

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f065-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Figure 5.17. ADC1L: ADC1 Data Word LSB Register	65
	Figure 5.18. ADC1 Data Word Example	65
	Figure 5.19. Calibration Coefficient Locations	66
	Figure 5.20. Offset and Gain Register Mapping	67
	Figure 5.21. Offset and Gain Calibration Block Diagram	67
	Figure 5.22. ADC0CPT: ADC Calibration Pointer Register	68
	Figure 5.23. ADC0CCF: ADC Calibration Coefficient Register	68
	Figure 5.24. ADC0GTH: ADC0 Greater-Than Data High Byte Register	69
	Figure 5.25. ADC0GTL: ADC0 Greater-Than Data Low Byte Register	69
	Figure 5.26. ADC0LTH: ADC0 Less-Than Data High Byte Register	70
	Figure 5.27. ADC0LTL: ADC0 Less-Than Data Low Byte Register	70
	Figure 5.28. 16-Bit ADC0 Window Interrupt Example: Single-Ended Data	71
_	Figure 5.29. 16-Bit ADC0 Window Interrupt Example: Differential Data	72
6.	Direct Memory Access Interface (DMA0)	75
	Figure 6.1. DMA0 Block Diagram	75
	Figure 6.2. DMA Mode 0 Operation	77
	Figure 6.3. DMA Mode 1 Operation	78
	Figure 6.4. DMA0CN: DMA0 Control Register	80
	Figure 6.5. DMA0CF: DMA0 Configuration Register	81
	Figure 6.6. DMA0IPT: DMA0 Instruction Write Address Register	82
	Figure 6.7. DMA0ID1: DMA0 Instruction Write Data Register	82
	Figure 6.8. DMA0BND: DMA0 Instruction Boundary Register	83
	Figure 6.9. DMA0ISW: DMA0 Instruction Status Register	83
	Figure 6.10. DMA0DAH: DMA0 Data Address Beginning MSB Register	84
	Figure 6.11. DMA0DAL: DMA0 Data Address Beginning LSB Register	84
	Figure 6.12. DMA0DSH: DMA0 Data Address Pointer MSB Register	84
	Figure 6.13. DMA0DSL: DMA0 Data Address Pointer LSB Register	84
	Figure 6.14. DMA0CTH: DMA0 Repeat Counter Limit MSB Register	85
	Figure 6.15. DMA0CTL: DMA0 Repeat Counter Limit LSB Register	85
	Figure 6.16. DMA0CSH: DMA0 Repeat Counter MSB Register	85
-	Figure 6.17. DMAUCSL: DMAU Repeat Counter LSB Register	85
1.	10-Bit ADC (ADC2, C8051F060/1/2/3)	87
	Figure 7.1. ADC2 Functional Block Diagram	87
	Figure 7.2. Temperature Sensor Transfer Function	89
	Figure 7.3. 10-Bit ADC Track and Conversion Example Timing	90
	Figure 7.4. ADC2 Equivalent input Circuits	91
	Figure 7.6. AMX2CF: AMUX2 Conliguration Register	92
	Figure 7.6. AMX2SL: AMUX2 Channel Select Register	93
	Figure 7.9. ADC2CF: ADC2 Conliguration Register	94
	Figure 7.8. ADC2H: ADC2 Data Word INSB Register	95
	FIGURE 7.9. ADUZL: ADUZ Data WOIG LOB REGISTER	90
	FIGURE 7.10. ADUZUN: ADUZ CONTO KEGISTER	90
	Figure 7.11. ADC2GTH: ADC2 Greater Than Data High Byte Register	91
	Figure 7.12. ADC2GTL: ADC2 Greater-Than Data Low Byte Register	97
	rigure 7.13. ADUZLTH: ADUZ Less-Than Data High Byte Register	98

		Pin Nu	mbers					
Name	F060	F061	F064	F065	Туре	Description		
	F062	F063	F066	F067				
VRGND0	20	14	20	14	A In	ADC0 Voltage Reference Ground. This pin should be grounded if using the ADC.		
VBGAP0	22	16	22	16	A Out	ADC0 Bandgap Bypass Pin.		
VREF1	6	2	6	2	A I/O	Bandgap Voltage Reference Output for ADC1. ADC1 Voltage Reference Input.		
VRGND1	7	3	7	3	A In	ADC1 Voltage Reference Ground. This pin should be grounded if using the ADC.		
VBGAP1	5	1	5	1	A Out	ADC1 Bandgap Bypass Pin.		
VREF2	2				A In	ADC2 Voltage Reference Input.		
		62			A In	ADC2, DAC0, and DAC1 Voltage Reference Input.		
VREFD	3				A In	DAC0 and DAC1 Voltage Reference Input.		
AINO	18	12	18	12	A In	ADC0 Signal Input (See ADC0 Specification for complete description).		
AIN0G	19	13	19	13	A In	ADC0 DC Bias Input (See ADC0 Specification for complete description).		
AIN1	9	5	9	5	A In	ADC1 Signal Input (See ADC1 Specification for complete description).		
AIN1G	8	4	8	4	A In	ADC1 DC Bias Input (See ADC1 Specification for complete description).		
CNVSTR0	15	9	15	9	D In	External Conversion Start Source for ADC0		
CNVSTR1	12	8	12	8	D In	External Conversion Start Source for ADC1		
CANTX	94	59			D Out	Controller Area Network Transmit Output.		
CANRX	95	60			D In	Controller Area Network Receive Input.		
DAC0	25	17			A Out	Digital to Analog Converter 0 Voltage Output. (See DAC Specification for complete description).		
DAC1	1	64			A Out	Digital to Analog Converter 1 Voltage Output. (See DAC Specification for complete description).		
P0.0	62	51	62	51	D I/O	Port 0.0. See Port Input/Output section for complete description.		
P0.1	61	50	61	50	D I/O	Port 0.1. See Port Input/Output section for complete description.		
P0.2	60	49	60	49	D I/O	Port 0.2. See Port Input/Output section for complete description.		
P0.3	59	48	59	48	D I/O	Port 0.3. See Port Input/Output section for complete description.		
P0.4	58	47	58	47	D I/O	Port 0.4. See Port Input/Output section for complete description.		

 Table 4.1. Pin Definitions (Continued)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	DIFFSEL	-	-	-	-	-	-	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address SFR Page	: 0xBB : 0
Bit 7:	RESERVED.	Write to Ob).					
Bit 6:	DIFFSEL: Fu	Illy Differen	tial Convers	sion Mode S	Select Bit.			
	0: Operate Ir	Single-En	ded Mode.					
	1: Operate Ir	Nrite to 0	I MODE.					
Dit 5-0.	RESERVED.							
NOTE:	For single-er	nded mode,	the ADC0	Data Word i	s stored in A	ADC0H and	d ADC0L, w	hile the
	ADC1 Data V	Nord is stor	ed in ADC1	H and ADC	:1L.			
	In differential	mode, the	combined A	ADC Data W	ord is store	d in ADC0F	and ADC0	L, and is a
	2's complem	ent number	: ADC1's D	ata Word (s	ingle-endec	l) is also sto	ored in ADC	C1H and
	ADUTL.							

Figure 5.6. AMX0SL: AMUX Configuration Register

Figure 5.16. ADC1H: ADC1 Data Word MSB Register

Figure 5.18. ADC1 Data Word Example

For differential mode, the differential data word appears in ADC0H and ADC0L. The singleended ADC1 results are always present in ADC1H and ADC1L, regardless of the operating mode.

6.2. DMA0 Instruction Format

DMA instructions can request single-ended data from both ADC0 and ADC1, as well as the differential combination of the two ADC inputs. The instruction format is identical to the DMA0IDT register, shown in Figure 6.7. Depending on which bits are set to '1' in the instruction word, either 2 or 4 bytes of data will be written to XRAM for each DMA instruction cycle (excluding End-Of-Operation instructions). Table 6.1 details all of the valid DMA instructions. Instructions not listed in the table are not valid DMA instructions, and should not be used. Note that the ADCs can be independently controlled by the microcontroller when their outputs are not requested by the DMA.

Instruction Word	Description	First Data Written to XRAM (2 bytes)	Second Data Written to XRAM (2 bytes)
0000000b	End-Of-Operation	none	none
1000000b	End-Of-Operation with Continuous Conversion	none	none
x0010000b	Retrieve ADC0 Data	ADC0H:ADC0L	none
x0100000b	Retrieve ADC1 Data	ADC1H:ADC1L	none
x0110000b	Retrieve ADC0 and ADC1 Data	ADC0H:ADC0L	ADC1H:ADC1L
x10x0000b	Retrieve Differential Data	ADC0H:ADC0L (differential result from both ADCs)	none
x11x0000b	Retrieve Differential and ADC1 Data	ADC0H:ADC0L (differential result from both ADCs)	ADC1H:ADC1L

6.3. XRAM Addressing and Setup

The DMA Interface can be configured to access either on-chip or off-chip XRAM. Any writes to on-chip XRAM by the DMA Control Logic occur when the processor core is not accessing the on-chip XRAM. This ensures that the DMA will not interfere with processor instruction timing.

Off-chip XRAM access (only available on the C8051F060/2/4/6) is controlled by the DMA0HLT bit in DMA0CF (DMA Configuration Register, Figure 6.5). The DMA will have full access to off-chip XRAM when this bit is '0', and the processor core will have full access to off-chip XRAM when this bit is '1'. The DMA0HLT bit should be controlled in software when both the processor core and the DMA Interface require access to off-chip XRAM data space. Before setting DMA0HLT to '1', the software should check the DMA0XBY bit to ensure that the DMA is not currently accessing off-chip XRAM. The processor core cannot access off-chip XRAM while DMA0HLT is '0'. The processor will continue as though it was able to perform the desired memory access, but the data will not be written to or read from off-chip XRAM. When the processor core is finished accessing off-chip XRAM, DMA0HLT should be set back to '0'in software to return control to the DMA Interface. The DMA Control Logic will wait until DMA0HLT is '0' before writing data to off-chip XRAM. If new data becomes available to the DMA Interface before the previous data has been written, an overflow condition will occur, and the new data word may be lost.

The Data Address Pointer Registers (DMA0DSH and DMA0DSL) contain the 16-bit XRAM address location where the DMA interface will write data. When the DMA is initially enabled, the DMA Data Address

Pointer Registers are initialized to the values contained in the DMA Data Address Beginning Registers (DMA0DAH and DMA0DAL). The Data Address Pointer Registers are automatically incremented by 2 or 4 after each data write by the DMA interface.

6.4. Instruction Execution in Mode 0

0x03

0x02

0x01

DMA0BND → 0x00

0000000

00110000

00010000

When the DMA interface begins an operation cycle, the DMA Instruction Status Register (DMA0ISW, Figure 6.9) is loaded with the address contained in the DMA Instruction Boundary Register (DMA0BND, Figure 6.8). The instruction is fetched from the Instruction Buffer, and the DMA Control Logic waits for data from the appropriate ADC(s). The DMA will execute each instruction once, and then increment DMA0ISW to the next instruction address. When the current DMA instruction is an End of Operation instruction, the Instruction Status Register is reset to the Instruction Boundary Register. If the Continuous Conversion bit (bit 7, CCNV) in the End of Operation instruction word is set to '1', the Repeat Counter is ignored, and the DMA will continue to execute instructions indefinitely. When CCNV is set to '0', the Repeat Counter (registers DMA0CSH and DMA0CSL) is decremented, and the DMA will continue to execute instructions until the Repeat Counter reaches 0x0000. The Repeat Counter is initialized with the Repeat Counter Limit value (registers DMA0CTH and DMA0CTL) at the beginning of the DMA operation. An example of Mode 0 operation is shown in Figure 6.2.

ADC0L

ADC0H

ADC0L ADC0H DMA0CSH:L = DMA0CTH:L

7.2.2. Tracking Modes

The AD2TM bit in register ADC2CN controls the ADC2 track-and-hold mode. In its default state, the ADC2 input is continuously tracked, except when a conversion is in progress. When the AD2TM bit is logic 1, ADC2 operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a track-ing period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR2 signal is used to initiate conversions in low-power tracking mode, ADC2 tracks only when CNVSTR2 is low; conversion begins on the rising edge of CNVSTR2 (see Figure 7.3). Tracking can also be disabled (shutdown) when the device is in low power standby or sleep modes. Low-power track-and-hold mode is also useful when AMUX settings are frequently changed, due to the settling time requirements described in Section "7.2.3. Settling Time Requirements" on page 91.

Figure 7.3. 10-Bit ADC Track and Conversion Example Timing

B. ADC2 Timing for Internal Trigger Source

C8051F060/1/2/3/4/5/6/7

Table 12.1. Comparator Electrical Characteristics

VDD = 3.0 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Response Time,	CPn+ - CPn- = 100 mV		100		ns
Mode 0	CPn+ - CPn- = 10 mV		250		ns
Response Time,	CPn+ - CPn- = 100 mV		175		ns
Mode 1	CPn+ - CPn- = 10 mV		500		ns
Response Time,	CPn+ - CPn- = 100 mV		320		ns
Mode 2	CPn+ - CPn- = 10 mV		1100		ns
Response Time,	CPn+ - CPn- = 100 mV		1050		ns
Mode 3	CPn+ - CPn- = 10 mV		5200		ns
Common-Mode Rejection Ratio			1.5	4	mV/V
Positive Hysteresis 1	CPnHYP1-0 = 00		0	1	mV
Positive Hysteresis 2	CPnHYP1-0 = 01	3	5	7	mV
Positive Hysteresis 3	CPnHYP1-0 = 10	7	10	15	mV
Positive Hysteresis 4	CPnHYP1-0 = 11	15	20	25	mV
Negative Hysteresis 1	CPnHYN1-0 = 00		0	1	mV
Negative Hysteresis 2	CPnHYN1-0 = 01	3	5	7	mV
Negative Hysteresis 3	CPnHYN1-0 = 10	7	10	15	mV
Negative Hysteresis 4	CPnHYN1-0 = 11	15	20	25	mV
Inverting or Non-Inverting Input Voltage Range		-0.25		VDD + 0.25	V
Input Capacitance			7		pF
Input Bias Current		-5	0.001	+5	nA
Input Offset Voltage		-5		+5	mV
Power Supply	•	I.			
Power Supply Rejection			0.1	1	mV/V
Power-up Time			10		μs
	Mode 0		7.6		μA
Supply Current at DC	Mode 1		3.2		μA
	Mode 2		1.3		μA
	Mode 3		0.4		μA

Table 13.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
REF0CN	0xD1	0	Voltage Reference Control 0	page 62
REF1CN	0xD1	1	Voltage Reference Control 1	page 62
				page 112 ^{*2} ,
REF2CN	0xD1	2	Voltage Reference Control 2	page 114 ^{*3} ,
				page 116 ^{*5}
RSTSRC	0xEF	0	Reset Source	page 168
SADDR0	0xA9	0	UART 0 Slave Address	page 276
SADEN0	0xB9	0	UART 0 Slave Address Enable	page 276
SBUF0	0x99	0	UART 0 Data Buffer	page 276
SBUF1	0x99	1	UART 1 Data Buffer	page 283
SCON0	0x98	0	UART 0 Control	page 274
SCON1	0x98	1	UART 1 Control	page 282
SFRLAST	0x86	All Pages	SFR Page Stack Access Register	page 140
SFRNEXT	0x85	All Pages	SFR Page Register	page 140
SFRPAGE	0x84	All Pages	SFR Page Register	page 139
SFRPGCN	0x96	F	SFR Page Control Register	page 139
SMB0ADR	0xC3	0	SMBus Slave Address	page 246
SMB0CN	0xC0	0	SMBus Control	page 243
SMB0CR	0xCF	0	SMBus Clock Rate	page 244
SMB0DAT	0xC2	0	SMBus Data	page 245
SMB0STA	0xC1	0	SMBus Status	page 247
SP	0x81	All Pages	Stack Pointer	page 148
SPI0CFG	0x9A	0	SPI Configuration	page 258
SPI0CKR	0x9D	0	SPI Clock Rate Control	page 260
SPI0CN	0xF8	0	SPI Control	page 259
SPI0DAT	0x9B	0	SPI Data	page 261
SSTA0	0x91	0	UART 0 Status	page 275
TCON	0x88	0	Timer/Counter Control	page 291
TH0	0x8C	0	Timer/Counter 0 High	page 294
TH1	0x8D	0	Timer/Counter 1 High	page 294
TL0	0x8A	0	Timer/Counter 0 Low	page 294
TL1	0x8B	0	Timer/Counter 1 Low	page 294
TMOD	0x89	0	Timer/Counter Mode	page 292
TMR2CF	0xC9	0	Timer/Counter 2 Configuration	page 300
TMR2CN	0xC8	0	Timer/Counter 2 Control	page 299
TMR2H	0xCD	0	Timer/Counter 2 High	page 302
TMR2L	0xCC	0	Timer/Counter 2 Low	page 301
TMR3CF	0xC9	1	Timer/Counter 3 Configuration	page 300
TMR3CN	0xC8	1	Timer/Counter 3 Control	page 299
TMR3H	0xCD	1	Timer/Counter 3 High	page 302
TMR3L	0xCC	1	Timer/Counter 3 Low	page 301
TMR4CF	0xC9	2	Timer/Counter 4 Configuration	page 300
TMR4CN	0xC8	2	Timer/Counter 4 Control	page 299
TMR4H	0xCD	2	Timer/Counter 4 High	page 302

13.3. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting a total of 22 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interruptpending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regard-less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

13.3.1. MCU Interrupt Sources and Vectors

The MCUs support 22 interrupt sources. Software can simulate an interrupt event by setting any interruptpending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 13.4. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

13.3.2. External Interrupts

The external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or activelow edge-sensitive inputs depending on the setting of bits IT0 (TCON.0) and IT1 (TCON.2). IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interruptpending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag follows the state of the external interrupt's input pin. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value
-	CNVRSEF	CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address SFR Page	: 0xEF : 0
Bit7:	Reserved.							
Bit6:	CNVRSEF: C	Convert Star	t Reset Sou	rce Enable a	and Flag			
	Write: 0: C	NVSTR2 is	not a reset s	source.				
	1: C	NVSTR2 is	a reset sour	ce (active lo	w).			
	Read: 0: So	ource of pric	or reset was	not CNVSII	₹2.			
DUC		ource of pric	or reset was	CNVSTR2.				
BIt5:	CURSEF: CO	mparatoru F	Reset Enable	e and Flag.				
	vvrite: 0: Co	omparatoru	is not a rese	et source.	1			
	Pood: 0: S	omparatoro	is a reset so	ource (active	IOW).			
	1. S		rosot was f	Comparator				
Bit4.	SWRSE Sof	tware Reset	Force and l	Flan				
DII4.	Write: 0. N	o effect	I OICE and I	lag.				
	1' Fo	orces an inte	ernal reset /	RST pin is r	ot effected			
	Read: 0: Se	ource of last	reset was r	not a write to	the SWRSF	bit.		
	1: Se	ource of last	reset was a	write to the	SWRSF bit.			
Bit3:	WDTRSF: W	atchdog Tin	ner Reset Fla	ag.				
	0: Se	ource of last	reset was r	not WDT time	eout.			
	1: Se	ource of last	t reset was V	VDT timeout	t.			
Bit2:	MCDRSF: M	issing Clock	Detector Fl	ag.				
	Write: 0: M	issing Clock	Detector di	sabled.				
	1: M	issing Clock	Detector er	habled; trigg	ers a reset if	a missing	clock conditi	on is
	de	etected.						
	Read: 0: So	ource of last	reset was r	not a Missing	Clock Dete	ctor timeou	t.	
D:44	1:50	ource of last	reset was a	a missing Cid	OCK Detector	timeout.		
BITT	PURSF: POW	ver-On Rese	et Flag.	a anablad (b			to o logio hi	ab atata)
	this bit can be	e written to	concurry i	s enableu (L	DD monitor	/IUNEN PIII	to a logic ni	gn state),
		e-select the	VDD monite	r as a reset			source.	
	0. D 1. Se	elect the VD	D monitor a	s a reset so				
	Important: A	t power-on	the VDD n	nonitor is e	nabled/disa	bled using	the externa	
	monitor ena	ble pin (MC	NEN). The	PORSF bit	does not di	sable or er	able the VD	D monitor
	circuit. It sin	nply selects	s the VDD n	nonitor as a	reset sour	ce.		
	Read: This	bit is set wh	nenever a po	ower-on rese	et occurs. Th	is may be o	due to a true	power-on
	reset or a VD	D monitor r	eset. In eithe	er case, data	a memory sh	ould be coi	nsidered inde	eterminate
	following the	reset.			-			
	0: Se	ource of last	t reset was r	not a power-	on or VDD m	nonitor rese	et.	
	1: Se	ource of last	reset was a	a power-on c	or VDD moni	tor reset.		
	Note: When	this flag is	read as '1',	all other re	set flags are	e indeterm	inate.	
Bit0:	PINRSF: HW	Pin Reset	Flag.					
	Write: 0: No	o effect.	• -					
	1: Fo	orces a Pow	er-On Rese	t. /RST is dr	iven low.			
	Read: 0: So	ource of pric	or reset was	not /RST pir	٦.			
	1: Se	ource of pric	or reset was	/RST pin.				

Figure 14.4. RSTSRC: Reset Source Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PGSEL	7 PGSEL6	PGSEL5	PGSEL4	PGSEL3	PGSEL2	PGSEL1	PGSEL0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address: SFR Page:	0xA2 0
Bits7-0:	PGSEL[7:0]: The XRAM F address whe RAM. 0x00: 0x000 0x01: 0x010 0xFE: 0xFEC 0xFF: 0xFFC	XRAM Page Page Select on using an 0 to 0x00FF 0 to 0x01FF 00 to 0xFEF 00 to 0xFFF	ge Select Bi Bits provid 8-bit MOV> = = = F	its. e the high t < command	oyte of the 1 , effectively	6-bit exterr selecting a	nal data mer 256-byte pa	nory age of

Figure 17.1. EMI0CN: External Memory Interface Control

Figure 17.2	. EMI0CF:	External	Memory	Configuration
-------------	-----------	----------	--------	---------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	PRTSEL	EMD2	EMD1	EMD0	EALE1	EALE0	00000011
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
							SFR Address	0xA3
							SFR Page:	0
Bits7-6 [.]	Unused Rea	d = 00b Wr	ite = don't c	are				
Bit5:	PRTSEL: EM	IIF Port Sele	ect.					
	0: EMIF not r	napped to p	ort pins.					
	1: EMIF activ	e on P4-P7	•					
Bit4:	EMD2: EMIF	Multiplex M	ode Select.					
	0: EMIF oper	ates in mult	iplexed add	ress/data mo	ode.			
	1: EMIF oper	ates in non-	multiplexed	mode (sepa	rate addres	s and data p	oins).	
Bits3-2:	EMD1-0: EM	IF Operating	J MODE Sele	CI.	nal Mama	n Intorfago		
	00. Internal C	nii oi iiie op niv: MO\/X	accesses of	e of the Extension	A only All of	y interiace. fective addr	esses alias f	o on-chin
	memory space	лиу. мо у х се.			vi oniy. 7 di ol			
	01: Split Mod	e without Ba	ank Select: /	Accesses be	low the 4 kE	B boundary a	are directed	on-chip.
	Accesses ab	ove the 4 kE	boundary a	are directed	off-chip. 8-b	it off-chip M	OVX operati	ons use the
	current conte	nts of the A	ddress High	port latches	s to resolve u	upper addre	ss byte. Not	e that in
	order to acce	ss off-chip s	pace, EMI0	CN must be	set to a page	e that is not	contained in	the on-chip
	address spac	ie. A with Dank	Coloct: Acc		the ALD h		directed on	ahin
		e with Darik	Select. Acc	esses Delov	off_chin_8_h	it off-chip M	OVX operation	chip.
	contents of F	MIOCN to d	etermine the	high-byte c	of the addres	s		
	11: External (Only: MOVX	accesses o	off-chip XRA	M only. On-o	chip XRAM i	is not visible	to the CPU.
Bits1-0:	EALE1-0: AL	E Pulse-Wid	th Select Bi	its (only has	effect when	$\dot{EMD2} = 0$		
	00: ALE high	and ALE lo	w pulse widt	th = 1 SYSC	LK cycle.			
	01: ALE high	and ALE lo	w pulse widt	th = 2 SYSC	LK cycles.			
	10: ALE high	and ALE lo	w pulse widt	th = 3 SYSC	LK cycles.			
	TT: ALE NIGN	and ALE IO	w puise widt	n = 4 SYSC	LK CYCIES.			

17.4. Multiplexed and Non-multiplexed Selection

The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode, depending on the state of the EMD2 (EMI0CF.4) bit.

17.4.1. Multiplexed Configuration

In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins: AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in Figure 17.3.

In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are presented to AD[7:0]. During this phase, the address latch is configured such that the 'Q' outputs reflect the states of the 'D' inputs. When ALE falls, signaling the beginning of the second phase, the address latch outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data Bus controls the state of the AD[7:0] port at the time /RD or /WR is asserted.

See Section "17.6.2. Multiplexed Mode" on page 199 for more information.

Figure 17.3. Multiplexed Configuration Example

17.5.3. Split Mode with Bank Select

When EMI0CF.[3:2] are set to '10', the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the 4 kB boundary will access on-chip XRAM space.
- Effective addresses beyond the 4 kB boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is onchip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower 8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are driven in "Bank Select" mode.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is onchip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

17.5.4. External Only

When EMI0CF[3:2] are set to '11', all MOVX operations are directed to off-chip space. On-chip XRAM is not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the 4 kB boundary.

- 8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven (identical behavior to an off-chip access in "Split Mode without Bank Select" described above). This allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower 8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

C8051F060/1/2/3/4/5/6/7

Figure 21.2. Multiple-Master Mode Connection Diagram

Figure 21.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram

Figure 21.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

Oscillator frequency	Divide Fac-	Timer 1 Reload	Timer 2, 3, or	Resulting Baud Rate (Hz)**
(MHz)	tor	Value*	4 Reload	
			Value	
24.0	208	0xF3	0xFFF3	115200 (115384)
22.1184	192	0xF4	0xFFF4	115200
18.432	160	0xF6	0xFFF6	115200
11.0592	96	0xFA	0xFFFA	115200
3.6864	32	0xFE	0xFFFE	115200
1.8432	16	0xFF	0xFFFF	115200
24.0	832	0xCC	0xFFCC	28800 (28846)
22.1184	768	0xD0	0xFFD0	28800
18.432	640	0xD8	0xFFD8	28800
11.0592	348	0xE8	0xFFE8	28800
3.6864	128	0xF8	0xFFF8	28800
1.8432	64	0xFC	0xFFFC	28800
24.0	2496	0x64	0xFF64	9600 (9615)
22.1184	2304	0x70	0xFF70	9600
18.432	1920	0x88	0xFF88	9600
11.0592	1152	0xB8	0xFFB8	9600
3.6864	384	0xE8	0xFFE8	9600
1.8432	192	0xF4	0xFFF4	9600

Table 22.2. Oscillator Frequencies for Standard Baud Rates

* Assumes SMOD0=1 and T1M=1.

** Numbers in parenthesis show the actual baud rate.

25.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA0 counter/timer is compared to the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Figure 25.5. PCA Software Timer Mode Diagram

Reset Value 0000000 SFLE WRMD2 WRMD1 WRMD0 RDMD3 RDMD2 RDMD1 RDMD0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 This register determines how the Flash interface logic will respond to reads and writes to the FLASHDAT Register. Bit7: SFLE: Scratchpad Flash Memory Access Enable When this bit is set, Flash reads and writes through the JTAG port are directed to the 128byte Scratchpad Flash sector. When SFLE is set to logic 1, Flash accesses out of the address range 0x00-0x7F should not be attempted. Reads/Writes out of this range will yield undefined results. 0: Flash access from JTAG directed to the Program/Data Flash sector. 1: Flash access from JTAG directed to the Scratchpad sector. Bits6-4: WRMD2-0: Write Mode Select Bits. The Write Mode Select Bits control how the interface logic responds to writes to the FLASH-DAT Register per the following values: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise 000: ignored. 001: A FLASHDAT write initiates a write of FLASHDAT into the memory address by the FLASHADR register. FLASHADR is incremented by one when complete. 010: A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page containing the address in FLASHADR. The data written must be 0xA5 for the erase to occur. FLASHADR is not affected. If FLASHADR = 0x7BFE - 0x7BFF, the entire user space will be erased (i.e. entire Flash memory except for Reserved area 0x7C00 - 0x7FFF). (All other values for WRMD2-0 are reserved.) Bits3-0: RDMD3-0: Read Mode Select Bits. The Read Mode Select Bits control how the interface logic responds to reads to the FLASH-DAT Register per the following values: 0000: A FLASHDAT read provides the data in the FLASHDAT register, but is otherwise ignored. 0001: A FLASHDAT read initiates a read of the byte addressed by the FLASHADR register if no operation is currently active. This mode is used for block reads. 0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only if no operation is active and any data from a previous read has already been read from FLASH-DAT. This mode allows single bytes to be read (or the last byte of a block) without initiating an extra read. (All other values for RDMD3-0 are reserved.)

Figure 26.3. FLASHCON: JTAG Flash Control Register

