Silicon Labs - C8051F062 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	CANbus, EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f062

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	7.2 Programmable Window Datastar		07
	7.3. Flogrammable Window Detector	•••	97
	7.3.1. Window Detector In Single-Ended Mode	 1	99
Q	DACs 12-Bit Voltage Mode (DAC0 and DAC1 C8051E060/1/2/3)	1	00
0.	8.1 DAC Output Scheduling	1	03
	8.1.1 Update Output On-Demand	1	04
	8.1.2. Update Output Based on Timer Overflow	1	04
	8.2 DAC Output Scaling/Justification	1	04
٩	Voltage Reference 2 (C8051E060/2)	1	11
9. 10	Voltage Reference 2 (C8051F060/2)	. 1 1	11 12
11	Voltage Reference 2 (C8051F061/5) $\frac{1}{100}$	1	15
12	Comparators	1	17
12	12.1 Comparator Inputs	1	10
12	CIP-51 Microcontroller	1	23
15	13.1 Instruction Set	. 1	25
	13.1.1 Instruction and CPU Timing	1	25
	13.1.2 MOV/X Instruction and Program Memory	1	25
	13.2 Memory Organization	1	20
	13.2.1 Program Memory	1 1	30
	13.2.7.1 Togram Memory	1	31
	13.2.2. Data Merriory	1 1	31
	13.2.4 Rit Addressable Locations	1	31
	13 2 5 Stack	1	31
	13.2.6 Special Function Registers	1	32
	13 2 6 1 SFR Paging	1	32
	13 2 6 2 Interrupts and SFR Paging	1	32
	13 2 6 3 SER Page Stack Example	1	34
	13 2 7 Register Descriptions	1	48
	13.3 Interrunt Handler	1	51
	13.3.1 MCU Interrupt Sources and Vectors	1	51
	13.3.2. External Interrupts	1	51
	13.3.3. Interrupt Priorities	1	53
	13.3.4. Interrupt Latency	1	53
	13.3.5. Interrupt Register Descriptions	1	54
	13.4. Power Management Modes	1	60
	13.4.1.Idle Mode	. 1	60
	13.4.2.Stop Mode	. 1	61
14	.Reset Sources	. 1/	63
	14.1.Power-on Reset	1	64
	14.2.Power-fail Reset	1	64
	14.3.External Reset	. 1	64
	14.4.Missing Clock Detector Reset	1	65
	14.5.Comparator0 Reset	1	65
	14.6.External CNVSTR2 Pin Reset	1	65
	14.7.Watchdog Timer Reset	1	65

1.7. Serial Ports

The C8051F06x MCU Family includes two Enhanced Full-Duplex UARTs, an enhanced SPI Bus, and SMBus/I2C. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little intervention by the CPU. The serial buses do not "share" resources such as timers, interrupts, or Port I/O, so any or all of the serial buses may be used together with any other.

4. Pinout and Package Definitions

		Pin Nu	umbers			
Name	F060	F061	F064	F065	Туре	Description
	F062	F063	F066	F067		
VDD	37,64, 90	26,40, 55	37,64, 90	26,40, 55		Digital Supply Voltage. Must be tied to +2.7 to +3.6 V.
DGND	38,63, 89	27,39, 54	38,63, 89	27,39, 54		Digital Ground. Must be tied to Ground.
AV+	11, 16, 24	7, 10, 18	11, 16, 24	7, 10, 18		Analog Supply Voltage. Must be tied to +2.7 to +3.6 V.
AVDD	13	23	13	23		Analog Supply Voltage. Must be tied to +2.7 to +3.6 V.
AGND	10, 14, 17, 23	6, 11, 19, 22	10, 14, 17, 23	6, 11, 19, 22		Analog Ground. Must be tied to Ground.
TMS	96	52	96	52	D In	JTAG Test Mode Select with internal pull-up.
TCK	97	53	97	53	D In	JTAG Test Clock with internal pull-up.
TDI	98	56	98	56	D In	JTAG Test Data Input with internal pull-up. TDI is latched on the rising edge of TCK.
TDO	99	57	99	57	D Out	JTAG Test Data Output with internal pull-up. Data is shifted out on TDO on the falling edge of TCK. TDO output is a tri-state driver.
/RST	100	58	100	58	D I/O	Device Reset. Open-drain output of internal VDD monitor. Is driven low when VDD is <2.7 V and MONEN is high. An external source can initiate a system reset by driving this pin low.
XTAL1	26	20	26	20	A In	Crystal Input. This pin is the return for the internal oscillator circuit for a crystal or ceramic resonator. For a precision internal clock, connect a crystal or ceramic resonator from XTAL1 to XTAL2. If over- driven by an external CMOS clock, this becomes the system clock.
XTAL2	27	21	27	21	A Out	Crystal Output. This pin is the excitation driver for a crystal or ceramic resonator.
MONEN	28	63	28	63	D In	VDD Monitor Enable. When tied high, this pin enables the internal VDD monitor, which forces a system reset when VDD is < 2.7 V. When tied low, the internal VDD monitor is disabled. Recom- mended configuration is to connect directly to VDD.
VREF	4	61	4	61	A Out	Bandgap Voltage Reference Output
VREF0	21	15	21	15	A I/O	Bandgap Voltage Reference Output for ADC0. ADC0 Voltage Reference Input.

Table 4.1. Pin Definitions

Figure 4.3. TQFP-100 Package Drawing

Figure 5.2. 16-bit ADC0 and ADC1 Data Path Diagram

5.1. Single-Ended or Differential Operation

ADC0 and ADC1 can be programmed to operate independently as single-ended ADCs, or together to accept a differential input. In single-ended mode, the ADCs can be configured to sample simultaneously, or to use different conversion speeds. In differential mode, ADC1 is a slave to ADC0, and its configuration is based on ADC0 settings, except during offset or gain calibrations. The DIFFSEL bit in the Channel Select Register AMX0SL (Figure 5.6) selects between single-ended and differential mode.

5.1.1. Pseudo-Differential Inputs

The inputs to the ADCs are pseudo-differential. The actual voltage measured by each ADC is equal to the voltage between the AINn pin and the AINnG pin. AINnG must be a DC signal between -0.2 and 0.6 V. In most systems, AINnG will be connected to AGND. If not tied to AGND, the AINnG signal can be used to negate a limited amount of fixed offset, but it is recommended that the internal offset calibration features of the device be used for this purpose. When operating in differential mode, AIN0G and AIN1G should be tied together. AINn must remain above AINnG in both modes for accurate conversion results.

Figure 6.12. DMA0DSH: DMA0 Data Address Pointer MSB Register

7. 10-Bit ADC (ADC2, C8051F060/1/2/3)

The ADC2 subsystem for the C8051F060/1/2/3 consists of an analog multiplexer (referred to as AMUX2), and a 200 ksps, 10-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 7.1). The AMUX2, data conversion modes, and window detector can all be configured from within software via the Special Function Registers shown in Figure 7.1. ADC2 operates in both Single-ended and Differential modes, and may be configured to measure any of the pins on Port 1, or the Temperature Sensor output. The ADC2 subsystem is enabled only when the AD2EN bit in the ADC2 Control register (ADC2CN) is set to logic 1. The ADC2 subsystem is in low power shutdown when this bit is logic 0.

13.2.2. Data Memory

The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFRs) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing above 0x7F will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 13.2 illustrates the data memory organization of the CIP-51.

13.2.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of general-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in Figure 13.16). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

13.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (a bit source or destination operand as opposed to a byte source or destination).

The MCS-51[™] assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h

moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

13.2.5. Stack

A programmer's stack can be located anywhere in the 256 byte data memory. The stack area is designated using the Stack Pointer (SP, address 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07; therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

The MCUs also have built-in hardware for a stack record which is accessed by the debug logic. The stack record is a 32-bit shift register, where each PUSH or increment SP pushes one record bit onto the register,

On exit from the PCA interrupt service routine, the CIP-51 will return to the ADC2 Window Comparator ISR. On execution of the RETI instruction, SFR Page 0x00 used to access the PCA registers will be automatically popped off of the SFR Page Stack, and the contents of the SFRNEXT register will be moved to the SFRPAGE register. Software in the ADC2 ISR can continue to access SFRs as it did prior to the PCA interrupt. Likewise, the contents of SFRLAST are moved to the SFRNEXT register. Recall this was the SFR Page value 0x0F being used to access Port 5 before the ADC2 interrupt occurred. See Figure 13.7 below.

Figure 13.7. SFR Page Stack Upon Return From PCA Interrupt

On the execution of the RETI instruction in the ADC2 Window Comparator ISR, the value in SFRPAGE register is overwritten with the contents of SFRNEXT. The CIP-51 may now access the Port 5 SFR bits as it did prior to the interrupts occurring. See Figure 13.8 below.

Note that in the above example, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to the SFR Page stack can be useful to enable real-time operating systems to control and manage context switching between multiple tasks.

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFRPGCN). See Figure 13.9.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
PDMA0	PS1	PCAN0	PADC2	PWADC2	PT4	PADC1	PT3	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
							SFR Addres	s: 0xF7	
							SFR Pag	e: All Pages	
D:+7.			t Driarity Co	ontrol					
DIL7.	This bit sets the priority of the DMA0 interrupt.								
	1: DMA0 inte	errupt set to	high priorit	v.					
Bit6:	PS1: UART1	Interrupt F	riority Cont	rol.					
	This bit sets	the priority	of the UAR	T1 interrupt					
	0: UART1 int	terrupt set t	o low priori	ty.					
	1: UART1 in	terrupt set t	o high prior	ity.					
Bit5:	PCAN0: CAN	N Interrupt I	Priority Con	trol.					
	This bit sets	the priority	of the CAN	Interrupt.					
	0: CAN Inter	rupt set to I	ow priority l	evel.					
5.4	1: CAN Inter	rupt set to h	high priority	level.					
Bit4:	PADC2: ADC	C2 End Of (Interrupt Pr	ority Contr	Ol.			
		the priority	of the ADC	2 End of Co	nversion ir	nterrupt.			
	1: ADC2 End	d of Conver	sion interru	pt set to hig	h priority				
Bit3.		DC2 Windo	w Compara	pr ser to nig	t Priority C	ontrol			
Dito.	0. ADC2 Wir	ndow interru	int set to lo	w priority		ontroi.			
	1: ADC2 Wir	ndow interru	pt set to hi	ah priority.					
Bit2:	PT4: Timer 4	Interrupt F	riority Cont	rol.					
	This bit sets	the priority	of the Time	r 4 interrupt					
	0: Timer 4 in	terrupt set	o low priori	ty.					
	1: Timer 4 in	terrupt set t	o high prior	rity.					
Bit1:	PADC1: ADC	C End of Co	nversion In	terrupt Prio	rity Control				
	This bit sets	the priority	of the ADC	1 End of Co	nversion Ir	nterrupt.			
	0: ADC1 End	d of Conver	sion interru	pt set to low	priority lev	vel.			
D:+0.	1: ADC1 End	d of Conver	sion interru	pt set to hig	h priority le	evel.			
BITU:	This hit acts	the priority	of the Time	IOI.	•				
	0. Timer 3 in	torrunt cot		tv level	э.				
	1. Timer 3 in	terrupt set f	o high prior	ity level					

Figure 13.24. EIP2: Extended Interrupt Priority 2

.

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
									Variable
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
								SFR Address SFR Page	: 0x8B : F
E	Bits 7-0: (- i	OSCICL: Int This register Internal oscil nal oscillator	ernal Oscill calibrates llator base f frequency	ator Calibra the internal frequency. of 24.5 MH	tion Registe oscillator pe The reset va z.	er eriod. The re llue is facto	eset value fo ry calibrate	or OSCICL d to genera	defines the te an inter-

Figure 15.2. OSCICL: Internal Oscillator	r Calibration Register
--	------------------------

Figure 15.3.	OSCICN:	Internal	Oscillator	Control	Register
--------------	---------	----------	------------	---------	----------

R/W	R	R/W	R	R/W	R/W	R/W	R/W	Reset Value
IOSCEN	I IFRDY	-	-	-	-	IFCN1	IFCN0	11000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address	: 0x8A
							SFR Page	:: F
			. –					
Bit7:	IOSCEN: Int	ernal Oscill	ator Enable	: Bit				
	0: Internal O	scillator Dis	abled					
Dito	1: Internal O	scillator En	abled					
Bit6:	IFRDY: Inter	nal Oscillat	or Frequence	cy Ready FI	ag			
	0: Internal O	scillator not	running at	programme	arrequency	y.		
	1: Internal O	scillator run	ining at pro	grammed fr	equency.			
Bits5-2:	Reserved.							
Bits1-0:		ernal Oscilla	ator Freque	ncy Control				
		derived fro	m internal	Oscillator di	vided by 6.			
		derived fro	m Internal	Oscillator di	vided by 4.			
	10. STSCLK	derived fro	m Internal (Oscillator di	vided by 2.			
	11. 3130LK	derived no	minitemary	Jscillator ul	vided by 1.			

Rev. 1.2

17.4.2. Non-multiplexed Configuration

In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Nonmultiplexed Configuration is shown in Figure 17.4. See Section "17.6.1. Non-multiplexed Mode" on page 196 for more information about Non-multiplexed operation.

Figure 17.4. Non-multiplexed Configuration Example

17.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, / RD and /WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in Figure 17.6, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for /RD or /WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for /ALE + 1 for /RD or /WR + 4). The programmable setup and hold times default to the maximum delay settings after a reset.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
EAS1	EAS0	ERW3	EWR2	EWR1	EWR0	EAH1	EAH0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	:: 0xA1
							SFR Page	e: 0
Rite7-6.	EAS1-0. EM		Setup Time	Rite				
Dit37 0.	00: Address	setup time	= 0.SYSCI	K cycles				
	01: Address	setup time	= 1 SYSCL	K cycle.				
	10: Address	setup time	= 2 SYSCL	K cycles.				
	11: Address	setup time	= 3 SYSCL	K cýcles.				
Bits5-2:	EWR3-0: EN	/IF /WR an	d /RD Pulse	e-Width Cor	ntrol Bits.			
	0000: /WR a	nd /RD pul	se width = 1	SYSCLK	cycle.			
	0001: /WR a	nd /RD pul	se width = 2	2 SYSCLK (cycles.			
	0010: /WR a	nd /RD pul	se width = 3	B SYSCLK (cycles.			
	0011: /WR a	nd /RD put	se width = 4		ycles.			
	0100: /WR a	na /RD pui:	se width = 5		cycles.			
	0101./WR a	nd /RD puls	se width = 7		ycles.			
	0110.7WR a	nd /RD puik	se width – 8	SYSCIK	vcles.			
	1000: /WR a	nd /RD pul	se width = 9	SYSCLK (vcles.			
	1001: /WR a	nd /RD pul	se width = 1	0 SYSCLK	cycles.			
	1010: /WR a	nd /RD pul	se width = 1	1 SYSCLK	cycles.			
	1011: /WR a	nd /RD puls	se width = 1	2 SYSCLK	cycles.			
	1100: /WR a	nd /RD puls	se width = 1	3 SYSCLK	cycles.			
	1101: /WR a	nd /RD puls	se width = 1	4 SYSCLK	cycles.			
	1110: /WR a	nd /RD puls	se width = 1	5 SYSCLK	cycles.			
	1111: /WR ai	nd /RD puls	se width = 1	6 SYSCLK	cycles.			
Bits1-0:	EAH1-0: EM	IF Address	Hold Lime	Bits.				
	00: Address	hold time =	1 SYSCLA	Cycles.				
	10. Address	hold time -	2 SYSCI k	Coveles				
	11: Address	hold time =	3 SYSCI K	cvcles.				
			C C COEN	,				

Figure 17.6. EMI0TC: External Memory Timing Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	11111111		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable		
							SFR Address	: 0x80		
							SFR Page	: All Pages		
Bits7-0:	 Bits7-0: P0.[7:0]: Port0 Output Latch Bits. (Write - Output appears on I/O pins per XBR0, XBR1, XBR2, and XBR3 Registers) 0: Logic Low Output. 1: Logic High Output (open if corresponding P0MDOUT.n bit = 0). 									
	(Read - Regardless of XBRU, XBR1, XBR2, and XBR3 Register settings). 0: P0.n pin is logic low. 1: P0.n pin is logic high.									
	·									

Figure 18.9. P0: Port0 Data Register

Figure 18.10. POMDOUT: Port0 Output Mode Register

Parameter	Description	Min	Max	Units
Master Mode	Timing [†] (See Figure 21.12 and Figure 21.13)	·		
т _{мскн}	SCK High Time	1*T _{SYSCLK}		ns
T _{MCKL}	SCK Low Time	1*T _{SYSCLK}		ns
T _{MIS}	MISO Valid to SCK Shift Edge	1*Т _{SYSCLK} + 20		ns
т _{мін}	SCK Shift Edge to MISO Change	0		ns
Slave Mode 1	Fiming [†] (See Figure 21.14 and Figure 21.15)	·		
T _{SE}	NSS Falling to First SCK Edge	2*T _{SYSCLK}		ns
T _{SD}	Last SCK Edge to NSS Rising	2*T _{SYSCLK}		ns
T _{SEZ}	NSS Falling to MISO Valid		4*T _{SYSCLK}	ns
T _{SDZ}	NSS Rising to MISO High-Z		4*T _{SYSCLK}	ns
т _{скн}	SCK High Time	5*T _{SYSCLK}		ns
T _{CKL}	SCK Low Time	5*T _{SYSCLK}		ns
T _{SIS}	MOSI Valid to SCK Sample Edge	2*T _{SYSCLK}		ns
T _{SIH}	SCK Sample Edge to MOSI Change	2*T _{SYSCLK}		ns
т _{ѕон}	SCK Shift Edge to MISO Change		4*T _{SYSCLK}	ns
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6*T _{SYSCLK}	8*T _{SYSCLK}	ns
[†] T _{SYSCLK} is e	qual to one period of the device system clock (SYSC	LK).		

Table 21.1. SPI Slave Timing Parameters

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
SM00	SM10	SM20	REN0	TB80	RB80	TIO	RI0	0000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit		
							SFR Address	Addressable		
							SFR Page	0		
				Maalaa						
BIIS7-0	 SMUU-SM10: Serial Port Operation Mode: Write: 									
	When written, these bits select the Serial Port Operation Mode as follows:									
	SM00	SM10	Ma	M do Ou Surge	ode	lada				
	0	1	IVIO Mode 1: 9		Norioblo	Roud Poto				
	0	0	Mode 2							
	1	1	Mode 3: 0		Variable	Raud Rate				
		I			, vanabic					
	Reading th	ese bits ret	urns the cu	Irrent UAR	T0 mode a	as defined a	above.			
Bit5:	SM20: Mul	tiprocessor	Communio	cation Enal	ole.					
	The function	on of this bi	t is depend	ent on the	Serial Port	t Operation	Mode.			
	Mode 0: No	o effect.								
	Mode 1: Cl	hecks for va	alid stop bit	In the second of						
	0:	Logic level	of stop bit	s ignorea.	nit in Ingin	lovel 1				
	Mode 2 an	d 3. Multion	ocessor Co	mmunicat	ions Enabl					
	0:	Logic level	of ninth bit	is ianored.		0.				
	1:	RI0 is set a	nd an inter	rupt is gen	erated only	y when the	ninth bit is	ogic 1 and the		
	received a	ddress mat	ches the U	ART0 addr	ess or the	broadcast	address.	-		
Bit4:	REN0: Red	ceive Enabl	e.							
	This bit ena	ables/disab	les the UAI	RT0 receiv	er.					
	0: UARTO	reception d	isabled.							
Bit2.	TERRO Nint	h Transmis	napled.							
DIIJ.	The logic le	evel of this	bit will be a	ssigned to	the ninth t	ransmissio	n hit in Mod	es 2 and 3. It is		
	not used in	Modes 0 a	and 1. Set	or cleared	by softwa	re as requi	red.			
Bit2:	RB80: Nint	th Receive	Bit.		,	•				
	The bit is a	ssigned the	e logic leve	l of the nin	th bit recei	ved in Mod	es 2 and 3.	In Mode 1, if		
	SM20 is lo	gic 0, RB80) is assigne	d the logic	level of the	e received	stop bit. RB	8 is not used in		
D'IA	Mode 0.									
Bit1:	FIU: Transr	mit interrup	t Flag.	data haa h	oon tronon	aittad by LL	ADTO (offer	the 9th hit in		
	Mode 0 or	at the heat	inning of th	a ston hit i	other mo	Inneu by Ur Ides) When	the ΠΔRT	nie on bit in O interrunt is		
	enabled, se	etting this h	it causes th	ne CPU to	vector to the	he UART0	interrupt se	vice routine.		
	This bit mu	ist be clear	ed manuall	y by softwa	are.					
Bit0:	RI0: Receiv	ve Interrupt	Flag.							
	Set by hard	dware wher	n a byte of	data has b	een receiv	ed by UAR	T0 (as seled	cted by the		
	SM20 bit).	When the l	JART0 inte	rrupt is ena	bled, setti	ng this bit c	auses the C	PU to vector to		
	the UARTC	interrupt s	ervice routi	ne. This bi	t must be (cleared ma	nually by so	ontware.		

Figure 22.8. SCON0: UART0 Control Register

24.2.4. Toggle Output Mode

Timer 2, 3, and 4 have the capability to toggle the state of their respective output port pins (T2, T3, or T4) to produce a 50% duty cycle waveform output. The port pin state will change upon the overflow or underflow of the respective timer (depending on whether the timer is counting *up* or *down*). The toggle frequency is determined by the clock source of the timer and the values loaded into RCAPnH and RCAPnL. When counting DOWN, the auto-reload value for the timer is 0xFFFF, and underflow will occur when the value in the timer matches the value stored in RCAPnH:RCAPnL. When counting UP, the auto-reload value for the timer is RCAPnH:RCAPnL, and overflow will occur when the value in the timer transitions from 0xFFFF to the reload value.

To output a square wave, the timer is placed in reload mode (the Capture/Reload Select Bit in TMRnCN and the Timer/Counter Select Bit in TMRnCN are cleared to '0'). The timer output is enabled by setting the Timer Output Enable Bit in TMRnCF to '1'. The timer should be configured via the timer clock source and reload/underflow values such that the timer overflow/underflows at 1/2 the desired output frequency. The port pin assigned by the crossbar as the timer's output pin should be configured as a digital output (see Section "18. Port Input/Output" on page 203). Setting the timer's Run Bit (TRn) to '1' will start the toggle of the pin. A Read/Write of the Timer's Toggle Output State Bit (TMRnCF.2) is used to read the state of the toggle output, or to force a value of the output. This is useful when it is desired to start the toggle of a pin in a known state, or to force the pin into a desired state when the toggle mode is halted.

Equation 24.1. Toggle Mode Square Wave Frequency

$$F_{sq} = \frac{F_{TCLK}}{2 \cdot (65536 - RCAPn)}$$

D/M/	D ///				D/M			Pocot Valuo
PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SFR Address: PCA0CPM0: 0xDA, PCA0CPM1: 0xDB, PCA0CPM2: 0xDC, PCA0CPM3: 0xDD, PCA0CPM4: 0xDE, PCA0CPM5: 0xDF								
SFR Page: PCA0CPM0: page 0, PCA0CPM1: page 0, PCA0CPM2: page 0, PCA0CPM3: 0, PCA0CPM4: page 0, PCA0CPM5: page 0								
Bit7:	PWM16n: 16 This bit selec 0: 8-bit PWM 1: 16-bit PWI	bit Pulse W ts 16-bit mo selected. M selected.	Vidth Modu ode when F	lation Enabl Pulse Width	e. Modulation	mode is en	abled (PW	Mn = 1).
Bit6:	ECOMn: Cor This bit enab 0: Disabled. 1: Enabled.	nparator Fu les/disables	nction Ena the compa	ble. arator functio	on for PCA	0 module n.		
Bit5:	CAPPn: Cap This bit enab 0: Disabled. 1: Enabled.	ture Positive les/disables	Function the positive the positive the positive for the positive the positive the positive the positive the positive the positive the positive the positive the positive the positive	Enable. /e edge cap	ture for PC/	A0 module r	٦.	
Bit4:	CAPNn: Cap This bit enab 0: Disabled. 1: Enabled.	ture Negativ les/disables	ve Functior the negati	n Enable. ive edge cap	oture for PC	CA0 module	n.	
Bit3:	MATn: Match This bit enab the PCA0 con register to be 0: Disabled. 1: Enabled.	Function E les/disables unter with a set to logic	nable. the match module's c 1.	function for apture/com	PCA0 mod pare registe	lule n. Wher er cause the	n enabled, CCFn bit i	matches of n PCA0MD
Bit2:	TOGn: Toggl This bit enab the PCA0 co CEXn pin to Output Mode 0: Disabled. 1: Enabled.	e Function I les/disables unter with a toggle. If the	∃nable. a the toggle module's d ∌ PWMn bit	function for capture/com t is also set t	PCA0 mod pare registe to logic 1, th	lule n. Wher er cause the ne module o	n enabled, e logic leve perates in	matches of I on the Frequency
Bit1:	PWMn: Pulse This bit enab width modula 16-bit mode i Frequency O 0: Disabled. 1: Enabled	 Width Models les/disables ated signal is used if PV utput Models 	Julation Mc the PWM s output on WM16n log	ode Enable. function for a the CEXn p ic 1. If the T	PCA0 mod bin. 8-bit PV OGn bit is a	ule n. Wher VM is used also set, the	n enabled, if PWM16r module op	a pulse n is logic 0; perates in
Bit0:	ECCFn: Cap This bit sets 0: Disable Co 1: Enable a C	ture/Compa the masking CFn interrup Capture/Cor	re Flag Inte of the Cap ots. npare Flag	errupt Enabl oture/Compa interrupt red	e. are Flag (Co quest when	CFn) interru CCFn is se	pt. :t.	

Figure 25.12. PCA0CPMn: PCA0 Capture/Compare Mode Registers

