	XTLVLD:	Crystal Oscilla	tor Valid Flag	j .				
	(Valid on	ly when XOSO	CMD = 11x.).	-				
	0: Crystal	Oscillator is u	nused or not	yet stable				
	1: Crystal	Oscillator is ru	unning and st	able.				
Bits6-4:	XOSCME	2-0: External (Oscillator Mo	de Bits.				
	00x: Exte	rnal Oscillator	circuit off.	ternel CN				
	010: Exte	rnal CMOS Cli	ock Mode (E)	kternal CN	/IUS CIOCK II	nput on X	MOS Clock i	nnut on
		niai CiviOS Ciu			y z slaye (⊏	Xiemai C		iput on
	10x: RC/0	C Oscillator Mo	de with divid	e bv 2 sta	ae.			
	110: Crys	tal Oscillator M	lode.		901			
	111: Crys	tal Oscillator M	lode with divi	ide by 2 st	age.			
Bit3:	Unused. I	Read = 0, Write	e = don't care	Э.	-			
Bits2-0:	XFCN2-0	: External Osc	illator Freque	ency Contr	ol Bits.			
	000-111: :	see table belov	N:					
	XFCN	Crystal (XOS	SCMD = 11x	RC (X	OSCMD = 1	0x) C	(XOSCMD =	10x)
	000	f ≤ 32	2 kHz	f	≤25 kHz		K Factor = 0.	.87
	001	32 kHz < 1	f≤84 kHz	25 kH	lz < f ≤ 50 kł	Hz	K Factor = 2	6
	010	84 kHz < f	≤ 225 kHz	50 kH:	z < f ≤ 100 k	Hz	K Factor = 7	.7
	011	225 kHz < 1	f ≤ 590 kHz	100 kH	$ z < f \le 200 $	<hz< td=""><td>K Factor $= 2$</td><td>22</td></hz<>	K Factor $= 2$	22
	100	590 kHz < 1	f ≤ 1.5 MHz	200 kH	$z < f \le 400$	<hz< td=""><td>K Factor $= 6$</td><td><u>کڑ</u></td></hz<>	K Factor $= 6$	<u>کڑ</u>
	101	1.5 MHz <	f≤4 MHz	400 kH	$z < f \le 800$	<hz< td=""><td>K Factor = 1</td><td>80</td></hz<>	K Factor = 1	80
	110	4 MHz < f	≤ 10 MHz	800 kH	$z < f \le 1.6$ N	/Hz	K Factor = 6	64
	111	10 MHz < 1	i ≤ 30 MHz	1.6 MH	$z < t \le 3.2$ N	/IHz	K Factor = 15	590
CRYSTA	L MODE (Circuit from Fig	gure 15.1, Op	otion 1; XC	DSCMD = 11	lx).		
	Choose X	FCN value to	match crysta	I frequenc	;у.			
RC MOD	E (Circuit f	rom Figure 15	.1, Option 2;	XOSCMD	= 10x).			
	Choose X	FCN value to	match freque	ency range	9:			
	f = 1.23(1	0°)/(R * C), v	vhere					
	f = freque	ncy of oscillati	on in MHZ					
	C = Capac	in resistor valu	r Ie in kO					
C MODE	(Circuit fro	m Figure 15.1	. Option 3: X	OSCMD =	= 10x).			
••	Choose K	(Factor (KF) for	or the oscillat	ion freque	ency desired	:		
	f = KF / (0	C * VDD) , whe	re	•	,			
	f = freque	ncy of oscillati	on in MHz					
	C = capao	citor value on X	KTAL1, XTAL	2 pins in p	ρF			
	VDD = Pc	ower Supply or	n MCU in volt	S				

Figure 15.5. OSCXCN: External Oscillator Control Register

20.4.3. Data Register

The SMBus0 Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software can read or write to this register while the SI flag is set to logic 1; software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag reads logic 0 since the hardware may be in the process of shifting a byte of data in or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. Therefore, SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data in SMB0DAT.

Figure 20.10. SMB0DAT: SMBus0 Data Register

20.4.4. Address Register

The SMB0ADR Address register holds the slave address for the SMBus0 interface. In slave mode, the seven most-significant bits hold the 7-bit slave address. The least significant bit (Bit0) is used to enable the recognition of the general call address (0x00). If Bit0 is set to logic 1, the general call address will be recognized. Otherwise, the general call address is ignored. The contents of this register are ignored when

21.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 21.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 21.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 21.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

21.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 21.5. For slave mode, the clock and data relationships are shown in Figure 21.6 and Figure 21.7. Note that CKPHA must be set to '0' on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, and C8051F33x

The SPI0 Clock Rate Register (SPI0CKR) as shown in Figure 21.10 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 21.5. Master Mode Data/Clock Timing

22.1. UART0 Operational Modes

UART0 provides four operating modes (one synchronous and three asynchronous) selected by setting configuration bits in the SCON0 register. These four modes offer different baud rates and communication protocols. The four modes are summarized in Table 22.1.

	Mode	Synchronization	Baud Clock	Data Bits	Start/Stop Bits
I	0	Synchronous	SYSCLK / 12	8	None
I	1	Asynchronous	Timer 1, 2, 3, or 4 Overflow	8	1 Start, 1 Stop
I	2	Asynchronous	SYSCLK / 32 or SYSCLK / 64	9	1 Start, 1 Stop
ľ	3	Asynchronous	Timer 1, 2, 3, or 4 Overflow	9	1 Start, 1 Stop

Table 22.1. UART0 Modes

22.1.1. Mode 0: Synchronous Mode

Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX0 pin. The TX0 pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates the shift clock for transmission in both directions (see the interconnect diagram in Figure 22.3).

Data transmission begins when an instruction writes a data byte to the SBUF0 register. Eight data bits are transferred LSB first (see the timing diagram in Figure 22.2), and the TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the eighth bit time. Data reception begins when the REN0 Receive Enable bit (SCON0.4) is set to logic 1 and the RI0 Receive Interrupt Flag (SCON0.0) is cleared. One cycle after the eighth bit is shifted in, the RI0 flag is set and reception stops until software clears the RI0 bit. An interrupt will occur if enabled when either TI0 or RI0 are set.

23. UART1

UART1 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "23.1. Enhanced Baud Rate Generation" on page 278). Received data buffering allows UART1 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART1 has two associated SFRs: Serial Control Register 1 (SCON1) and Serial Data Buffer 1 (SBUF1). The single SBUF1 location provides access to both transmit and receive registers. Reading SBUF1 accesses the buffered Receive register; writing SBUF1 accesses the Transmit register.

With UART1 interrupts enabled, an interrupt is generated each time a transmit is completed (TI1 is set in SCON1), or a data byte has been received (RI1 is set in SCON1). The UART1 interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART1 interrupt (transmit complete or receive complete).

	Frequency: 11.0592 MHz								
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select) [†]	T1M [†]	Timer 1 Reload Value (hex)		
	230400	0.00%	48	SYSCLK	XX	1	0xE8		
	115200	0.00%	96	SYSCLK	XX	1	0xD0		
	57600	0.00%	192	SYSCLK	XX	1	0xA0		
om sc.	28800	0.00%	384	SYSCLK	XX	1	0x40		
ő, fr	14400	0.00%	768	SYSCLK / 12	00	0	0xE0		
CLk nal	9600	0.00%	1152	SYSCLK / 12	00	0	0xD0		
'SC ter	2400	0.00%	4608	SYSCLK / 12	00	0	0x40		
S Х	1200	0.00%	9216	SYSCLK / 48	10	0	0xA0		
	230400	0.00%	48	EXTCLK / 8	11	0	0xFD		
с. С	115200	0.00%	96	EXTCLK / 8	11	0	0xFA		
C fr	57600	0.00%	192	EXTCLK / 8	11	0	0xF4		
SLK al (28800	0.00%	384	EXTCLK / 8	11	0	0xE8		
'SC err	14400	0.00%	768	EXTCLK / 8	11	0	0xD0		
S) Int	9600	0.00%	1152	EXTCLK / 8	11	0	0xB8		

 Table 23.5. Timer Settings for Standard Baud Rates Using an External Oscillator

X = Don't care

[†]SCA1-SCA0 and T1M bit definitions can be found in Section 24.1.

Table 23.6. Timer Settings for Standard Baud Rates Using an External Oscillat	or
Frequency: 3.6864 MHz	

	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select) [†]	T1M [†]	Timer 1 Reload Value (hex)		
	230400	0.00%	16	SYSCLK	XX	1	0xF8		
	115200	0.00%	32	SYSCLK	XX	1	0xF0		
	57600	0.00%	64	SYSCLK	XX	1	0xE0		
ы С	28800	0.00%	128	SYSCLK	XX	1	0xC0		
ő	14400	0.00%	256	SYSCLK	XX	1	0x80		
CLk nal	9600	0.00%	384	SYSCLK	XX	1	0x40		
'SC ter	2400	0.00%	1536	SYSCLK / 12	00	0	0xC0		
S Х ШХ	1200	0.00%	3072	SYSCLK / 12	00	0	0x80		
	230400	0.00%	16	EXTCLK / 8	11	0	0xFF		
с. Э	115200	0.00%	32	EXTCLK / 8	11	0	0xFE		
K fre Ose	57600	0.00%	64	EXTCLK / 8	11	0	0xFC		
SCLK ernal (28800	0.00%	128	EXTCLK / 8	11	0	0xF8		
	14400	0.00%	256	EXTCLK / 8	11	0	0xF0		
Sy Int	9600	0.00%	384	EXTCLK / 8	11	0	0xE8		

X = Don't care

[†]SCA1-SCA0 and T1M bit definitions can be found in Section 24.1.

Document Change List

Revision 1.1 to Revision 1.2

- Added four part numbers: C8051F064, C8051F065, C8051F066, and C8051F067.
- Modified all sections to describe functionality of the four new parts.
- Revised and expanded Flash Chapter with clearer descriptions of Flash security features.
- UART0 Chapter, Section 22.3: "FE0 in register SCON0" changed to "FE0 in register SSTA0".
- UART0 Chapter: Updated and clarified baud rate equations.
- Port I/O Chapter, Section 18.2: Added a note in text body that Port 4-7 registers are all on SFR Page F.
- Comparators Chapter: Updated Table 12.1 "Comparator Electrical Characteristics".
- CIP51 Chapter: Section 13.4.1: Added note regarding IDLE mode operation.
- ADC2 Chapter: AD2LJST bit removed from ADC2CF register description (AD2LJST is in the ADC2CN register).
- ADC2 Chapter: Updated Table 7.1 "ADC2 Electrical Characteristics" and Figure 7.2 "Temperature Sensor Transfer Function" with temperature sensor information.
- ADC0/ADC1 Chapter: Tracking/Conversion timing when ADnTM = 1 is shown in Figure 5.4 and Table 5.1. References to "18" or "16" SAR clocks of tracking were removed.
- DACs Chapter, Table 8.1 "DAC Electrical Characteristics": Changed "Gain Error" to "Full-Scale Error".
- SMBus Chapter, Figure 20.9 SMB0CR: Changed "1.125" to "1.125 * 10^6".
- PCA Chapter, Figure 25.12 PCA0CPMn: Bit 0 name changed to "ECCFn" (from incorrect "EECFn").
- JTAG Chapter, Figure 26.3 FLASHCON: Bit 7 description corrected. Bit 7 is SFLE, allowing access to the Scratchpad memory area.
- CAN Chapter: Added text "The CAN controller's clock (f_{sys}, or CAN_CLK in the C_CAN User's Guide) is equal to the CIP-51 MCU's clock (SYSCLK)."
- Table 4.1 "Pin Descriptions", MONEN: Added text "Recommended configuration is to connect directly to VDD."
- Timers Chapter: All references to "DCEN" and "DECEN" corrected to "DCENn".
- Timers Chapter, Equation 24.1: Equation was corrected to "Fsq = Ftclk / (2*(65536-RCAPn))". This equation is valid for a timer counting up or down.
- Timers Chapter, Figure 24.14 TMRnCF: Corrected Bit 1 description. For square-wave output, CP/RLn = 0, C/Tn = 0, TnOE = 1.
- VREF Chapters: Added VREF Power Supply Current to VREF Electrical Characteristics Tables.
- PCA Chapter: Added Note about writing PCA0CPLn and PCA0CPHn to sections for SW Timer Mode, High-Speed Output Mode, Frequency Output Mode, 8-bit PWM Mode, and 16-bit PWM Mode.
- Oscillators Chapter, Table 15.1 "Internal Oscillator Electrical Characteristics": Updated typical supply current.
- Table 3.1 "Global DC Electrical Characteristics", Updated supply current numbers with additional characterization data.
- ADC0/ADC1 Chapter: Table 5.2 "ADC0 and ADC1 Electrical Characteristics", Updated supply current numbers with additional characterization data.
- ADC0/ADC1 Chapter: Table 5.3 "Voltage Reference 0 and 1 Electrical Characteristics", Updated Output Voltage numbers with characterization data.
- Figure 4.3 "TQFP-100 Package Drawing", Added "L" Dimension.
- Figure 4.6 "TQFP-64 Package Drawing", Added "L" Dimension.

