

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f061

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Figure 13 17 ACC: Accumulator	150
	Figure 13.18 B Register	150
	Figure 13.19. IF: Interrupt Enable	154
	Figure 13.20. IP: Interrupt Priority	155
	Figure 13.21, FIF1: Extended Interrupt Enable 1	156
	Figure 13.22, FIF2: Extended Interrupt Enable 2	157
	Figure 13.23, FIP1: Extended Interrupt Priority 1	158
	Figure 13 24 EIP2: Extended Interrupt Priority 2	159
	Figure 13.25 PCON: Power Control	161
14	Reset Sources	163
	Figure 14.1 Reset Sources	163
	Figure 14.2 Reset Timing	164
	Figure 14.3 WDTCN: Watchdog Timer Control Register	167
	Figure 14.4 RSTSRC: Reset Source Register	168
15	Oscillators	171
10.	Figure 15.1 Oscillator Diagram	171
	Figure 15.2 OSCICL: Internal Oscillator Calibration Register	172
	Figure 15.3. OSCICN: Internal Oscillator Control Register	172
	Figure 15.4 CLKSEL: Oscillator Clock Selection Register	173
	Figure 15.5 OSCXCN: External Oscillator Control Register	17/
16	Flash Memory	177
10.	Figure 16.1 C8051E060/1/2/3/4/5 Elash Program Memory Man and Security Byte	20
	righter the second book in 210, 4/6 ridshift rogram memory map and becamy by	
	180	
	180 Figure 16.2 C8051F066/7 Flash Program Memory Map and Security Bytes	181
	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit	181 182
	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCI : Flash Memory Control	181 182 184
	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control	181 182 184 185
17	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM	181 182 184 185 187
17.	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1	181 182 184 185 187 189
17.	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMIOCN: External Memory Interface Control Figure 17.2	181 182 184 185 187 189 189
17.	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMIOCN: External Memory Interface Control Figure 17.2. EMIOCF: External Memory Configuration Figure 17.3	181 182 184 185 187 189 189 190
17.	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMIOCN: External Memory Interface Control Figure 17.2. EMIOCF: External Memory Configuration Figure 17.3. Multiplexed Configuration Example Figure 17.4. Non-multiplexed Configuration Example	181 182 184 185 187 189 189 190 191
17.	180 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMIOCN: External Memory Interface Control Figure 17.2. EMIOCF: External Memory Configuration	181 182 184 185 187 189 189 190 191
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMI0CN: External Memory Interface Control Figure 17.2. EMI0CF: External Memory Configuration Figure 17.3. Multiplexed Configuration Example	181 182 184 185 187 189 189 190 191 192
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMIOCN: External Memory Interface Control Figure 17.2. EMIOCF: External Memory Configuration Figure 17.3. Multiplexed Configuration Example	181 182 184 185 187 189 189 190 191 192 194
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMIOCN: External Memory Interface Control Figure 17.2. EMIOCF: External Memory Configuration Figure 17.3. Multiplexed Configuration Example	181 182 184 185 187 189 189 190 191 192 194 196
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM Figure 17.1. EMIOCN: External Memory Interface Control Figure 17.2. EMIOCF: External Memory Configuration Figure 17.3. Multiplexed Configuration Example	181 182 184 185 187 189 189 190 191 192 194 196 197 198
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM	181 182 184 185 187 189 189 190 191 192 194 196 197 198
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control	181 182 184 185 187 189 189 190 191 192 194 196 197 198 199 200
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM	181 182 184 185 187 189 190 191 192 194 196 197 198 199 200 201
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control Figure 17.1. EMI0CN: External Memory Interface Control Figure 17.2. EMI0CF: External Memory Configuration	181 182 184 185 187 189 190 191 192 194 197 198 199 200 201 203
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit Figure 16.4. FLSCL: Flash Memory Control Figure 16.5. PSCTL: Program Store Read/Write Control External Data Memory Interface and On-Chip XRAM	181 182 184 185 187 189 190 191 192 194 196 197 198 199 200 201 203 203
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit	181 182 184 185 187 189 190 191 192 194 196 197 198 199 200 201 203 203
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit	181 182 184 185 187 189 190 191 192 194 196 197 198 199 200 201 203 203 204 205
17.	 Figure 16.2. C8051F066/7 Flash Program Memory Map and Security Bytes Figure 16.3. FLACL: Flash Access Limit	181 182 184 185 187 189 190 191 192 194 196 197 198 199 200 201 203 203 204 203 204 205 205

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD1SC3	AD1SC2	AD1SC1	AD1SC0	AD1SCAL	AD1GCAL	AD1LCAL	AD10CAL	11110000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J
							SFR Address:	0xBC
							SFR Page:	: 1
Bits 7-4:	AD1SC3-0:	ADC1 SAR	Conversior	n Clock Peri	od Bits.			
	SAR Conver	sion clock i	s divided de	own from th	e system cl	ock accordi	ing to the Al	D1SC bits
	(AD1SC3-0)	. The numb	er of syster	n clocks us	ed for each	SAR conve	ersion clock	is equal to
	AD1SC + 1.	(Note: the /	ADC1 SAR	Conversion	Clock sho	uld be less i	than or equa	al to
D:+ 2.	25 MHZ). Se	e Table 5.1	TOT CONVERS	sion timing (detalls.			
DIL J.	ADTSCAL. 3	ound and r	oforence ve	ultage are u	end for offer	at and gain	calibration	
	1. External y	oltages car	he used fo	or offset and	aain calibr	ation	calibration.	
Bit 2:	AD1GCAL: (Gain Calibra	ation.		gain bailbi			
	Read:							
	0: Gain Calib	pration is co	mpleted or	not yet star	ted.			
	1: Gain Calib	pration is in	, progress.					
	Write:							
	0: No Effect.							
	1: Initiates a	gain calibra	ation if ADC	1 is idle.				
Bit 1:	AD1LCAL: L	inearity Cal	libration					
	Read			1				
	0: Linearity (Calibration I	s complete	d or not yet	started			
	1. Linearity C		s in progres	55				
	0: No Effect							
	1: Initiates a	linearity ca	libration if A	ADC1 is idle				
Bit 0:	AD10CAL: (Offset Calib	ration.					
	Read:							
	0: Offset Cal	ibration is c	completed c	or not yet sta	arted.			
	1: Offset Cal	ibration is i	n progress.					
	Write:							
	0: No Effect.							
	1: Initiates a	n offset cali	bration if Al	DC1 is idle.				

Figure 5.8. ADC1CF: ADC1 Configuration Register

Figure 5.20. Offset and Gain Register Mapping

0x3FFF 0x2000	-3.125% * VREF
0x2000	
	0
0x0000	+3.125% * VREF
Offset Change $\cong \frac{0.5}{2}$	$\frac{x2000 - Offset Register}{8192} \times 3.125\% \times VREF$ ts the slope of the ADC transfer
Offset Change ≅ ⁰ × he gain register value affec Gain Register (13 Bits)	$\frac{x2000 - Offset Register}{8192} \times 3.125\% \times VREF$
Offset Change $\cong \frac{0.5}{100}$ he gain register value affec Gain Register (13 Bits) 0x1FFF	$\frac{x2000 - Offset Register}{8192} \times 3.125\% \times VREF$ Its the slope of the ADC transfer Approximate Slope Change +3.125%
Offset Change $\cong \frac{0x}{2}$ he gain register value affec <u>Gain Register (13 Bits)</u> <u>0x1FFF</u> <u>0x1000</u>	$\frac{x2000 - Offset Register}{8192} \times 3.125\% \times VREF$ ets the slope of the ADC transfer Approximate Slope Change +3.125% 0

Figure 5.21. Offset and Gain Calibration Block Diagram

Figure 5.26. ADC0LTH: ADC0 Less-Than Data High Byte Register

Figure 5.27. ADC0LTL: ADC0 Less-Than Data Low Byte Register

6.6. Interrupt Sources

The DMA contains multiple interrupt sources. Some of these can be individually enabled to generate interrupts as necessary. The DMA Control Register (DMA0CN, Figure 6.4) and DMA Configuration Register (DMA0CF, Figure 6.5) contain the enable bits and flags for the DMA interrupt sources. When an interrupt is enabled and the interrupt condition occurs, a DMA interrupt will be generated (EIE2.7 is set to '1').

The DMA flags that can generate a DMA0 interrupt are:

- 1. DMA Operations Complete (DMA0CN.6, DMA0INT) occurs when all DMA operations have been completed, and the DMA interface is idle.
- 2. ADC1 Data Overflow Error (DMA0CN.4, DMA0DE1) occurs when the DMA interface cannot access XRAM for two conversion cycles of ADC1. This flag indicates that at least one conversion result from ADC1 has been discarded.
- 3. ADC0 Data Overflow Error (DMA0CN.3, DMA0DE0) occurs when the DMA interface cannot access XRAM for two conversion cycles of ADC0. This flag indicates that at least one conversion result from ADC0 has been discarded.
- ADC1 Data Overflow Warning (DMA0CN.1, DMA0DO1) occurs when data from ADC0 becomes available and the DMA has not yet written the previous results to XRAM. This interrupt source can be enabled and disabled with the Data Overflow Warning Enable bit (DMA0CN.2, DMA0DOE).
- ADC0 Data Overflow Warning (DMA0CN.0, DMA0DO0) occurs when data from ADC1 becomes available and the DMA has not yet written the previous results to XRAM. This interrupt source can be enabled and disabled with the Data Overflow Warning Enable bit (DMA0CN.2, DMA0DOE).
- 6. Repeat Counter Overflow (DMA0CF.2, DMA0CI) occurs when the Repeat Counter reaches the Repeat Counter Limit. This interrupt source can be enabled and disabled with the Repeat Counter Overflow Interrupt Enable bit (DMA0CF.3, DMA0CIE).
- 7. End Of Operation (DMA0CF.0, DMA0EO) occurs when an End Of Operation instruction is reached in the Instruction Buffer. This interrupt source can be enabled and disabled with the End Of Operation Interrupt Enable bit (DMA0CF.1, DMA0EOE).

6.7. Data Buffer Overflow Warnings and Errors

The data paths from the ADCs to XRAM are double-buffered when using the DMA interface. When a conversion is completed by the ADC, it first enters the ADCs data register. If the DMA's data buffer is empty, the conversion results will immediately be written into the DMA's internal data buffer for that ADC. Data in the DMA's internal data buffer is written to XRAM at the first available opportunity (see Section "6.3. XRAM Addressing and Setup" on page 76). Conversion results from the ADC's data registers are not copied into the DMA's data buffer until data in the buffer has been written to XRAM. When a conversion is completed and the DMA's data buffer is not empty, an overflow warning flag is generated. If a second conversion data word becomes available before the DMA's data buffer is written to XRAM, the data in the ADC's data registers is over-written with the new data word, and a data overflow error flag is generated.

7.3. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC2 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD2WINT in register ADC2CN) can also be used in polled mode. The ADC2 Greater-Than (ADC2GTH, ADC2GTL) and Less-Than (ADC2LTH, ADC2LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC2 Less-Than and ADC2 Greater-Than registers.

Figure 7.13. ADC2LTH: ADC2 Less-Than Data High Byte Register

Figure 7.14. ADC2LTL: ADC2 Less-Than Data Low Byte Register

Figure 13.3. SFR Page Stack

Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFRPGCN). This function defaults to 'enabled' upon reset. In this way, the autoswitching function will be enabled unless disabled in software.

A summary of the SFR locations (address and SFR page) is provided in Table 13.2. in the form of an SFR memory map. Each memory location in the map has an SFR page row, denoting the page in which that SFR resides. Note that certain SFRs are accessible from ALL SFR pages, and are denoted by the "(ALL PAGES)" designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the "(ALL PAGES)" designation, indicating these SFRs are accessible from all SFR pages regardless of the SFRPAGE register value.

	0								FLSCL
В0	2	P3 (ALL PAGES)							
	3 F	(,							FLACL
	0 1	IE	SADDR0						
A8	2	(ALL PAGES)							
	3 F						P1MDIN	P2MDIN	
	0 1		EMI0TC	EMIOCN	EMI0CF				
A0	2	P2 (ALL PAGES)							
	א F					POMDOUT	P1MDOUT	P2MDOUT	P3MDOUT
	0 1	SCON0 SCON1	SBUF0 SBUF1	SPI0CFG	SPI0DAT		SPI0CKR		
98	2								
	F					P4MDOUT	P5MDOUT	P6MDOUT	P7MDOUT
	0 1		SSTA0						
90	2	P1 (ALL PAGES)							
	F							SFRPGCN	CLKSEL
	0 1	TCON CPT0CN	TMOD CPT0MD	TL0	TL1	TH0	TH1	CKCON	PSCTL
88	2	CPT1CN	CPT1MD						
	F	GFTZON		OSCICN	OSCICL	OSCXCN			
	0 1	D O	0.5			05004.05			DOON
80	2	P0 (ALL PAGES)	SP (ALL PAGES)	DPL (ALL PAGES)	DPH (ALL PAGES)	SERPAGE (ALL PAGES)	SFRNEXT (ALL PAGES)	SFRLAST (ALL PAGES)	PCON (All Pages)
	F								
		0(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

Table /	122 0	Special	Eunotion	Dogistor	(CED)	Momor	/ Man
lable	I J.Z. C	Special	гипсиоп	Register	(SFR)	wemory	
					· - · · · /		,

Table 13.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
P2MDIN	0xAE	F	Port 2 Input Mode	page 217
P2MDOUT	0xA6	F	Port 2 Output Mode Configuration	page 217
P3	0xB0	All Pages	Port 3 Latch	page 218 ^{*1}
P3MDOUT	0xA7	F	Port 3 Output Mode Configuration	page 218 ^{*1}
P4	0xC8	F	Port 4 Latch	page 221 ^{*1}
P4MDOUT	0x9C	F	Port 4 Output Mode Configuration	page 221 ^{*1}
P5	0xD8	F	Port 5 Latch	page 222 ^{*1}
P5MDOUT	0x9D	F	Port 5 Output Mode Configuration	page 222 ^{*1}
P6	0xE8	F	Port 6 Latch	page 223 ^{*1}
P6MDOUT	0x9E	F	Port 6 Output Mode Configuration	page 223 ^{*1}
P7	0xF8	F	Port 7 Latch	page 224 ^{*1}
P7MDOUT	0x9F	F	Port 7 Output Mode Configuration	page 224 ^{*1}
PCA0CN	0xD8	0	PCA Control	page 312
PCA0CPH0	0xFC	0	PCA Capture 0 High	page 316
PCA0CPH1	0xFE	0	PCA Capture 1 High	page 316
PCA0CPH2	0xEA	0	PCA Capture 2 High	page 316
PCA0CPH3	0xEC	0	PCA Capture 3 High	page 316
PCA0CPH4	0xEE	0	PCA Capture 4 High	page 316
PCA0CPH5	0xE2	0	PCA Capture 5 High	page 316
PCA0CPL0	0xFB	0	PCA Capture 0 Low	page 316
PCA0CPL1	0xFD	0	PCA Capture 1 Low	page 316
PCA0CPL2	0xE9	0	PCA Capture 2 Low	page 316
PCA0CPL3	0xEB	0	PCA Capture 3 Low	page 316
PCA0CPL4	0xED	0	PCA Capture 4 Low	page 316
PCA0CPL5	0xE1	0	PCA Capture 5 Low	page 316
PCA0CPM0	0xDA	0	PCA Module 0 Mode Register	page 314
PCA0CPM1	0xDB	0	PCA Module 1 Mode Register	page 314
PCA0CPM2	0xDC	0	PCA Module 2 Mode Register	page 314
PCA0CPM3	0xDD	0	PCA Module 3 Mode Register	page 314
PCA0CPM4	0xDE	0	PCA Module 4 Mode Register	page 314
PCA0CPM5	0xDF	0	PCA Module 5 Mode Register	page 314
PCA0H	0xFA	0	PCA Counter High	page 315
PCA0L	0xF9	0	PCA Counter Low	page 315
PCA0MD	0xD9	0	PCA Mode	page 313
PCON	0x87	All Pages	Power Control	page 161
PSCTL	0x8F	0	Program Store R/W Control	page 185
PSW	0xD0	All Pages	Program Status Word	page 149
RCAP2H	0xCB	0	Timer/Counter 2 Capture/Reload High	page 301
RCAP2L	0xCA	0	Timer/Counter 2 Capture/Reload Low	page 301
RCAP3H	0xCB	1	Timer/Counter 3 Capture/Reload High	page 301
RCAP3L	0xCA	1	Timer/Counter 3 Capture/Reload Low	page 301
RCAP4H	0xCB	2	Timer/Counter 4 Capture/Reload High	page 301
RCAP4L	0xCA	2	Timer/Counter 4 Capture/Reload Low	page 301

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
EADC0	CP2IE	CP1IE	CP0IE	EPCA0	EWADC0	ESMB0	ESPI0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
							SFR Address	s: 0xE6 e: All Pages		
							SITTAG	5. All 1 ages		
Bit7:	EADC0: Ena	ble ADC0 I	End of Con	version Inte	rrupt.					
	This bit sets the masking of the ADC0 End of Conversion Interrupt.									
	0: Disable ADC0 Conversion Interrupt.									
	1: Enable int	errupt requ	ests genera	ated by the	ADC1 Conv	ersion Inte	rrupt.			
Bit6:	CP2IE: Enat	ole Compar	ator (CP2)	Interrupt.						
	This bit sets	the maskin	g of the CP	2 interrupt.						
	0: Disable C	P2 Interrup	IS.	atod by the						
Bit6.	CP1IE: Enab	le Compar	ator (CP1)	Interrunt	CFZIF liay.					
Dito.	This bit sets	the maskin	a of the CP	1 interrupt.						
	0: Disable C	P1 interrup	ts.							
	1: Enable int	errupt requ	ests genera	ated by the	CP1IF flag.					
Bit6:	CP0IE: Enab	ole Compar	ator (CP0)	Interrupt.						
	This bit sets	the maskin	g of the CP	0 interrupt.						
	0: Disable C	P0 interrup	ts.							
D:40.	1: Enable int	errupt requ	ests genera	ated by the	CPOIF flag.					
BIt3:	EPCAU: Ena	ble Prograi	mmable Co	Unter Array	(PCAU) Inte	errupt.				
	0. Disable al	I PCA0 inte	y ur une FC	Aumenup	15.					
	1: Enable int	errupt requ	ests genera	ated by PC/	A0.					
Bit2:	EWADC0: E	nable Wind	low Compa	rison ADC0	Interrupt.					
	This bit sets	the maskin	g of ADC0	Window Co	mparison in	terrupt.				
	0: Disable Al	DC0 Windo	w Compari	son Interrup	ot.					
	1: Enable Int	errupt requ	iests genera	ated by AD	C0 Window	Compariso	ns.			
Bit1:	ESMB0: Ena	ble System	n Managem	ent Bus (SI	MBus0) Inter	rrupt.				
	This bit sets	the maskin	g of the SIV	IBus interru	pt.					
	0: Disable al		terrupts.	atod by the	SLflog					
BitΩ	ESPIO: Enab	le Serial P	erinheral In	terface (SP	Si ilay. IO) Interrunt					
Dito.	This bit sets	the maskin	a of SPI0 ir	terrupt.		•				
	0: Disable al	I SPI0 inter	rupts.							
	1: Enable Int	errupt requ	Iests genera	ated by the	SPI0 flag.					

Figure 13.21. EIE1: Extended Interrupt Enable 1

R/\//	R/W	RW	R/W	R/W	R/\\/	R/W	R/W	Reset Value
PADC0	PCP2	PCP1	PCP0	PPCA0	PWADC0	PSMB0	PSPI0	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
2	2.10	2.10	2	2.10	2.12	2	SFR Addres	s: 0xF6
	SFR Page: All Pa							
Bit7:	PADC0: ADC	C End of Co	nversion In	terrupt Prio	rity Control.			
	This bit sets	the priority	of the ADC	0 End of Co	nversion in	iterrupt.		
		t of Conver	sion interru	pt set to lov	/ priority lev	el.		
Bit6.	PCP2: Com	a of Conver	SION INTELLA D2) Interrur	pt set to hig t Priority C	n priority ie	vei.		
DILO.	This hit sate	the priority	of the CP2	interrunt	Jinioi.			
	0. CP2 interr	unt set to l	w priority l	avel				
	1: CP2 interr	upt set to h	iah priority	level.				
Bit5:	PCP1: Com	parator1 (C	P1) Interrup	ot Priority Co	ontrol.			
	This bit sets	the priority	of the CP1	interrupt.				
	0: CP1 interr	upt set to lo	ow priority l	evel.				
	1: CP1 interr	upt set to h	igh priority	level.				
Bit4:	PCP0: Comp	parator0 (C	P0) Interrup	ot Priority Co	ontrol.			
	This bit sets	the priority	of the CP0	interrupt.				
	0: CP0 interr	upt set to le	ow priority l	evel.				
D'10	1: CP0 interr	upt set to h	igh priority	level.			1	
Bit3:	PPCAU: Prog	grammable	Counter Ar	ray (PCA0)	Interrupt Pi	riority Cont	rol.	
	O: DCA0 into	the priority	low priority	U Interrupt.				
	1. PCA0 inte	rrunt set to	high priorit					
Bit2 [.]	PWADC0: A	DC0 Windc	w Compara	ator Interrun	t Priority Co	ontrol		
DILL.	This bit sets	the priority	of the ADC	0 Window i	nterrupt.			
	0: ADC0 Wir	ndow interru	upt set to lo	w priority le	vel.			
	1: ADC0 Wir	ndow interru	upt set to hi	gh priority le	evel.			
Bit1:	PSMB0: Sys	tem Manag	jement Bus	(SMBus0)	Interrupt Pri	iority Contr	ol.	
	This bit sets	the priority	of the SMB	us0 interrup	ot.			
	0: SMBus int	terrupt set t	o low priori	ty level.				
B 10	1: SMBus int	terrupt set t	o high prior	ity level.		0		
Bit0:	PSPI0: Seria	al Periphera	Interface ((SPI0) Inter	rupt Priority	Control.		
		the priority	or the SPI0	interrupt.				
	1. SPIU Inter	rupt set to I	ow priority	level.				
		i upi sei iu i	iigii priority					

Figure 13.23. EIP1: Extended Interrupt Priority 1

Rev. 1.2

eral's enable bits are not set to a logic 1, then its ports are not accessible at the Port pins of the device. Also note that the Crossbar assigns pins to all associated functions when the SMBus, UART0 or UART1 are selected (i.e. SMBus, SPI, UART). It would be impossible, for example, to assign TX0 to a Port pin without assigning RX0 as well. The SPI can operate in 3 or 4-wire mode (with or without NSS). Each combination of enabled peripherals results in a unique device pinout.

All Port pins on Ports 0 through 3 that are not allocated by the Crossbar can be accessed as General-Purpose I/O (GPIO) pins by reading and writing the associated Port Data registers (See Figure 18.9, Figure 18.11, Figure 18.14, and Figure 18.17), a set of SFRs which are both byte- and bit-addressable. The output states of Port pins that are allocated by the Crossbar are controlled by the digital peripheral that is mapped to those pins. Writes to the Port Data registers (or associated Port bits) will have no effect on the states of these pins.

A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regardless of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs during the execution of a *read-modify-write* instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC, CLR, SETB, and the bitwise MOV write operation). During the *read* cycle of the *read-modify-write* instruction, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.

Because the Crossbar registers affect the pinout of the peripherals of the device, they are typically configured in the initialization code of the system before the peripherals themselves are configured. Once configured, the Crossbar registers are typically left alone.

Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1. Until XBARE is set to a logic 1, the output drivers on Ports 0 through 3 are explicitly disabled in order to prevent possible contention on the Port pins while the Crossbar registers and other registers which can affect the device pinout are being written.

The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled; thus the values of the Port Data registers and the PnMDOUT registers have no effect on the states of these pins.

18.1.2. Configuring the Output Modes of the Port Pins

The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE (XBR2.4) to a logic 1.

The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and writing a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent contention between devices in systems where the Port pin participates in a shared interconnection in which multiple outputs are connected to the same physical wire (like the SDA signal on an SMBus connection).

The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated PnMDOUT registers (See Figure 18.10, Figure 18.13, Figure 18.16, and Figure 18.18). For example, a logic 1 in P3MDOUT.7 will configure the output mode of P3.7 to Push-Pull; a logic 0 in P3MDOUT.7 will configure the output mode of P3.7 to Open-Drain. All Port pins default to Open-Drain output.

Rev. 1.2

19. Controller Area Network (CAN0, C8051F060/1/2/3)

IMPORTANT DOCUMENTATION NOTE: The Bosch CAN Controller is integrated in the C8051F060/1/2/3 devices. This section of the data sheet gives a description of the CAN controller as an overview and offers a description of how the Silicon Labs CIP-51 MCU interfaces with the on-chip Bosch CAN controller. In order to use the CAN controller, please refer to Bosch's C_CAN User's Manual (revision 1.2) as an accompanying manual to Silicon Labs' C8051F060/1/2/3/4/5/6/7 Data sheet.

The C8051F060/1/2/3 family of devices feature a Control Area Network (CAN) controller that enables serial communication using the CAN protocol. Silicon Labs CAN controller facilitates communication on a CAN network in accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). The CAN controller consists of a CAN Core, Message RAM (separate from the CIP-51 RAM), a message handler state machine, and control registers. Silicon Labs CAN is a protocol controller and does not provide physical layer drivers (i.e., transceivers). Figure 19.2 shows an example typical configuration on a CAN bus.

Silicon Labs CAN operates at bit rates of up to 1 Mbit/second, though this can be limited by the physical layer chosen to transmit data on the CAN bus. The CAN processor has 32 Message Objects that can be configured to transmit or receive data. Incoming data, message objects and their identifier masks are stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is performed by the CAN controller and not by the CIP-51 MCU. In this way, minimal CPU bandwidth is needed to use CAN communication. The CIP-51 configures the CAN controller, accesses received data, and passes data for transmission via Special Function Registers (SFR) in the CIP-51. The CAN controller's clock (f_{svs}, or CAN_CLK in the C_CAN User's Guide) is equal to the CIP-51 MCU's clock (SYSCLK).

24.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/ timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

Figure 24.3. T0 Mode 3 Block Diagram

Figure 24.18. TMRnH: Timer 2, 3, and 4 High Byte

25.3. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of PCA0.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address	3: 0xD8
							SFR Page	»: O
D:47.		unter/Times						
BIt7:	CF: PCA CO	unter/Timer		-lag.	or overflowe	from OvEE		
	the Counter/	Timor Over	flow (CE) in		abled sett	ing this hit (TF 10 0X00	
	tor to the CF	interrunt s	arvice routir	ne This hit	is not auton	natically cle	ared by har	dware and
	must be clea	ared by soft	ware	10. 1110 Dit		natioally of		aware and
Bit6:	CR: PCA0 C	Counter/Tim	er Run Con	trol.				
	This bit enab	oles/disable	s the PCA0	Counter/Ti	mer.			
	0: PCA0 Cou	unter/Timer	disabled.					
	1: PCA0 Cou	unter/Timer	enabled.					
Bit5:	CCF5: PCA) Module 5	Capture/Co	mpare Flag] .			
	This bit is se	t by hardwa	are when a	match or ca	apture occui	rs. When th	e CCF inter	rrupt is
	enabled, set	ting this bit	causes the	CPU to ve	ctor to the C	CF interrup	ot service ro	outine. This
D:+ 4.	bit is not aut	omatically c	cleared by h	ardware ar	id must be o	cleared by s	software.	
BIt4:	CCF4: PCAU	J MOQUIE 4	Capture/Co	mpare Flag). Inturo occur	ra Whan th	o CCE into	rrunt in
	anabled set	ting this bit	courses the	CPLI to ver	apture occur	CE interrur	t service ro	Tupi is
	bit is not aut	omatically c	leared by h	ardware ar	nd must he a	cleared by s	software	
Bit3:	CCF3: PCA) Module 3	Capture/Co	mpare Flac	1. 1.	olearea by .	Sonward.	
2.101	This bit is se	t by hardwa	are when a	match or ca	apture occui	rs. When th	e CCF inter	rrupt is
	enabled, set	ting this bit	causes the	CPU to ve	tor to the C	CF interrup	ot service ro	utine. This
	bit is not aut	omatically c	leared by h	ardware ar	nd must be o	cleared by s	software.	
Bit2:	CCF2: PCA) Module 2	Capture/Co	mpare Flag] .			
	This bit is se	t by hardwa	are when a	match or ca	apture occui	rs. When th	e CCF inter	rrupt is
	enabled, set	ting this bit	causes the	CPU to ve	ctor to the C	CF interrup	ot service ro	outine. This
D:44	bit is not aut	omatically c	cleared by h	ardware ar	id must be o	cleared by s	software.	
Bit1:	CCF1: PCA	J MODULE 1	Capture/Co	mpare Flag). Inturo occur	ra Whan th		rrunt in
	anabled set	ting this bit	courses the		tor to the C	CE interrur	t service ro	Tupi is
	bit is not aut	omatically c	leared by h	ardware ar	nd must he a	cleared by s	software	
Bit0:	CCF0: PCA) Module 0	Capture/Co	mpare Flac	1. 1.	oloulou by t	sonwaro.	
	This bit is se	t by hardwa	are when a	match or ca	, apture occui	rs. When th	e CCF inter	rrupt is
	enabled, set	ting this bit	causes the	CPU to ver	ctor to the C	CF interrup	ot service ro	outine. This
	bit is not aut	omatically c	leared by h	ardware ar	nd must be o	cleared by	software.	

Figure 25.10. PCA0CN: PCA Control Register

