

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f065

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

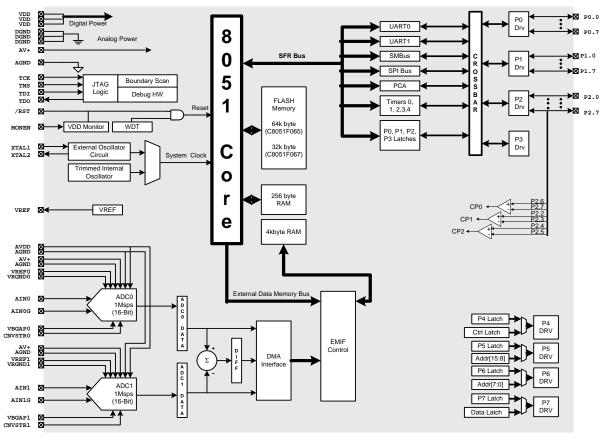


Figure 1.4. C8051F065 / C8051F067 Block Diagram

1.11. Analog Comparators

The C8051F060/1/2/3/4/5/6/7 MCUs include three analog comparators on-chip. The comparators have software programmable hysteresis and response time. Each comparator can generate an interrupt on its rising edge, falling edge, or both. The interrupts are capable of waking up the MCU from sleep mode, and Comparator 0 can be used as a reset source. The output state of the comparators can be polled in software or routed to Port I/O pins via the Crossbar. Outputs from the comparator can be routed through the crossbar. The comparators can be programmed to a low power shutdown mode when not in use.

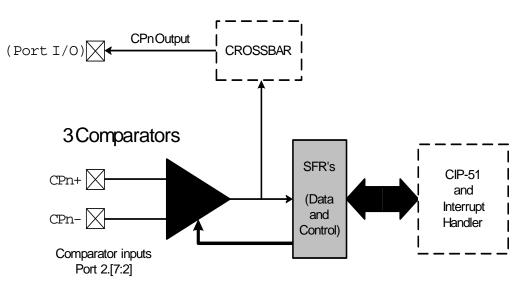


Figure 1.15. Comparator Block Diagram

3. Global DC Electrical Characteristics

Table 3.1. Global DC Electrical Characteristics

-40 to +85 °C, 25 MHz System Clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Analog Supply Voltage (AV+, AVDD)	(Note 1)	2.7	3.0	3.6	V
Digital Supply Voltage (VDD)		2.7	3.0	3.6	V
Analog-to-Digital Supply Delta (VDD - AV+ or VDD - AVDD)				0.5	V
Supply Current from Analog Peripherals (active)	Internal REF, ADC, DAC, Com- parators all enabled. (Note 2)		14		mA
Supply Current from Analog Peripherals (inactive)	Internal REF, ADC, DAC, Com- parators all disabled, oscillator disabled.		0.2		μA
Supply Current from CPU and Digital Peripherals (CPU active) (Note 3)	VDD=2.7 V, Clock=25 MHz VDD=2.7 V, Clock=1 MHz VDD=2.7 V, Clock=32 kHz VDD=3.0 V, Clock=25 MHz VDD=3.0 V, Clock=1 MHz VDD=3.0 V, Clock=32 kHz		18 0.7 30 20 1.0 35		mA mA μA mA mA μA
Supply Current from CPU and Digital Peripherals (CPU inac- tive, not accessing Flash) (Note 3)	VDD=2.7 V, Clock=25 MHz VDD=2.7 V, Clock=1 MHz VDD=2.7 V, Clock=32 kHz VDD=3.0 V, Clock=25 MHz VDD=3.0 V, Clock=1 MHz VDD=3.0 V, Clock=32 kHz		13 0.5 20 16 0.8 23		mA mA μA mA mA μA
Supply Current with all systems shut down	Oscillator not running		0.2		μA
VDD Supply RAM Data Reten- tion Voltage			1.5		V
SYSCLK (System Clock)	(Note 4)	0		25	MHz
Specified Operating Tempera- ture Range		-40		+85	°C

Note 1: Analog Supply AV+ must be greater than 1 V for VDD monitor to operate.

Note 2: Internal Oscillator and VDD Monitor current not included. Individual supply current contributions for each peripheral are listed in the chapter.

Note 3: Current increases linearly with supply Voltage.

Note 4: SYSCLK must be at least 32 kHz to enable debugging.

5.3. ADC Modes of Operation

ADC0 and ADC1 have a maximum conversion speed of 1 Msps. The conversion clocks for the ADCs are derived from the system clock. The ADCnSC bits in the ADCnCF register determine how many system clocks (from 1 to 16) are used for each conversion clock.

5.3.1. Starting a Conversion

For ADC0, conversions can be initiated in one of four ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. For ADC0, conversions may be initiated by:

- 1. Writing a '1' to the AD0BUSY bit of ADC0CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR0;
- 4. A Timer 2 overflow (i.e. timed continuous conversions).

ADC1 conversions can be initiated in five different ways, according to the ADC1 Start of Conversion Mode bits (AD1CM2-AD1CM0) in ADC1CN. For ADC1, conversions may be initiated by:

- 1. Writing a '1' to the AD1BUSY bit of ADC1CN;
- 2. A Timer 3 overflow (i.e. timed continuous conversions);
- 3. A rising edge detected on the external ADC convert start signal, CNVSTR1;
- 4. A Timer 2 overflow (i.e. timed continuous conversions);
- 5. Writing a '1' to the AD0BUSY bit of ADC0CN.

The ADnBUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete. The falling edge of ADnBUSY triggers an interrupt (when enabled) and sets the ADnINT interrupt flag (ADCnCN.5). In single-ended mode, the converted data for ADCn is available in the ADCn data word MSB and LSB registers, ADCnH, ADCnL. In differential mode, the converted data (combined from ADC0 and ADC1) is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L.

When initiating conversions by writing a '1' to ADnBUSY, the ADnINT bit should be polled to determine when a conversion has completed (ADCn interrupts may also be used). The recommended polling procedure is shown below.

Step 1. Write a '0' to ADnINT; Step 2. Write a '1' to ADnBUSY; Step 3. Poll ADnINT for '1';

Step 4. Process ADCn data.

When an external start-of-conversion source is required in differential mode the two pins (CNVSTR0 and CNVSTR1) should be tied together.

5.3.2. Tracking Modes

The ADnTM bit in register ADCnCN controls the ADCn track-and-hold mode. When the ADC is enabled, the ADC input is continuously tracked when a conversion is not in progress. When the ADnTM bit is logic 1, each conversion is preceded by a tracking period (after the start-of-conversion signal). When the CNVSTRn signal is used to initiate conversions, the ADC will track until a rising edge occurs on the CNVSTRn pin (see Figure 5.4 and Table 5.1 for conversion timing parameters). Setting ADnTM to 1 can be useful to ensure that settling time requirements are met when an external multiplexer is used on the analog input (see Section "5.3.3. Settling Time Requirements" on page 56).

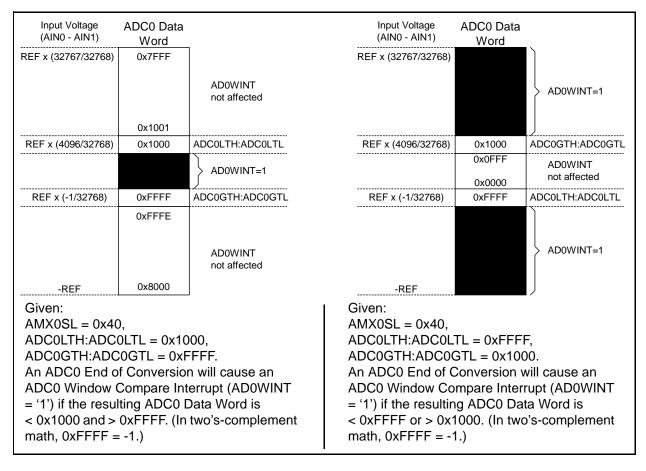
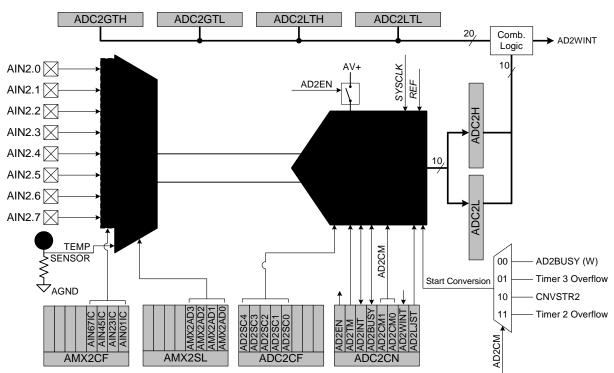



Figure 5.29. 16-Bit ADC0 Window Interrupt Example: Differential Data

7. 10-Bit ADC (ADC2, C8051F060/1/2/3)

The ADC2 subsystem for the C8051F060/1/2/3 consists of an analog multiplexer (referred to as AMUX2), and a 200 ksps, 10-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 7.1). The AMUX2, data conversion modes, and window detector can all be configured from within software via the Special Function Registers shown in Figure 7.1. ADC2 operates in both Single-ended and Differential modes, and may be configured to measure any of the pins on Port 1, or the Temperature Sensor output. The ADC2 subsystem is enabled only when the AD2EN bit in the ADC2 Control register (ADC2CN) is set to logic 1. The ADC2 subsystem is in low power shutdown when this bit is logic 0.

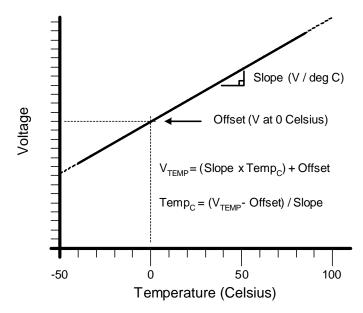


Figure 7.2. Temperature Sensor Transfer Function

7.2. Modes of Operation

ADC2 has a maximum conversion speed of 200 ksps. The ADC2 conversion clock is a divided version of the system clock, determined by the AD2SC bits in the ADC2CF register (system clock divided by (AD2SC + 1) for $0 \le AD2SC \le 31$). The ADC2 conversion clock should be no more than 3 MHz.

7.2.1. Starting a Conversion

A conversion can be initiated in one of four ways, depending on the programmed states of the ADC2 Start of Conversion Mode bits (AD2CM1-0) in register ADC2CN. Conversions may be initiated by one of the following:

- 1. Writing a '1' to the AD2BUSY bit of register ADC2CN
- 2. A Timer 3 overflow (i.e. timed continuous conversions)
- 3. A rising edge on the CNVSTR2 input signal (Assigned by the crossbar)
- 4. A Timer 2 overflow

When CNVSTR2 is used as a conversion start source, it must be enabled in the crossbar, and the corresponding pin must be set to open-drain, high-impedance mode (see Section "18. Port Input/Output" on page 203 for more details on Port I/O configuration).

Writing a '1' to AD2BUSY provides software control of ADC2 whereby conversions are performed "ondemand". During conversion, the AD2BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD2BUSY triggers an interrupt (when enabled) and sets the ADC2 interrupt flag (AD2INT). Note: When polling for ADC conversion completions, the ADC2 interrupt flag (AD2INT) should be used. Converted data is available in the ADC2 data registers, ADC2H and ADC2L, when bit AD2INT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, low byte overflows are used if the timer is in 8-bit mode; and high byte overflows are used if the timer is in 16bit mode. See Section "24. Timers" on page 287 for timer configuration.

Figure 7.8. ADC2H: ADC2 Data Word MSB Register

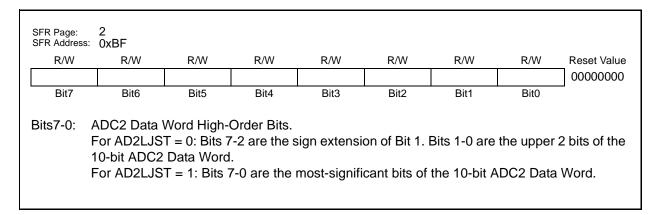
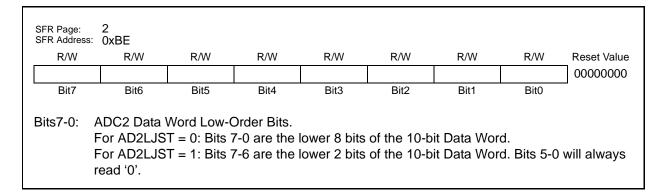
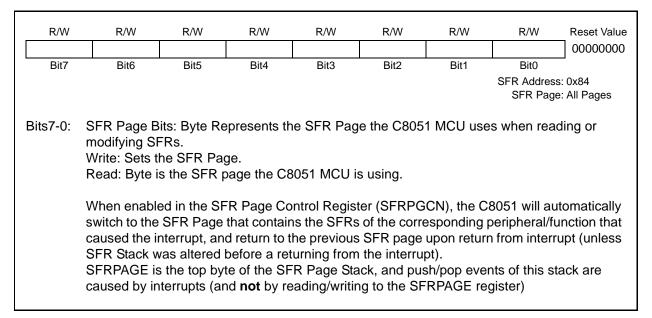



Figure 7.9. ADC2L: ADC2 Data Word LSB Register

Table 8.1. DAC Electrical Characteristics

VDD = 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), No Output Load unless otherwise specified


Parameter	Conditions	Min	Тур	Max	Units
Static Performance	1		1	1 1	
Resolution			12		bits
Integral Nonlinearity			±1.5		LSB
Differential Nonlinearity				±1	LSB
Output Noise	No Output Filter 100 kHz Output Filter 10 kHz Output Filter		250 128 41		µVrms
Offset Error	Data Word = 0x014		±3	±30	mV
Offset Tempco			6		ppm/°C
Full-Scale Error			±20	±60	mV
Full-Scale Error Tempco			10		ppm/°C
VDD Power Supply Rejection Ratio			-60		dB
Output Impedance in Shutdown Mode	DACnEN = 0		100		kΩ
Output Sink Current			300		μA
Output Short-Circuit Current	Data Word = 0xFFF		15		mA
Dynamic Performance			•		
Voltage Output Slew Rate	Load = 40pF		0.44		V/µs
Output Settling Time to 1/2 LSB	Load = 40pF, Output swing from code 0xFFF to 0x014		10		μs
Output Voltage Swing		0		VREF- 1LSB	V
Startup Time			10		μs
Analog Outputs				1 1	
Load Regulation	$I_L = 0.01$ mA to 0.3mA at code 0xFFF		60		ppm
Power Consumption (each DA	AC)	I	1	1 1	
Power Supply Current (AV+ supplied to DAC)	Data Word = 0x7FF		300	500	μA

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	-	-	-	-	SFRPGEN	0000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address: SFR Page:	
Bits7-1: Bit0:	Reserved. SFRPGEN: Upon interru automatically This bit is us 0: SFR Auto priate SFR p was the sour 1: SFR Auto the page tha rupt.	pt, the C80 y switch the ed to contro matic Pagir page (i.e., th rce of the in matic Pagir	51 Core wil SFR page of this autor of disabled. e SFR pag terrupt). og enabled.	l vector to the to the corre baging funct C8051 corre that conta Upon interr	ne specified sponding p ion. e will not au ins the SFF upt, the C8	eripheral of itomatically Rs for the p 051 will sw	r function's S change to t eripheral/fun itch the SFR	SFR page. he appro- action that t page to

Figure 13.9. SFRPGCN: SFR Page Control Register

Figure 13.10. SFRPAGE: SFR Page Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
EDMA0	ES1	ECAN0	EADC2	EWADC2	ET4	EADC1	ET3	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	SFR Address: 0xE7										
	SFR Page: All Pages										
Bit7:	EDMA0: Enable DMA0 Interrupt.										
DILT.	This bit sets										
	0: Disable D		•	nao interiop							
	1: Enable D		•								
Bit6:	ES1: Enable										
	This bit sets			RT1 Interru	ot.						
	0: Disable U	ART1 interr	upt.								
	1: Enable UA	ART1 interr	upt.								
Bit5:	ECAN0: Ena										
	This bit sets		•		Interrupt.						
	0: Disable C										
514	1: Enable int		•			oller.					
Bit4:	EADC2: Ena										
	This bit sets 0: Disable A		•		onversion	interrupt.					
	1: Enable int				DC2 End	of Conversi	on Interrun	+			
Bit3:	EWADC2: E						Ji interiup				
Dito.	This bit sets		•			terrupt.					
	0: Disable A										
	1: Enable Int					Comparisor	ns.				
Bit2:	ET4: Enable					·					
	This bit sets	the maskin	g of the Tir	ner 4 interru	ot.						
	0: Disable Ti		•								
	1: Enable int										
Bit1:	EADC1: Ena										
	This bit sets				conversion	Interrupt.					
	0: Disable A			•							
Bit0:	1: Enable int			ated by the A	NDC1 CONV	version inter	rupt.				
DILU.	ET3: Enable This bit sets			nor 3 intorru	h t						
	0: Disable al				л.						
	1: Enable int			ated by the T	F3 flag.						
			genor								

Figure 13.22. EIE2: Extended Interrupt Enable 2

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu						
PADC0	PCP2	PCP1	PCP0	PPCA0	PWADC0	PSMB0	PSPI0	00000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0							
							SFR Address: 0xF6 SFR Page: All Pages							
Bit7:	PADC0: ADC			•										
	This bit sets													
	0: ADC0 End													
	1: ADC0 End					vel.								
Bit6:	PCP2: Com				ontrol.									
	This bit sets													
	0: CP2 inter													
	1: CP2 interi													
Bit5:	PCP1: Com				ontrol.									
	This bit sets													
	0: CP1 inter	•												
	1: CP1 interi													
Bit4:	PCP0: Com	•	, ·		ontrol.									
	This bit sets													
	0: CP0 inter	•												
Bit3:	1: CP0 interi					riarity Cant	rol							
DIIJ.	PPCA0: Pro This bit sets) interrupt Pi		01.							
	0: PCA0 inte													
	1: PCA0 inte	•												
Bit2:	PWADC0: A				ot Priority Co	ontrol								
	This bit sets					JILIOI.								
	0: ADC0 Wir				•									
	1: ADC0 Wir		•											
Bit1:	PSMB0: Sys		•			ority Contr	ol							
Ditt.	This bit sets			· /	•	only contra	01.							
	0: SMBus in				P									
	1: SMBus in	•												
Bit0:	PSPI0: Seria	•	• •		rupt Priority	Control.								
	This bit sets	•		· /										
	0: SPI0 inter													
	1: SPI0 inter	•												

Figure 13.23. EIP1: Extended Interrupt Priority 1

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PDMA0	PS1	PCAN0	PADC2	PWADC2	PT4	PADC1	PT3	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xF7 e: All Pages
							SITTAY	e. All 1 ayes
Bit7:	PDMA0: DM	A0 Interrup	t Priority Co	ontrol.				
	This bit sets							
	0: DMA0 inte							
	1: DMA0 inte	errupt set to	high priorit	y.				
Bit6:	PS1: UART1	I Interrupt P	riority Cont	rol.				
	This bit sets							
	0: UART1 in	•	•					
	1: UART1 in	•	• •					
Bit5:	PCAN0: CA							
	This bit sets							
	0: CAN Inter							
	1: CAN Inter							
Bit4:	PADC2: ADC							
	This bit sets					nterrupt.		
	0: ADC2 End							
	1: ADC2 End					أمسلسما		
Bit3:	PWADC2: A 0: ADC2 Wir				Phonty C	ontroi.		
	1: ADC2 Wir		•					
Bit2:	PT4: Timer 4		•	• • •				
אוב.	This bit sets							
	0: Timer 4 in							
	1: Timer 4 in							
Bit1:	PADC1: AD				ity Contro	I		
	This bit sets							
	0: ADC1 End					•		
	1: ADC1 End							
Bit0:	PT3: Timer 3							
	This bit sets				6.			
	0: Timer 3 in							
		•	o high prio					

Figure 13.24. EIP2: Extended Interrupt Priority 2

R	R/W	R/W	R/W	R	R/W	R/W	R/W	Reset Value
-	CNVRSE	F CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	
							SFR Page	. 0
Bit7:	Reserved.							
Bit6:		Convert Star			and Flag			
		CNVSTR2 is CNVSTR2 is			w)			
		Source of prid		•	,			
		Source of price			Λ <u></u> .			
Bit5:		Comparator0						
		Comparator0		-				
		Comparator0		```	,			
		Source of las		•				
D:44		Source of las).			
Bit4:	Write: 0:	oftware Rese	t Force and	Flag.				
		Forces an inter	ernal reset	/RST nin is r	not effected			
		Source of las		•		- bit.		
		Source of las						
Bit3:	WDTRSF:	Watchdog Tin	ner Reset Fl	ag.				
		Source of las						
Dire		Source of las			t.			
Bit2:		Missing Clock		-				
		Missing Clock Missing Clock			ore a rocat i	f a missing (clack conditi	on is
		detected.		nabica, ingg		ra missing (01113
	Read: 0:	Source of las	t reset was r	not a Missing	g Clock Dete	ctor timeou	t.	
		Source of las						
Bit1:		ower-On Rese	•					
		he VDD moni	-	•		•	-	gh state),
		be written to De-select the				as a reset s	source.	
		Select the VE						
		At power-or				bled usina	the externa	al VDD
		able pin (MC						
	circuit. It s	imply select	s the VDD r	nonitor as a	reset sour	ce.		
		is bit is set wl						
		DD monitor r	eset. In eith	er case, data	a memory sh	nould be cor	nsidered inde	eterminate
	following th					:		
		Source of las Source of las					t.	
		n this flag is		•			inate	
Bit0:		W Pin Reset			est nags a			
		No effect.						
		Forces a Pow	/er-On Rese	et. /RST is dr	iven low.			
		Source of price		•	า.			
	1:	Source of price	or reset was	/RST pin.				
		•		•				

Figure 14.4. RSTSRC: Reset Source Register

18.2. Ports 4 through 7 (C8051F060/2/4/6 only)

All Port pins on Ports 4 through 7 can be accessed as General-Purpose I/O (GPIO) pins by reading and writing the associated Port Data registers (See Figure 18.19, Figure 18.21, Figure 18.23, and Figure 18.25), a set of SFRs which are byte-addressable. Note that Port 4 has only three pins: P4.5, P4.6, and P4.7. Note also that the Port 4, 5, 6, and 7 registers are located on SFR Page F. The SFRPAGE register must be set to 0x0F to access these Port registers.

A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regardless of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs during the execution of a *read-modify-write* instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC, CLR, SETB, and the bitwise MOV write operation). During the *read* cycle of the *read-modify-write* instruction, it is the contents of the Port Data register, not the state of the Port pins themselves, which is read.

18.2.1. Configuring Ports which are not Pinned Out

Although P3, P4, P5, P6, and P7 are not brought out to pins on the C8051F061/3/5/7 devices, the Port Data registers are still present and can be used by software. Because the digital input paths also remain active, it is recommended that these pins not be left in a 'floating' state in order to avoid unnecessary power dissipation arising from the inputs floating to non-valid logic levels. This condition can be prevented by any of the following:

- 1. Leave the weak pull-up devices enabled by setting WEAKPUD (XBR2.7) to a logic 0.
- 2. Configure the output modes of P3, P4, P5, P6, and P7 to "Push-Pull" by writing 0xFF to the associated output mode register (PnMDOUT).
- 3. Force the output states of P3, P4, P5, P6, and P7 to logic 0 by writing zeros to the Port Data registers: P3 = 0x00, P4 = 0x00, P5 = 0x00, P6= 0x00, and P7 = 0x00.

18.2.2. Configuring the Output Modes of the Port Pins

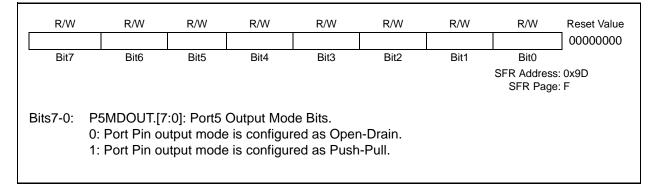
The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull configuration, a logic 0 in the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configuration, a logic 0 in the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent contention between devices in systems where the Port pin participates in a shared interconnection in which multiple outputs are connected to the same physical wire.

The output modes of the Port pins on Ports 4 through 7 are determined by the bits in their respective PnMDOUT Output Mode Registers. Each bit in PnMDOUT controls the output mode of its corresponding port pin (see Figure 18.20, Figure 18.22, Figure 18.24, and Figure 18.26). For example, to place Port pin 5.3 in push-pull mode (digital output), set P5MDOUT.3 to logic 1. All port pins default to open-drain mode upon device reset.

18.2.3. Configuring Port Pins as Digital Inputs

A Port pin is configured as a digital input by setting its output mode to "Open-Drain" and writing a logic 1 to the associated bit in the Port Data register. For example, P7.7 is configured as a digital input by setting P7MDOUT.7 to a logic 0 and P7.7 to a logic 1.

18.2.4. Weak Pull-ups


By default, each Port pin has an internal weak pull-up device enabled which provides a resistive connection (about 100 k Ω) between the pin and VDD. The weak pull-up devices can be globally disabled by writ-

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
P5.7	P5.6	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0	11111111		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable		
							SFR Address SFR Page	•···= •		
Bits7-0:										
Note:	P5.[7:0] can b tiplexed mode page 187 for	e). See Se	ction "17. E	xternal Dat	a Memory I	nterface an				

Figure 18.21. P5: Port5 Data Register

Figure 18.22. P5MDOUT: Port5 Output Mode Register

Please refer to the Bosch CAN User's Guide for information on the function and use of the Message Handler Registers.

19.2.4. CIP-51 MCU Special Function Registers

C8051F060/1/2/3 peripherals are modified, monitored, and controlled using Special Function Registers (SFRs). Most of the CAN Controller registers cannot be accessed *directly* using the SFRs. Three of the CAN Controller's registers may be accessed directly with SFRs. All other CAN Controller registers are accessed indirectly using three CIP-51 MCU SFRs: the CAN Data Registers (CAN0DATH and CAN0-DATL) and CAN Address Register (CAN0ADR). In this way, there are a total of five CAN registers used to configure and run the CAN Controller.

19.2.5. Using CAN0ADR, CAN0DATH, and CANDATL To Access CAN Registers

Each CAN Controller Register has an index number (see Table below). The CAN register address space is 128 words (256 bytes). A CAN register is accessed via the CAN Data Registers (CAN0DATH and CAN0-DATL) when a CAN register's index number is placed into the CAN Address Register (CAN0ADR). For example, if the Bit Timing Register is to be configured with a new value, CAN0ADR is loaded with 0x03. The low byte of the desired value is accessed using CAN0DATL and the high byte of the bit timing register is accessed using CAN0DATL is bit addressable for convenience. To load the value 0x2304 into the Bit Timing Register:

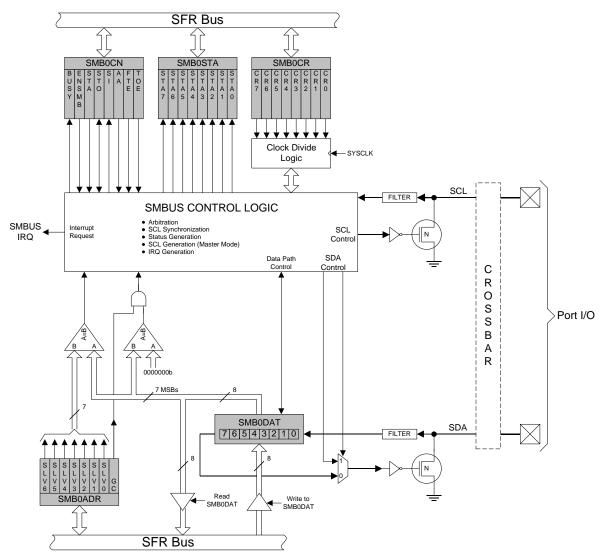
CANOADR = 0x03; // Load Bit Timing Register's index (Table 18.1) CANODATH = 0x23; // Move the upper byte into data reg high byte CANODATL = 0x04; // Move the lower byte into data reg low byte

<u>Note:</u> CAN0CN, CAN0STA, and CAN0TST may be accessed either by using the index method, or by direct access with the CIP-51 MCU SFRs. CAN0CN is located at SFR location 0xF8/SFR page 1 (Figure 19.6), CAN0TST at 0xDB/SFR page 1 (Figure 19.7), and CAN0STA at 0xC0/SFR page 1 (Figure 19.8).

19.2.6. CAN0ADR Autoincrement Feature

For ease of programming message objects, CAN0ADR features autoincrementing for the index ranges 0x08 to 0x12 (Interface Registers 1) and 0x20 to 0x2A (Interface Registers 2). When the CAN0ADR register has an index in these ranges, **the CAN0ADR will autoincrement by 1 to point to the next CAN register 16-bit word upon a read/write of <u>CAN0DATL</u>. This speeds programming of the frequently programmed interface registers when configuring message objects.**

<u>NOTE:</u> Table below supersedes Figure 5 in section 3, "Programmer's Model" of the Bosch CAN User's Guide.


CAN Register Index	Register name	Reset Value	Notes
0x00	CAN Control Register	0x0001	Accessible in CIP-51 SFR Map
0x01	Status Register	0x0000	Accessible in CIP-51 SFR Map
0x02	Error Register	0x0000	Read Only
0x03	Bit Timing Register	0x2301	Write Enabled by CCE Bit in CAN0CN

20. System Management BUS / I2C BUS (SMBUS0)

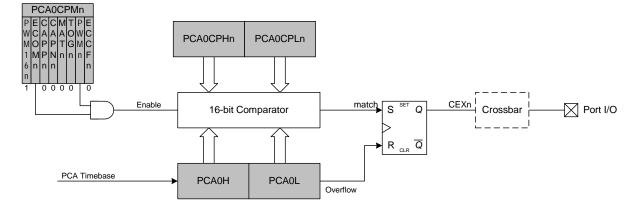
The SMBus0 I/O interface is a two-wire, bi-directional serial bus. SMBus0 is compliant with the System Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus0 interface autonomously controlling the serial transfer of the data. A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

SMBus0 may operate as a master and/or slave, and may function on a bus with multiple masters. SMBus0 provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation.

Parameter	Description	Min	Max	Units
Master Mode	Timing [†] (See Figure 21.12 and Figure 21.13)			1
т _{мскн}	SCK High Time	1*T _{SYSCLK}		ns
T _{MCKL}	SCK Low Time	1*T _{SYSCLK}		ns
T _{MIS}	MISO Valid to SCK Shift Edge	1*T _{SYSCLK} + 20		ns
т _{мін}	SCK Shift Edge to MISO Change	0		ns
Slave Mode	Timing[†] (See Figure 21.14 and Figure 21.15)			
T _{SE}	NSS Falling to First SCK Edge	2*T _{SYSCLK}		ns
T _{SD}	Last SCK Edge to NSS Rising	2*T _{SYSCLK}		ns
T _{SEZ}	NSS Falling to MISO Valid		4*T _{SYSCLK}	ns
T _{SDZ}	NSS Rising to MISO High-Z		4*T _{SYSCLK}	ns
Т _{СКН}	SCK High Time	5*T _{SYSCLK}		ns
T _{CKL}	SCK Low Time	5*T _{SYSCLK}		ns
T _{SIS}	MOSI Valid to SCK Sample Edge	2*T _{SYSCLK}		ns
T _{SIH}	SCK Sample Edge to MOSI Change	2*T _{SYSCLK}		ns
Т _{SOH}	SCK Shift Edge to MISO Change		4*T _{SYSCLK}	ns
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6*T _{SYSCLK}	8*T _{SYSCLK}	ns
[†] T _{SYSCLK} is e	equal to one period of the device system clock (SYSC	LK).	•	

Table 21.1. SPI Slave Timing Parameters

25.2.6. 16-Bit Pulse Width Modulator Mode


Each PCA0 module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA0 clocks for the low time of the PWM signal. When the PCA0 counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA0 CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, CCFn should also be set to logic 1 to enable match interrupts. The duty cycle for 16-Bit PWM Mode is given by Equation 25.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Equation 25.3. 16-Bit PWM Duty Cycle

 $DutyCycle = \frac{(65536 - PCA0CPn)}{65536}$

Figure 25.9. PCA 16-Bit PWM Mode

