E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	59
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f064r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 18.5. XBR0: Port I/O Crossbar Register 0	210
Figure 18.6. XBR1: Port I/O Crossbar Register 1	211
Figure 18.7. XBR2: Port I/O Crossbar Register 2	212
Figure 18.8. XBR3: Port I/O Crossbar Register 3	213
Figure 18.9. P0: Port0 Data Register	214
Figure 18.10. P0MDOUT: Port0 Output Mode Register	214
Figure 18.11. P1: Port1 Data Register	215
Figure 18.12. P1MDIN: Port1 Input Mode Register	215
Figure 18.13. P1MDOUT: Port1 Output Mode Register	216
Figure 18.14. P2: Port2 Data Register	216
Figure 18.15. P2MDIN: Port2 Input Mode Register	217
Figure 18.16. P2MDOUT: Port2 Output Mode Register	217
Figure 18.17. P3: Port3 Data Register	218
Figure 18.18. P3MDOUT: Port3 Output Mode Register	218
Figure 18.19. P4: Port4 Data Register	221
Figure 18.20. P4MDOUT: Port4 Output Mode Register	221
Figure 18.21. P5: Port5 Data Register	222
Figure 18.22. P5MDOUT: Port5 Output Mode Register	222
Figure 18.23. P6: Port6 Data Register	223
Figure 18.24. P6MDOUT: Port6 Output Mode Register	223
Figure 18.25. P7: Port7 Data Register	224
Figure 18.26. P7MDOUT: Port7 Output Mode Register	224
19. Controller Area Network (CAN0, C8051F060/1/2/3)	225
Figure 19.1. CAN Controller Diagram	226
Figure 19.2. Typical CAN Bus Configuration	226
Figure 19.3. CAN0DATH: CAN Data Access Register High Byte	231
Figure 19.4. CAN0DATL: CAN Data Access Register Low Byte	231
Figure 19.5. CAN0ADR: CAN Address Index Register	232
Figure 19.6. CAN0CN: CAN Control Register	232
Figure 19.7. CAN0TST: CAN Test Register	233
Figure 19.8. CANOSTA: CAN Status Register	233
20. System Management BUS / I2C BUS (SMBUS0)	235
Figure 20.1. SMBus0 Block Diagram	235
Figure 20.2. Typical SMBus Configuration	236
Figure 20.3. SMBus Transaction	237
Figure 20.4. Typical Master Transmitter Sequence	238
Figure 20.5. Typical Master Receiver Sequence	238
Figure 20.6. Typical Slave Transmitter Sequence	239
Figure 20.7. Typical Slave Receiver Sequence	240
Figure 20.8. SMBUCN: SMBUSU Control Register	243
Figure 20.9. SMBUCK: SMBUSU Clock Rate Register	244
FIGURE 20.10. SMBUDAT: SMBUSU DATA REGISTER	245
FIGURE 20.11. SIVIBUADK: SIVIBUSU ADDRESS REGISTER	246
Figure 20.12. SIVIBUS I A: SIVIBUSU STATUS REGISTER	247
21. Ennanced Serial Peripheral Interface (SPIV)	251

		Pin Nu	mbers						
Name	F060	F061	F064	F065	Туре	Description			
	F062	F063	F066	F067					
VRGND0	20	14	20	14	A In	ADC0 Voltage Reference Ground. This pin should be grounded if using the ADC.			
VBGAP0	22	16	22	16	A Out	ADC0 Bandgap Bypass Pin.			
VREF1	6	2	6	2	A I/O	Bandgap Voltage Reference Output for ADC1. ADC1 Voltage Reference Input.			
VRGND1	7	3	7	3	A In	ADC1 Voltage Reference Ground. This pin should be grounded if using the ADC.			
VBGAP1	5	1	5	1	A Out	ADC1 Bandgap Bypass Pin.			
VREF2	2				A In	ADC2 Voltage Reference Input.			
		62			A In	ADC2, DAC0, and DAC1 Voltage Reference Input.			
VREFD	3				A In	DAC0 and DAC1 Voltage Reference Input.			
AINO	18	12	18	12	A In	ADC0 Signal Input (See ADC0 Specification for complete description).			
AIN0G	19	13	19	13	A In	ADC0 DC Bias Input (See ADC0 Specification for complete description).			
AIN1	9	5	9	5	A In	ADC1 Signal Input (See ADC1 Specification for complete description).			
AIN1G	8	4	8	4	A In	ADC1 DC Bias Input (See ADC1 Specification for complete description).			
CNVSTR0	15	9	15	9	D In	External Conversion Start Source for ADC0			
CNVSTR1	12	8	12	8	D In	External Conversion Start Source for ADC1			
CANTX	94	59			D Out	Controller Area Network Transmit Output.			
CANRX	95	60			D In	Controller Area Network Receive Input.			
DAC0	25	17			A Out	Digital to Analog Converter 0 Voltage Output. (See DAC Specification for complete description).			
DAC1	1	64			A Out	Digital to Analog Converter 1 Voltage Output. (See DAC Specification for complete description).			
P0.0	62	51	62	51	D I/O	Port 0.0. See Port Input/Output section for complete description.			
P0.1	61	50	61	50	D I/O	Port 0.1. See Port Input/Output section for complete description.			
P0.2	60	49	60	49	D I/O	Port 0.2. See Port Input/Output section for complete description.			
P0.3	59	48	59	48	D I/O	Port 0.3. See Port Input/Output section for complete description.			
P0.4	58	47	58	47	D I/O	Port 0.4. See Port Input/Output section for complete description.			

 Table 4.1. Pin Definitions (Continued)

CNVSTRn t_{Conv} Track Track Convert **B. ADC Timing for Internal Trigger Sources** Timer 2, Timer 3 Overflow; Write '1' to ADnBUSY t_{Conv} Track Track ADCnTM=1 Track Convert t_{Conv} Track ADCnTM=0 Convert Track

A. ADC Timing for External Trigger Source

Figure	5.4.	ADC	Track	and	Conversion	Example	Timina
iguic	J.T.		mach	ana	001140131011	слатрі	, i i i i i i i i i i i i i i i i i i i

ADnSC3-0	ADCnTM = 0	ADCnTM = 1	ADnSC3-0	ADCnTM = 0	ADCnTM = 1
0000	21*t _{SYSCLK}	38*t _{SYSCLK}	1000	171*t _{SYSCLK}	315*t _{SYSCLK}
0001	40*t _{SYSCLK}	72*t _{SYSCLK}	1001	189*t _{SYSCLK}	349*t _{SYSCLK}
0010	58*t _{SYSCLK}	106*t _{SYSCLK}	1010	208*t _{SYSCLK}	384*t _{SYSCLK}
0011	78*t _{SYSCLK}	142*t _{SYSCLK}	1011	226*t _{SYSCLK}	418*t _{SYSCLK}
0100	97*t _{SYSCLK}	177*t _{SYSCLK}	1100	245*t _{SYSCLK}	453*t _{SYSCLK}
0101	115*t _{SYSCLK}	211*t _{SYSCLK}	1101	263*t _{SYSCLK}	487*t _{SYSCLK}
0110	134*t _{SYSCLK}	246*t _{SYSCLK}	1110	282*t _{SYSCLK}	522*t _{SYSCLK}
0111	152*t _{SYSCLK}	280*t _{SYSCLK}	1111	300*t _{SYSCLK}	556*t _{SYSCLK}

Table 5.1. Conversion Timing (t_{Conv})

(AMX0SL = 0x00)	nversion Map, AIN0 Input in S	Single-Ended Mode
AIN0-AIN0G (Volts)	ADC0H:ADC0L	
VREF * (65535/65536)	0xFFFF	
VREF / 2	0x8000	
VREF * (32767/65536)	0x7FFF	
0	0x0000	
Example: ADC0 Data Word Cc (AMX0SL = 0x40) AIN0-AIN1 (Volts)	nversion Map, AIN0-AIN1 Dif	ferential Input Pair
Example: ADC0 Data Word Cc (AMX0SL = 0x40) AIN0-AIN1 (Volts)	ADC0H:ADC0L	ferential Input Pair
Example: ADC0 Data Word Cc (AMX0SL = 0x40) AIN0-AIN1 (Volts) VREF * (32767/32768)	ADC0H:ADC0L 0x7FFF	ferential Input Pair
Example: ADC0 Data Word Cc (AMX0SL = 0x40) AIN0-AIN1 (Volts) VREF * (32767/32768) VREF / 2	ADCOH:ADCOL 0x7FFF 0x4000 0x0001	fferential Input Pair
Example: ADC0 Data Word Co (AMX0SL = 0x40) AIN0-AIN1 (Volts) VREF * (32767/32768) VREF / 2 VREF * (1/32768)	ADCOH:ADCOL 0x7FFF 0x4000 0x0001	fferential Input Pair
Example: ADC0 Data Word Cc (AMX0SL = 0x40) AIN0-AIN1 (Volts) VREF * (32767/32768) VREF / 2 VREF * (1/32768) 0	ADCOH:ADCOL 0x7FFF 0x4000 0x0001 0x0000 0xEEEE	fferential Input Pair
Example: ADC0 Data Word Cc (AMX0SL = 0x40) AIN0-AIN1 (Volts) VREF * (32767/32768) VREF / 2 VREF * (1/32768) 0 -VREF * (1/32768) -VREF / 2	ADCOH:ADCOL 0x7FFF 0x4000 0x0001 0x0000 0xFFFF 0xC000	fferential Input Pair

Figure 5.15. ADC0 Data Word Example

SFR Page: 2 SFR Address: 0xB	В								
R/W	R/W	R/W	R/W	R	/W	R/W	R/W	R/W	Reset Value
-	-	-	-	AMX	2AD3	AMX2AD	2 AMX2AD1	AMX2A	D0 00000000
Bit7	Bit6	Bit5	Bit4	В	it3	Bit2	Bit1	Bit0	
Bits 7-4: UNUSED. Read = 0000b; Write = don't care. Bits 3-0: AMX2AD3-0: AMX2 Address Bits. 0000-1111b: ADC input multiplexer channel selected per chart below.									
AMX2AD3-0	Sin	gle-Ended M	leasurement		AMX	2AD3-0	Differen	tial Meas	urement
0000	AI	N2.0		0	0	000	+(AIN2.0) -(A	(IN2.1)	
0001	AI	N2.1	AINUTIC =	0	0001		+(AIN2.1) -(A	IN2.0)	AINOTIC = 1
0010	AI	N2.2		0	0	010	+(AIN2.2) -(AIN2.3)		- AIN23IC = 1
0011	AI	N2.3	AIN23IC =	0	0	011	+(AIN2.3) -(AIN2.2)		
0100	AI	N2.4		0	0	100	+(AIN2.4) -(A	IN2.5)	
0101	AI	N2.5	AIN45IC =	0	0	101	+(AIN2.5) -(AIN2.4)		AIN45IC = 1
0110	AI	N2.6		0	0	110	+(AIN2.6) -(A	IN2.7)	
0111	AI	N2.7	AIN07IC =	U	0	111	+(AIN2.7) -(A	IN2.6)	AIN0/IC = 1
1xxx	Temp Se	perature ensor			1	xxx	-		
	•								

Figure 7.6. AMX2SL: AMUX2 Channel Select Register

Table 7.1. ADC2 Electrical Characteristics

VDD = 3.0 V, VREF = 2.40 V (REFSL=0), PGA Gain = 1, -40°C to +85°C unless otherwise specified

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy					
Resolution			10		bits
Integral Nonlinearity			±0.5	±1	LSB
Differential Nonlinearity	Guaranteed Monotonic		±0.5	±1	LSB
Offset Error		-12	1	12	LSB
Full Scale Error	Differential mode	-15	-5	5	LSB
Offset Temperature Coefficient			3.6		ppm/°C
DYNAMIC PERFORMANCE (10 I	kHz sine-wave Differential inpu	ut, 1 dB	below F	ull Scal	e, 200 ksps)
Signal-to-Noise Plus Distortion		53	55.5		dB
Total Harmonic Distortion	Up to the 5 th harmonic		-67		dB
Spurious-Free Dynamic Range			78		dB
Conversion Rate			•		
SAR Conversion Clock				3	MHz
Conversion Time in SAR Clocks		10			clocks
Track/Hold Acquisition Time		300			ns
Throughput Rate				200	ksps
Analog Inputs			•		
ADC Input Voltage Range	Single Ended (AIN+ - AGND) Differential (AIN+ - AIN-)	0 -VREF		VREF VREF	V V
Absolute Pin Voltage with respect to AGND	Single Ended or Differential	0		AV+	V
Input Capacitance			5		pF
Temperature Sensor	·				
Linearity			±0.2		°C
Offset	Temp = 0 °C		776		mV
Offset Error (Note 1)	Temp = 0 °C		±8.9		mV
Slope			2.89		mV/°C
Slope Error (Note 1)			±63		μV/°C
Power Specifications					
Power Supply Current (VDD supplied to ADC2)	Operating Mode, 200 ksps		400	900	μA
Power Supply Rejection			±0.3		mV/V
Note 1: Represents one standard	deviation from the mean value.				•

R/W	R/W		R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
DAC0EN	I -		-	DAC0MD1	DAC0MD0	DAC0DF2	DAC0DF1	DAC0DF0	00000000	
Bit7	Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_	
								SFR Address	: 0xD4	
								SFR Page	: 0	
Bit7:	DAC0EN	I: DAG	C0 Enab	ole Bit.						
	0: DAC0	Disal	bled. DA	C0 Output p	in is disable	d; DAC0 is	in low-pow	er shutdowr	n mode.	
	1: DAC0	Enab	oled. DA	C0 Output pi	n is active; l	DAC0 is op	erational.			
Bits6-5:	UNUSED. Read = 00b; Write = don't care.									
Bits4-3:	DAC0MD1-0: DAC0 Mode Bits.									
	00: DAC	outpu	ut update	es occur on a	a write to DA	COH.				
	01: DAC	outpu	ut update	es occur on ⁻	Timer 3 ovei	flow.				
	10: DAC	outpu	ut update	es occur on ⁻	Timer 4 ovei	flow.				
	11: DAC	outpu	ut update	es occur on T	Fimer 2 over	flow.				
Bits2-0:	DAC0DF	2-0: I	DAC0 Da	ata Format B	lits:					
	000:	The m	nost sign	nificant nibble	of the DAC	0 Data Wor	d is in DAC	C0H[3:0], wh	ile the least	
	:	signifi	cant byt	e is in DAC0	L.					
		DA	AC0H				DACO	L		
			MSB						LSB	
					•					
	001:	The m	nost sign	nificant 5-bits	of the DAC	Data Wor	d is in DAC	0H[4:0], wh	ile the least	
	:	signifi	cant 7-b	its are in DA	C0L[7:1].					
		DA	AC0H				DACO)L		
		MSB							LSB	
				·	•	<u> </u>				
	010:	The m	nost sign	nificant 6-bits	of the DAC	Data Wor	d is in DAC	0H[5:0], wh	ile the least	
	:	signifi	cant 6-b	its are in DA	C0L[7:2].					
		DA	AC0H				DACO)L		
	MSB							LSB		
	011:	The m	nost sign	nificant 7-bits	of the DAC	Data Wor	d is in DAC	0H[6:0], wh	ile the least	
	:	signifi	cant 5-b	its are in DA	C0L[7:3].					
		DA	AC0H				DACO	L		
M	SB						l	SB		
				·	•	<u> </u>			<u>.</u>	
	1xx:	The m	nost sign	nificant 8-bits	of the DAC	Data Wor	d is in DAC	0H[7:0], wh	ile the least	
	:	signifi	cant 4-b	its are in DA	C0L[7:4].					
	DACOH DACOL									
MSB							LSB			
L I	I	1	<u> </u>	1	I	1 1				

Figure 8.4. DAC0CN: DAC0 Control Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
CPnEN	CPnOUT	CPnRIF	CPnFIF	CPnHYP1	CPnHYP0	CPnHYN1	CPnHYN0	00000000				
Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1		Bit0	Bit Addressable								
SFR Addre SFR Pag	SFR Address: CPT0CN: 0x88; CPT1CN: 0x88; CPT2CN: 0x88 SFR Pages: CPT0CN: page 1; CPT1CN: page 2; CPT2CN: page 3											
Bit7: CPnEN: Comparator Enable Bit. (Please see note below.) 0: Comparator Disabled. 1: Comparator Enabled.												
Bit6:	CPnOUT: Co 0: Voltage on 1: Voltage on	mparator C CPn+ < Cl CPn+ > Cl	utput State Pn Pn	Flag.								
Bit5:	CPnRIF: Cor 0: No Compa 1: Comparate	nparator Ri Irator Rising	sing-Edge I g Edge Inte	nterrupt Fla rrupt has oc ot has occur	g. curred sinc red. Must b	e this flag v e cleared b	was last clea v software	red.				
Bit4:	CPnFIF: Con 0: No Comparate	nparator Falling	lling-Edge I g-Edge Inte	Interrupt Fla errupt has occur	ig. ccurred sinc	ce this flag	was last clea	ared.				
Bits3-2:	CPnHYP1-0: 00: Positive H 01: Positive H 10: Positive H 11: Positive H	Comparato Hysteresis I Hysteresis = Hysteresis = Hysteresis =	or Positive H Disabled. = 5 mV. = 10 mV. = 20 mV.	Hysteresis C	Control Bits.		y soltware.					
Bits1-0:	CPnHYN1-0: 00: Negative 01: Negative 10: Negative 11: Negative	Comparate Hysteresis Hysteresis Hysteresis Hysteresis	or Negative Disabled. = 5 mV. = 10 mV. = 20 mV.	Hysteresis	Control Bits	5.						
NOTE:	Upon enablir using a comp the specified tics," on page	ig a compa parator as a "Power-up e 122.	rator, the ou n interrupt time" as sp	utput of the or reset sou ecified in Ta	comparator rce, softwai ble 12.1, "C	is not imme re should w Comparator	ediately valio vait for a min Electrical C	d. Before imum of haracteris-				

Figure 12.3. CPTnCN: Comparator 0, 1, and 2 Control Register

Figure 13.11. SFRNEXT: SFR Next Register

Rev. 1.2

Table 17.1 lists the AC parameters for the External Memory Interface, and Figure 17.7 through Figure 17.12 show the timing diagrams for the different External Memory Interface modes and MOVX operations.

17.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '001' or '011'.

Figure 17.11. Multiplexed 8-bit MOVX without Bank Select Timing

Muxed 8-bit WRITE Without Bank Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value	
CTXOUT	· _	-		CP2E	CNVST2E	T3EXE	T3E	00000000	
Bit7	Bit6	Bit5	Bit5 Bit4 Bit3 Bit2		Bit1	Bit0			
	SFR Address: 0xE4								
							SFR Pag	e: F	
Bit7.		AN Transmi	t Pin (CTX)	Output Mc	de				
Diti'.	0: CTX pin o	utput mode	is configur	ed as open	-drain.				
	1: CTX pin o	utput mode	is configur	ed as push	-pull.				
Bit6-4:	Reserved				F				
Bit3:	CP2E: CP2	Output Ena	ble Bit.						
	0: CP2 unav	ailable at P	ort pin.						
	1: CP2 route	d to Port pi	n.						
Bit2:	CNVST2E: A	ADC2 Exter	nal Conver	t Start Input	Enable Bit.				
	0: CNVST2 f	or ADC2 ur	navailable a	at Port pin.					
	1: CNVST2 f	or ADC2 ro	outed to Por	t pin.					
Bit1:	T3EXE: T3E	X Input Ena	able Bit.						
	0: T3EX una	vailable at l	Port pin.						
D'10	1: I 3EX rout	ed to Port p	oin.						
Bit0:	13E: 13 Inpu	It Enable B	it.						
	0: 13 unavai	lable at Por	t pin.						
	1. 13 routed	to Port pin.							

Figure 18.8. XBR3: Port I/O Crossbar Register 3

18.2. Ports 4 through 7 (C8051F060/2/4/6 only)

All Port pins on Ports 4 through 7 can be accessed as General-Purpose I/O (GPIO) pins by reading and writing the associated Port Data registers (See Figure 18.19, Figure 18.21, Figure 18.23, and Figure 18.25), a set of SFRs which are byte-addressable. Note that Port 4 has only three pins: P4.5, P4.6, and P4.7. Note also that the Port 4, 5, 6, and 7 registers are located on SFR Page F. The SFRPAGE register must be set to 0x0F to access these Port registers.

A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regardless of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs during the execution of a *read-modify-write* instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC, CLR, SETB, and the bitwise MOV write operation). During the *read* cycle of the *read-modify-write* instruction, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.

18.2.1. Configuring Ports which are not Pinned Out

Although P3, P4, P5, P6, and P7 are not brought out to pins on the C8051F061/3/5/7 devices, the Port Data registers are still present and can be used by software. Because the digital input paths also remain active, it is recommended that these pins not be left in a 'floating' state in order to avoid unnecessary power dissipation arising from the inputs floating to non-valid logic levels. This condition can be prevented by any of the following:

- 1. Leave the weak pull-up devices enabled by setting WEAKPUD (XBR2.7) to a logic 0.
- 2. Configure the output modes of P3, P4, P5, P6, and P7 to "Push-Pull" by writing 0xFF to the associated output mode register (PnMDOUT).
- 3. Force the output states of P3, P4, P5, P6, and P7 to logic 0 by writing zeros to the Port Data registers: P3 = 0x00, P4 = 0x00, P5 = 0x00, P6= 0x00, and P7 = 0x00.

18.2.2. Configuring the Output Modes of the Port Pins

The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull configuration, a logic 0 in the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configuration, a logic 0 in the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent contention between devices in systems where the Port pin participates in a shared interconnection in which multiple outputs are connected to the same physical wire.

The output modes of the Port pins on Ports 4 through 7 are determined by the bits in their respective PnMDOUT Output Mode Registers. Each bit in PnMDOUT controls the output mode of its corresponding port pin (see Figure 18.20, Figure 18.22, Figure 18.24, and Figure 18.26). For example, to place Port pin 5.3 in push-pull mode (digital output), set P5MDOUT.3 to logic 1. All port pins default to open-drain mode upon device reset.

18.2.3. Configuring Port Pins as Digital Inputs

A Port pin is configured as a digital input by setting its output mode to "Open-Drain" and writing a logic 1 to the associated bit in the Port Data register. For example, P7.7 is configured as a digital input by setting P7MDOUT.7 to a logic 0 and P7.7 to a logic 1.

18.2.4. Weak Pull-ups

By default, each Port pin has an internal weak pull-up device enabled which provides a resistive connection (about 100 k Ω) between the pin and VDD. The weak pull-up devices can be globally disabled by writ-

21.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 21.5. For slave mode, the clock and data relationships are shown in Figure 21.6 and Figure 21.7. Note that CKPHA must be set to '0' on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, and C8051F33x

The SPI0 Clock Rate Register (SPI0CKR) as shown in Figure 21.10 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 21.5. Master Mode Data/Clock Timing

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
FE0	RXOV0	TXCOL0	SMOD0	S0TCLK1	S0TCLK0	S0RCLK1	S0RCLK0	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_				
							SFR Address	: 0x91				
							SFR Page	: 0				
D:/-7			+									
Bit/:	FE0: Frame	Error Flag	. invialid (l		h:+:	to d						
	0: Eramo E	rror has not	i invalid (i been det	ow) STOP	DIT IS DETEC	ted.						
	1. Frame E	rror has her	en detecte	ecieu. ed								
Bit6.				t								
Dito.	This flag indicates new data has been latched into the receive buffer before software has											
	read the pr	evious byte.		boon later								
	0: Receive	overrun has	s not beer	n detected.								
	1: Receive	Overrun ha	s been de	etected.								
Bit5:	TXCOL0: T	ransmit Col	lision Flag	g.†								
	This flag ind	dicates user	software	has writter	to the SB	UF0 registe	r while a tra	ansmission is in				
	progress.											
	0: Transmis	sion Collisi	on has no	ot been dete	ected.							
Bit/			Pate Do	en detecte	a. o							
DIL4.	This bit ena	hles/disable	es the div	ide-bv-two	e. function of	the UART() baud rate	logic for config-				
	urations de	scribed in th	ne UART() section.			bada lato	legie ier eenig				
	0: UART0 b	oaud rate di	vide-by-tv	vo enabled								
	1: UART0 b	baud rate div	vide-by-tv	vo disabled								
Bits3-2:	UARTO Tra	nsmit Baud	Rate Clo	ck Selectio	n Bits.							
	S0TCLK1	SOTCLK	Se	rial Transr	nit Baud F	Rate Clock	Source	7				
	0	0	Ti	mer 1 gene	erates UAR	RT0 TX Bau	d Rate					
	0	1	Timer	2 Overflow	generates	SUARTO TX	K baud rate					
	1	0	Timer	3 Overflow	generates	SUARTO T	K baud rate					
	1	1	Timer	4 Overflow	generates	SUARTO T	K baud rate					
Bits1-0:	UART0 Red	ceive Baud	Rate Cloo	ck Selection	n Bits.							
	S0RCLK1	SORCLK	Se	erial Receiv	ve Baud R	ate Clock	Source	7				
	0	0	Ti	mer 1 gene	erates UAR	T0 RX Bau	d Rate					
	0	1	Timer	2 Overflow	generates	UARTO R	K baud rate					
	1	0	Timer	3 Overflow	generates	UARTO R	K baud rate					
	1	1	Timer	4 Overflow	generates	UARTO R	K baud rate					
[†] Note: FE0, RXOV0, and TXCOL0 are flags only, and no interrupt is generated by these conditions.												

Figure 22.9. SSTA0: UART0 Status and Clock Selection Register

25.1. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte (MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches the value of PCA0H into a "snapshot" register; the following PCA0H read accesses this "snapshot" register. Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter. Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 25.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1). Clearing the CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle mode.

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8 (synchronized with system clock)

Figure 25.2. PCA Counter/Timer Block Diagram

26.1. Boundary Scan

The DR in the Boundary Scan path is a 126-bit shift register for the C8051F060/2/4/6 and a 118-bit shift register for the C8051F061/3/5/7. The Boundary DR provides control and observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and SAMPLE commands.

Bit	Action	Target
0	Capture	Reset Enable from MCU
	Update	Reset Enable to /RST pin
1	Capture	Reset Input from /RST pin
	Update	Not used
2	Capture	CAN RX Output Enable to pin
	Update	CAN RX Output Enable to pin
3	Capture	CAN RX Input from pin
	Update	CAN RX Output to pin
4	Capture	CAN TX Output Enable to pin
	Update	CAN TX Output Enable to pin
5	Capture	CAN TX Input from pin
	Update	CAN TX Output to pin
6	Capture	External Clock from XTAL1 pin
	Update	Not used
7	Capture	Weak Pullup Enable from MCU
	Update	Weak Pullup Enable to Port Pins
8, 10, 12, 14, 16,	Capture	P0.n output enable from MCU (e.g. Bit 8 = P0.0, Bit 10 = P0.1, etc.)
18, 20, 22	Update	P0.n output enable to pin (e.g. Bit 8 = P0.00e, Bit 10 = P0.10e, etc.)
9, 11, 13, 15, 17,	Capture	P0.n input from pin (e.g. Bit 9 = P0.0, Bit 11 = P0.1, etc.)
19, 21, 23	Update	P0.n output to pin (e.g. Bit 9 = P0.0, Bit 11 = P0.1, etc.)
24, 26, 28, 30, 32,	Capture	P1.n output enable from MCU (follows P0.n numbering scheme)
34, 36, 38	Update	P1.n output enable to pin (follows P0.n numbering scheme)
25, 27, 29, 31, 33,	Capture	P1.n input from pin (follows P0.n numbering scheme)
35, 37, 39	Update	P1.n output to pin (follows P0.n numbering scheme)
40, 42, 44, 46, 48,	Capture	P2.n output enable from MCU (follows P0.n numbering scheme)
50, 52, 54	Update	P2.n output enable to pin (follows P0.n numbering scheme)
41, 43, 45, 47, 49,	Capture	P2.n input from pin (follows P0.n numbering scheme)
51, 53, 55	Update	P2.n output to pin (follows P0.n numbering scheme)
56, 58, 60, 62, 64,	Capture	P3.n output enable from MCU (follows P0.n numbering scheme)
66, 68, 70	Update	P3.n output enable to pin (follows P0.n numbering scheme)
57, 59, 61, 63, 65,	Capture	P3.n input from pin (follows P0.n numbering scheme)
67, 69, 71	Update	P3.n output to pin (follows P0.n numbering scheme)
72, 74, 76	Capture	P4.5, P4.6, P4.7 (respectively) output enable from MCU
	Update	P4.5, P4.6, P4.7 (respectively) output enable to pin
73, 75, 77	Capture	P4.5, P4.6, P4.7 (respectively) input from pin
	Update	P4.5, P4.6, P4.7 (respectively) output to pin
78, 80, 82, 84, 86,	Capture	P5.n output enable from MCU (follows P0.n numbering scheme)
88, 90, 92	Update	P5.n output enable to pin (follows P0.n numbering scheme)

Table 26.1. Boundary Data Register Bit Definitions (C8051F060/2/4/6)

EXTEST provides access to both capture and update actions, while Sample only performs a capture.

