E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f064-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F060/1/2/3/4/5/6/7

	7.2 Programmable Window Datastar		07
	7.3. Flogrammable Window Detector	•••	97
	7.3.1. Window Detector In Single-Ended Mode	 1	99
Q	DACs 12-Bit Voltage Mode (DAC0 and DAC1 C8051E060/1/2/3)	1	00
0.	8.1 DAC Output Scheduling	1	03
	8.1.1 Update Output On-Demand	1	04
	8.1.2. Update Output Based on Timer Overflow	1	04
	8.2 DAC Output Scaling/Justification	1	04
٩	Voltage Reference 2 (C8051E060/2)	1	11
9. 10	Voltage Reference 2 (C8051F060/2)	. I 1	11 12
11	Voltage Reference 2 (C8051F061/5) $\frac{1}{100}$	1	15
12	Comparators	1	17
12	12.1 Comparator Inputs	1	10
12	CIP-51 Microcontroller	1	23
15	13.1 Instruction Set	. 1. 1	25
	13.1.1 Instruction and CPU Timing	1	25
	13.1.2 MOV/X Instruction and Program Memory	1	25
	13.2 Memory Organization	1	20
	13.2.1 Program Memory	1 [.]	30
	13.2.7.1 Togram Memory	1	31
	13.2.2. Data Merriory	1 [.]	31
	13.2.4 Rit Addressable Locations	1	31
	13 2 5 Stack	1	31
	13.2.6 Special Function Registers	1	32
	13 2 6 1 SFR Paging	1	32
	13 2 6 2 Interrupts and SFR Paging	1	32
	13 2 6 3 SER Page Stack Example	1	34
	13 2 7 Register Descriptions	1	48
	13.3 Interrunt Handler	1	51
	13.3.1 MCU Interrupt Sources and Vectors	1	51
	13.3.2. External Interrupts	1	51
	13.3.3. Interrupt Priorities	1	53
	13.3.4. Interrupt Latency	1	53
	13.3.5. Interrupt Register Descriptions	1	54
	13.4. Power Management Modes	1	60
	13.4.1.Idle Mode	. 1	60
	13.4.2.Stop Mode	. 1	61
14	.Reset Sources	. 1	63
	14.1.Power-on Reset	1	64
	14.2.Power-fail Reset	1	64
	14.3.External Reset	. 1	64
	14.4.Missing Clock Detector Reset	1	65
	14.5.Comparator0 Reset	1	65
	14.6.External CNVSTR2 Pin Reset	1	65
	14.7.Watchdog Timer Reset	1	65

Table 19.1.CAN Register Index and Reset Values	229
20. System Management BUS / I2C BUS (SMBUS0)	235
Table 20.1. SMB0STA Status Codes and States	248
21. Enhanced Serial Peripheral Interface (SPI0)	251
Table 21.1 SPI Slave Timing Parameters	264
22 IIARTO	265
Table 22.1 UARTO Modes	266
Table 22.2 Oscillator Frequencies for Standard Baud Rates	273
23 IIAPT1	275
Table 00.4 Times Oatting the Oten dend David Dates I lains the Internal Oasillater	
Table 23.1. Timer Settings for Standard Baud Rates Using the Internal Oscillator	284
Table 23.2.Timer Settings for Standard Baud Rates Using an External Oscillator	284
Table 23.3. Timer Settings for Standard Baud Rates Using an External Oscillator	285
Table 23.4.Timer Settings for Standard Baud Rates Using an External Oscillator	285
Table 23.5. Timer Settings for Standard Baud Rates Using an External Oscillator	286
Table 23.6. Timer Settings for Standard Baud Rates Using an External Oscillator	286
24. Timers	287
25 Programmable Counter Array	303
Table 05 4 DOA Timebase larget Options	303
Table 25.1.PCA Timebase input Options	304
Table 25.2.PCA0CPM Register Settings for PCA Capture/Compare Modules	305
26. JTAG (IEEE 1149.1)	317
Table 26.1. Boundary Data Register Bit Definitions (C8051F060/2/4/6)	318
Table 26.2 Boundary Data Register Bit Definitions (C8051E061/3/5/7)	320
27 Desument Change List	2020
27. Document Gnange List	521

		Pin Nu	Imbers			
Name	F060	F061	F064	F065	Туре	Description
	F062	F063	F066	F067		
P5.2/A10	86		86		D I/O	Port 5.2. See Port Input/Output section for complete description.
P5.3/A11	85		85		D I/O	Port 5.3. See Port Input/Output section for complete description.
P5.4/A12	84		84		D I/O	Port 5.4. See Port Input/Output section for complete description.
P5.5/A13	83		83		D I/O	Port 5.5. See Port Input/Output section for complete description.
P5.6/A14	82		82		D I/O	Port 5.6. See Port Input/Output section for complete description.
P5.7/A15	81		81		D I/O	Port 5.7. See Port Input/Output section for complete description.
P6.0/A8m/ A0	80		80		D I/O	Port 6.0. See Port Input/Output section for complete description. Bit 8 External Memory Address Bus (Multiplexed mode). Bit 0 External Memory Address Bus (Non-multi- plexed mode).
P6.1/A9m/ A1	79		79		D I/O	Port 6.1. See Port Input/Output section for complete description.
P6.2/A10m/ A2	78		78		D I/O	Port 6.2. See Port Input/Output section for complete description.
P6.3/A11m/ A3	77		77		D I/O	Port 6.3. See Port Input/Output section for complete description.
P6.4/A12m/ A4	76		76		D I/O	Port 6.4. See Port Input/Output section for complete description.
P6.5/A13m/ A5	75		75		D I/O	Port 6.5. See Port Input/Output section for complete description.
P6.6/A14m/ A6	74		74		D I/O	Port 6.6. See Port Input/Output section for complete description.
P6.7/A15m/ A7	73		73		D I/O	Port 6.7. See Port Input/Output section for complete description.
P7.0/AD0m/ D0	72		72		D I/O	Port 7.0. See Port Input/Output section for complete description. Bit 0 External Memory Address/Data Bus (Multi- plexed mode). Bit 0 External Memory Data Bus (Non-multiplexed mode).
P7.1/AD1m/ D1	71		71		D I/O	Port 7.1. See Port Input/Output section for complete description.

Table 4.1. Pin Definitions (Continued)

6.2. DMA0 Instruction Format

DMA instructions can request single-ended data from both ADC0 and ADC1, as well as the differential combination of the two ADC inputs. The instruction format is identical to the DMA0IDT register, shown in Figure 6.7. Depending on which bits are set to '1' in the instruction word, either 2 or 4 bytes of data will be written to XRAM for each DMA instruction cycle (excluding End-Of-Operation instructions). Table 6.1 details all of the valid DMA instructions. Instructions not listed in the table are not valid DMA instructions, and should not be used. Note that the ADCs can be independently controlled by the microcontroller when their outputs are not requested by the DMA.

Instruction Word	Description	First Data Written to XRAM (2 bytes)	Second Data Written to XRAM (2 bytes)
0000000b	End-Of-Operation	none	none
1000000b	End-Of-Operation with Continuous Conversion	none	none
x0010000b	Retrieve ADC0 Data	ADC0H:ADC0L	none
x0100000b	Retrieve ADC1 Data	ADC1H:ADC1L	none
x0110000b	Retrieve ADC0 and ADC1 Data	ADC0H:ADC0L	ADC1H:ADC1L
x10x0000b	Retrieve Differential Data	ADC0H:ADC0L (differential result from both ADCs)	none
x11x0000b	Retrieve Differential and ADC1 Data	ADC0H:ADC0L (differential result from both ADCs)	ADC1H:ADC1L

6.3. XRAM Addressing and Setup

The DMA Interface can be configured to access either on-chip or off-chip XRAM. Any writes to on-chip XRAM by the DMA Control Logic occur when the processor core is not accessing the on-chip XRAM. This ensures that the DMA will not interfere with processor instruction timing.

Off-chip XRAM access (only available on the C8051F060/2/4/6) is controlled by the DMA0HLT bit in DMA0CF (DMA Configuration Register, Figure 6.5). The DMA will have full access to off-chip XRAM when this bit is '0', and the processor core will have full access to off-chip XRAM when this bit is '1'. The DMA0HLT bit should be controlled in software when both the processor core and the DMA Interface require access to off-chip XRAM data space. Before setting DMA0HLT to '1', the software should check the DMA0XBY bit to ensure that the DMA is not currently accessing off-chip XRAM. The processor core cannot access off-chip XRAM while DMA0HLT is '0'. The processor will continue as though it was able to perform the desired memory access, but the data will not be written to or read from off-chip XRAM. When the processor core is finished accessing off-chip XRAM, DMA0HLT should be set back to '0'in software to return control to the DMA Interface. The DMA Control Logic will wait until DMA0HLT is '0' before writing data to off-chip XRAM. If new data becomes available to the DMA Interface before the previous data has been written, an overflow condition will occur, and the new data word may be lost.

The Data Address Pointer Registers (DMA0DSH and DMA0DSL) contain the 16-bit XRAM address location where the DMA interface will write data. When the DMA is initially enabled, the DMA Data Address

Pointer Registers are initialized to the values contained in the DMA Data Address Beginning Registers (DMA0DAH and DMA0DAL). The Data Address Pointer Registers are automatically incremented by 2 or 4 after each data write by the DMA interface.

6.4. Instruction Execution in Mode 0

0x03

0x02

0x01

DMA0BND → 0x00

0000000

00110000

00010000

When the DMA interface begins an operation cycle, the DMA Instruction Status Register (DMA0ISW, Figure 6.9) is loaded with the address contained in the DMA Instruction Boundary Register (DMA0BND, Figure 6.8). The instruction is fetched from the Instruction Buffer, and the DMA Control Logic waits for data from the appropriate ADC(s). The DMA will execute each instruction once, and then increment DMA0ISW to the next instruction address. When the current DMA instruction is an End of Operation instruction, the Instruction Status Register is reset to the Instruction Boundary Register. If the Continuous Conversion bit (bit 7, CCNV) in the End of Operation instruction word is set to '1', the Repeat Counter is ignored, and the DMA will continue to execute instructions indefinitely. When CCNV is set to '0', the Repeat Counter (registers DMA0CSH and DMA0CSL) is decremented, and the DMA will continue to execute instructions until the Repeat Counter reaches 0x0000. The Repeat Counter is initialized with the Repeat Counter Limit value (registers DMA0CTH and DMA0CTL) at the beginning of the DMA operation. An example of Mode 0 operation is shown in Figure 6.2.

ADC0L

ADC0H

ADC0L ADC0H DMA0CSH:L = DMA0CTH:L

Figure 7.8. ADC2H: ADC2 Data Word MSB Register

Figure 7.9. ADC2L: ADC2 Data Word LSB Register

7.3.1. Window Detector In Single-Ended Mode

Figure 7.15 shows two example window comparisons for right-justified, single-ended data, with ADC2LTH:ADC2LTL = 0x0080 (128d) and ADC2GTH:ADC2GTL = 0x0040 (64d). In single-ended mode, the input voltage can range from '0' to VREF * (1023/1024) with respect to AGND, and is represented by a 10-bit unsigned integer value. In the left example, an AD2WINT interrupt will be generated if the ADC2 conversion word (ADC2H:ADC2L) is within the range defined by ADC2GTH:ADC2GTL and ADC2LTH:ADC2LTL (if 0x0040 < ADC2H:ADC2L < 0x0080). In the right example, and AD2WINT interrupt will be generated if the ADC2 conversion word is outside of the range defined by the ADC2GT and ADC2LT registers (if ADC2H:ADC2L < 0x0040 or ADC2H:ADC2L > 0x0080). Figure 7.16 shows an example using left-justified data with the same comparison values.

Figure 7.15. ADC Window Compare Example: Right-Justified Single-Ended Data

Figure 7.16. ADC Window Compare Example: Left-Justified Single-Ended Data

10. Voltage Reference 2 (C8051F061/3)

The internal voltage reference circuit consists of a 1.2 V, temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The internal reference may be routed via the VREF pin to external system components or to the VREF2 input pin shown in Figure 10.1. The maximum load seen by the VREF pin must be less than 200 μ A to AGND. Bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to AGND, as shown in Figure 10.1.

The VREF2 pin provides a voltage reference input for ADC2 and the DACs. ADC2 may also reference the analog power supply voltage, via the VREF multiplexers shown in Figure 10.1.

The Reference Control Register 2, REF2CN (defined in Figure 10.2) enables/disables the internal reference generator and selects the reference input for ADC2. The BIASE bit in REF2CN enables the on-board reference generator while the REFBE bit enables the gain-of-two buffer amplifier which drives the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1 μ A (typical) and the output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the reference voltage generator, BIASE and REFBE must both be set to logic 1. If the internal reference is not used, REFBE may be set to logic 0. Note that the BIASE bit must be set to logic 1 if ADC2 or either DAC is used, regardless of the voltage reference used. If neither ADC2 nor the DACs are being used, both of these bits can be set to logic 0 to conserve power. Bit AD2VRS selects between VREF2 and AV+ for the ADC2 voltage reference source. The electrical specifications for the Voltage Reference are given in Table 10.1.

C8051F060/1/2/3/4/5/6/7

R/W ACC.7	R/W ACC.6	R/W ACC.5	R/W ACC.4	R/W ACC.3	R/W ACC.2	R/W ACC.1	R/W ACC.0	Reset Value 0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
							SFR Address SFR Page	s: 0xE0 9: All Pages			
Bits7-0: ACC: Accumulator. This register is the accumulator for arithmetic operations.											

Figure 13.17. ACC: Accumulator

R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
B.6	B.5	B.4	B.3	B.2	B.1	B.0	00000000				
Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable				
						SFR Address SFR Page	s: 0xF0 e: All Pages				
B: B Register. This register serves as a second accumulator for certain arithmetic operations.											
	R/W B.6 Bit6 B: B Registe This register	R/WR/WB.6B.5Bit6Bit5B: B Register.This register serves as	R/WR/WR/WB.6B.5B.4Bit6Bit5Bit4B: B Register.This register serves as a second additional second	R/WR/WR/WB.6B.5B.4B.3Bit6Bit5Bit4Bit3B: B Register.This register serves as a second accumulator to the second accumulator to th	R/WR/WR/WR/WB.6B.5B.4B.3B.2Bit6Bit5Bit4Bit3Bit2B: B Register.This register serves as a second accumulator for certain a	R/W R/W R/W R/W R/W B.6 B.5 B.4 B.3 B.2 B.1 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 B: B Register. This register serves as a second accumulator for certain arithmetic of	R/W R/W R/W R/W R/W R/W B.6 B.5 B.4 B.3 B.2 B.1 B.0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address SFR Page B: B Register. This register serves as a second accumulator for certain arithmetic operations.				

Figure 13.18. B: B Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
PDMA0	PS1	PCAN0	PADC2	PWADC2	PT4	PADC1	PT3	00000000					
Bit7	7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0												
	SFR Address: 0xF7												
	SFR Page: All Pa												
D:+7.	PDMA0: DMA0 Interrupt Priority Control												
DIL7.	PDIVIAU: DIVIAU INTERPUT PRIORITY CONTROL.												
	0: DMA0 interrupt set to low priority												
	1: DMA0 inte	errupt set to	high priorit	v.									
Bit6:	PS1: UART1	Interrupt F	riority Cont	rol.									
	This bit sets	the priority	of the UAR	T1 interrupt									
	0: UART1 int	terrupt set t	o low priori	ty.									
	1: UART1 in	terrupt set t	o high prior	ity.									
Bit5:	PCAN0: CAN	N Interrupt I	Priority Con	trol.									
	This bit sets	the priority	of the CAN	Interrupt.									
	0: CAN Inter	rupt set to I	ow priority l	evel.									
5.4	1: CAN Inter	rupt set to h	high priority	level.									
Bit4:	PADC2: ADC	C2 End Of (Interrupt Pr	ority Contr	Ol.							
		the priority	of the ADC	2 End of Co	nversion ir	nterrupt.							
	1: ADC2 End	d of Conver	sion interru	pt set to hig	h priority								
Bit3.		DC2 Windo	w Compara	pr ser to nig	t Priority C	ontrol							
Dito.	0. ADC2 Wir	ndow interru	int set to lo	w priority		ontroi.							
	1: ADC2 Wir	ndow interru	pt set to hi	ah priority.									
Bit2:	PT4: Timer 4	Interrupt F	riority Cont	rol.									
	This bit sets	the priority	of the Time	r 4 interrupt									
	0: Timer 4 in	terrupt set	o low priori	ty.									
	1: Timer 4 in	terrupt set t	o high prior	rity.									
Bit1:	PADC1: ADC	C End of Co	nversion In	terrupt Prio	rity Control								
	This bit sets	the priority	of the ADC	1 End of Co	nversion Ir	nterrupt.							
	0: ADC1 End	d of Conver	sion interru	pt set to low	priority lev	vel.							
D:+0.	1: ADC1 End	d of Conver	sion interru	pt set to hig	h priority le	evel.							
BITU:	This hit acts	the priority	of the Time	IOI.	•								
	0. Timer 3 in	torrunt cot		tv level	э.								
	1. Timer 3 in	terrupt set f	o high prior	ity level									

Figure 13.24. EIP2: Extended Interrupt Priority 2

162

reset until at least 12 clock cycles after the active-low /RST signal is removed. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

14.4. Missing Clock Detector Reset

The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If the system clock goes away for more than 100 µs, the one-shot will time out and generate a reset. After a Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MSD as the reset source; otherwise, this bit reads '0'. The state of the /RST pin is unaffected by this reset. Setting the MCDRSF bit, RSTSRC.2 (see Section "15. Oscillators" on page 171) enables the Missing Clock Detector.

14.5. Comparator0 Reset

Comparator0 can be configured as a reset input by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled using CPT0CN.7 (see Section "12. Comparators" on page 117) prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (CP0+ pin) is less than the inverting input voltage (CP0- pin), the MCU is put into the reset state. After a Comparator0 Reset, the CORSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the /RST pin is unaffected by this reset.

14.6. External CNVSTR2 Pin Reset

The external CNVSTR2 signal can be configured as a reset input by writing a '1' to the CNVRSEF flag (RSTSRC.6). The CNVSTR2 signal can appear on any of the P0, P1, P2 or P3 I/O pins as described in Section "18.1. Ports 0 through 3 and the Priority Crossbar Decoder" on page 205. Note that the Crossbar must be configured for the CNVSTR2 signal to be routed to the appropriate Port I/O. The Crossbar should be configured and enabled before the CNVRSEF is set. CNVSTR2 cannot be used to start ADC2 conversions when it is configured as a reset source. When configured as a reset, CNVSTR2 is active-low and level sensitive. After a CNVSTR2 reset, the CNVRSEF flag (RSTSRC.6) will read '1' signifying CNVSTR2 as the reset source; otherwise, this bit reads '0'. The state of the /RST pin is unaffected by this reset.

14.7. Watchdog Timer Reset

The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. A WDT overflow will force the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system from running out of control.

Following a reset the WDT is automatically enabled and running with the default maximum time interval. If desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the /RST pin is unaffected by this reset.

The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the period between specific writes to its control register. If this period exceeds the programmed limit, a WDT reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN) shown in Figure 14.3.

For a 3 MHz system clock, this provides an interval range of 0.021 ms to 349.5 ms. WDTCN.7 must be logic 0 when setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] reads 111b after a system reset.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
								xxxxx111						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_						
							SFR Address SFR Page	: 0xFF : All Pages						
Bits7-0:	WDT Contro	I.												
	Writing 0xA5 both enables and reloads the WDT.													
	Writing 0xDE followed within 4 system clocks by 0xAD disables the WDT.													
	Writing 0xFF	locks out t	he disable f	eature.										
Bit4:	Watchdog St	tatus Bit (w	hen Read).											
	Reading the	WDTCN.[4] bit indicate	es the Watc	hdog Timer	Status.								
	0: WDT is in	active.	-		Ũ									
	1: WDT is ac	ctive.												
Bits2-0:	Watchdog Ti	meout Inter	val Bits.											
	The WDTCN	I.[2:0] bits s	et the Watc	hdog Time	out Interval.	When writi	ng these bit	ts,						
	WDTCN.7 m	iust be set t	to 0.											

Figure 14.3. WDTCN: Watchdog Timer Control Register

R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value
-	CNVRSEF	CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address SFR Page	: 0xEF : 0
Bit7:	Reserved.							
Bit6:	CNVRSEF: C	Convert Star	t Reset Sou	rce Enable a	and Flag			
	Write: 0: C	NVSTR2 is	not a reset s	source.				
	1: C	NVSTR2 is	a reset sour	ce (active lo	w).			
	Read: 0: So	ource of pric	or reset was	not CNVSII	₹2.			
DUC		ource of pric	or reset was	CNVSTR2.				
BIt5:	CURSEF: CO	mparatoru F	Reset Enable	e and Flag.				
	vvrite: 0: Co	omparatoru	is not a rese	et source.	1			
	Pood: 0: S	omparatoro	is a reset so	ource (active	IOW).			
	1. S		rosot was f	Comparator				
Bit4.	SWRSE Sof	tware Reset	Force and I	Flan				
DII4.	Write: 0. N	o effect	I OICE and I	lag.				
	1' Fo	orces an inte	ernal reset /	RST pin is r	ot effected			
	Read: 0: So	ource of last	reset was r	not a write to	the SWRSF	bit.		
	1: Se	ource of last	reset was a	write to the	SWRSF bit.			
Bit3:	WDTRSF: W	atchdog Tin	ner Reset Fla	ag.				
	0: Se	ource of last	reset was r	not WDT time	eout.			
	1: Se	ource of last	t reset was V	VDT timeout	t.			
Bit2:	MCDRSF: M	issing Clock	Detector Fl	ag.				
	Write: 0: M	issing Clock	Detector di	sabled.				
	1: M	issing Clock	Detector er	habled; trigg	ers a reset if	a missing	clock conditi	on is
	de	etected.						
	Read: 0: So	ource of last	reset was r	not a Missing	Clock Dete	ctor timeou	t.	
D:44	1:50	ource of last	reset was a	a missing Cid	OCK Detector	timeout.		
BITT	PURSF: POW	ver-On Rese	et Flag.	a anablad (b			to o logio hi	ab atata)
	this bit can be	e written to	concurry i	s enableu (L	DD monitor	/IUNEN PIII	to a logic ni	gn state),
		e-select the	VDD monite	r as a reset			source.	
	0. D 1. Se	elect the VD	D monitor a	s a reset so				
	Important: A	t power-on	the VDD n	nonitor is e	nabled/disa	bled using	the externa	
	monitor ena	ble pin (MC	NEN). The	PORSF bit	does not di	sable or er	able the VD	D monitor
	circuit. It sin	nply selects	s the VDD n	nonitor as a	reset sour	ce.		
	Read: This	bit is set wh	nenever a po	ower-on rese	et occurs. Th	is may be o	due to a true	power-on
	reset or a VD	D monitor r	eset. In eithe	er case, data	a memory sh	ould be coi	nsidered inde	eterminate
	following the	reset.			-			
	0: Se	ource of last	t reset was r	not a power-	on or VDD m	nonitor rese	et.	
	1: Se	ource of last	reset was a	a power-on c	or VDD moni	tor reset.		
	Note: When	this flag is	read as '1',	all other re	set flags are	e indeterm	inate.	
Bit0:	PINRSF: HW	Pin Reset	Flag.					
	Write: 0: No	o effect.	• -					
	1: Fo	orces a Pow	er-On Rese	t. /RST is dr	iven low.			
	Read: 0: So	ource of pric	or reset was	not /RST pir	٦.			
	1: Se	ource of pric	or reset was	/RST pin.				

Figure 14.4. RSTSRC: Reset Source Register

17.6. Timing

The timing parameters of the External Memory Interface can be configured to enable connection to devices having different setup and hold time requirements. The Address Setup time, Address Hold time, / RD and /WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of SYSCLK periods through EMI0TC, shown in Figure 17.6, and EMI0CF[1:0].

The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for /RD or /WR pulse + 4 SYSCLKs). For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYSCLK cycles. Therefore, the minimum execution time for an off-chip XRAM operation in multiplexed mode is 7 SYSCLK cycles (2 for /ALE + 1 for /RD or /WR + 4). The programmable setup and hold times default to the maximum delay settings after a reset.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
EAS1	EAS0	ERW3	EWR2	EWR1	EWR0	EAH1	EAH0	11111111					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
	SFR Address: 0xA1												
							SFR Page	e: 0					
Rite7-6.	EAS1-0. EM		Setup Time	Rite									
Dit37 0.	00: Address setup time = 0 SYSCLK cvcles.												
	01: Address setup time = 0.5130 LK cycles.												
	10: Address	setup time	= 2 SYSCL	K cycles.									
	11: Address	setup time	= 3 SYSCL	K cýcles.									
Bits5-2:	EWR3-0: EN	/IF /WR an	d /RD Pulse	e-Width Cor	ntrol Bits.								
	0000: /WR a	nd /RD pul	se width = 1	SYSCLK	cycle.								
	0001: /WR a	nd /RD pul	se width = 2	2 SYSCLK (cycles.								
	0010: /WR a	nd /RD pul	se width = 3	B SYSCLK (cycles.								
	0011: /WR a	nd /RD put	se width = 4		ycles.								
	0100: /WR a	na /RD pui:	se width = 5		cycles.								
	0101./WR a	nd /RD puis	se width = 7		ycles.								
	0110.7WR a	nd /RD puik	se width – 8	SYSCIK	vcles.								
	1000: /WR a	nd /RD pul	se width = 9	SYSCLK (vcles.								
	1001: /WR a	nd /RD pul	se width = 1	0 SYSCLK	cycles.								
	1010: /WR a	nd /RD pul	se width = 1	1 SYSCLK	cycles.								
	1011: /WR a	nd /RD puls	se width = 1	2 SYSCLK	cycles.								
	1100: /WR a	nd /RD puls	se width = 1	3 SYSCLK	cycles.								
	1101: /WR a	nd /RD puls	se width = 1	4 SYSCLK	cycles.								
	1110: /WR a	nd /RD puls	se width = 1	5 SYSCLK	cycles.								
	1111: /WR ai	nd /RD puls	se width = 1	6 SYSCLK	cycles.								
Bits1-0:	EAH1-0: EM	IF Address	Hold Lime	Bits.									
	00: Address	hold time =	1 SYSCLA	Cycles.									
	10. Address	hold time -	2 SYSCI k	Coveles									
	11: Address	hold time =	3 SYSCI K	cvcles.									
			C C COEN	,									

Figure 17.6. EMI0TC: External Memory Timing Control

RW	R/M	R/M	RW	RW	R/W	R/\/	R/\/	Reset Value		
P6.7	P6.6	P6.5	P6.4	P6.3	P6.2	P6.1	P6.0			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable		
							SFR Address SFR Page	s: 0xE8 e: F		
Bits7-0:	 P6.[7:0]: Port6 Output Latch Bits. Write - Output appears on I/O pins. 0: Logic Low Output. 1: Logic High Output (open, if corresponding P6MDOUT bit = 0). See Figure 18.24. Read - Returns states of I/O pins. 0: P6.n pin is logic low. 1: P6.n pin is logic high. 									
Note:	P6.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Multi- plexed mode, or as Address[7:0] in Non-multiplexed mode). See Section "17. External Data Memory Interface and On-Chip XRAM" on page 187 for more information about the External Memory Interface.									

Figure 18.23. P6: Port6 Data Register

Figure 18.24. P6MDOUT: Port6 Output Mode Register

20.3. SMBus Transfer Modes

The SMBus0 interface may be configured to operate as a master and/or a slave. At any particular time, the interface will be operating in one of the following modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. See Table 20.1 for transfer mode status decoding using the SMB0STA status register. The following mode descriptions illustrate an interrupt-driven SMBus0 application; SMBus0 may alternatively be operated in polled mode.

20.3.1. Master Transmitter Mode

Serial data is transmitted on SDA while the serial clock is output on SCL. SMBus0 generates a START condition and then transmits the first byte containing the address of the target slave device and the data direction bit. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. The SMBus0 interface transmits one or more bytes of serial data, waiting for an acknowledge (ACK) from the slave after each byte. To indicate the end of the serial transfer, SMBus0 generates a STOP condition.

Figure 20.4. Typical Master Transmitter Sequence

20.3.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus0 interface generates a START followed by the first data byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 interface receives serial data from the slave and generates the clock on SCL. After each byte is received, SMBus0 generates an ACK or NACK depending on the state of the AA bit in register SMB0CN. SMBus0 generates a STOP condition to indicate the end of the serial transfer.

238

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
FE0	RXOV0	TXCOL0	SMOD0	S0TCLK1	S0TCLK0	S0RCLK1	S0RCLK0	0000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_		
	SFR Address: 0x91									
	SFR Page: 0									
D:/-7										
Bit/:	FE0: Frame Error Flag. ^T									
	I his flag indicates if an invalid (IOW) STOP bit is detected.									
	1: Frame Error has been detected.									
Bit6.	RXOV0: Receive Overrun Flag ^{\dagger}									
Dito.	RADVU. RECEIVE OVERTURI Flag.' This flag indicates new data has been latched into the receive buffer before software has									
	read the previous byte.									
	0: Receive overrun has not been detected.									
	1: Receive Overrun has been detected.									
Bit5:	TXCOL0: T	ransmit Col	lision Flag	g.†						
	This flag ind	dicates user	software	has writter	to the SB	UF0 registe	r while a tra	ansmission is in		
	progress.									
	0: Transmis	sion Collisi	on has no	ot been dete	ected.					
Bit/			Pate Do	en detecte	a. o					
DIL4.	This bit ena	hles/disable	es the div	ide-bv-two	e. function of	the UART() baud rate	logic for config-		
	urations de	scribed in th	ne UART() section.			bada lato	legie ier eenig		
	0: UART0 b	baud rate div	vide-by-tv	vo enabled.						
	1: UART0 b	baud rate div	vide-by-tv	vo disabled						
Bits3-2:	2: UART0 Transmit Baud Rate Clock Selection Bits.									
	S0TCLK1 S0TCLK0 Serial Transmit Baud Rate Clock Source									
	0 0 Timer 1 generates UART0 TX Baud Rate									
	0 1 Timer 2 Overflow generates UART0 TX baud rate									
	1 0 Timer 3 Overflow generates UART0 TX baud rate 1 1 Timer 4 Overflow generates UART0 TX baud rate									
Bits1-0:	ts1-0: UART0 Receive Baud Rate Clock Selection Bits.									
	S0RCLK1 S0RCLK0 Serial Receive Baud Rate Clock Source									
	0 0 Timer 1 generates UART0 RX Baud Rate									
	0 1 Timer 2 Overflow generates UART0 RX baud rate									
	1 0 Timer 3 Overflow generates UART0 RX baud rate									
	1 1 Timer 4 Overflow generates UART0 RX baud rate									
[†] Note: FE0, RXOV0, and TXCOL0 are flags only, and no interrupt is generated by these conditions.										

Figure 22.9. SSTA0: UART0 Status and Clock Selection Register

C8051F060/1/2/3/4/5/6/7

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
								00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_	
							SFR Address SFR Page	s: 0x99 9: 0	
Bits7-0:	SBUF0.[7:0]: UART0 Buffer Bits 7-0 (MSB-LSB). This is actually two registers; a transmit and a receive buffer register. When data is moved to SBUF0, it goes to the transmit buffer and is held for serial transmission. Moving a byte to SBUF0 is what initiates the transmission. When data is moved from SBUF0, it comes from the receive buffer.								

Figure 22.10. SBUF0: UART0 Data Buffer Register

Figure 22.11. SADDR0: UART0 Slave Address Register

24.2.2. Capture Mode

In Capture Mode, Timer 2, 3, and 4 will operate as a 16-bit counter/timer with capture facility. When the Timer External Enable bit (found in the TMRnCN register) is set to '1', a high-to-low transition on the TnEX input pin causes the 16-bit value in the associated timer (THn, TLn) to be loaded into the capture registers (RCAPnH, RCAPnL). If a capture is triggered in the counter/timer, the Timer External Flag (TMRnCN.6) will be set to '1' and an interrupt will occur if the interrupt is enabled. See Section "13.3. Interrupt Handler" on page 151 for further information concerning the configuration of interrupt sources.

As the 16-bit timer register increments and overflows TMRnH:TMRnL, the TFn Timer Overflow/Underflow Flag (TMRnCN.7) is set to '1' and an interrupt will occur if the interrupt is enabled. The timer can be configured to count down by setting the Decrement Enable Bit (TMRnCF.0) to '1'. This will cause the timer to decrement with every timer clock/count event and underflow when the timer transitions from 0x0000 to 0xFFFF. Just as in overflows, the Overflow/Underflow Flag (TFn) will be set to '1', and an interrupt will occur if enabled.

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RLn (TMRnCN.0) and the Timer 2, 3, and 4 Run Control bit TRn (TnCON.2) to logic 1. The Timer 2, 3, and 4 respective External Enable EXENn (TnCON.3) must also be set to logic 1 to enable a captures. If EXENn is cleared, transitions on TnEX will be ignored.

Figure 24.11. T2, 3, and 4 Capture Mode Block Diagram

