E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	59
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f066r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

26.2.Flash Programming Commands	322
26.3.Debug Support	325
27. Document Change List	327
27.1.Revision 1.1 to Revision 1.2	327

Figure 18.5. XBR0: Port I/O Crossbar Register 0	210
Figure 18.6. XBR1: Port I/O Crossbar Register 1	211
Figure 18.7. XBR2: Port I/O Crossbar Register 2	212
Figure 18.8. XBR3: Port I/O Crossbar Register 3	213
Figure 18.9. P0: Port0 Data Register	214
Figure 18.10. P0MDOUT: Port0 Output Mode Register	214
Figure 18.11. P1: Port1 Data Register	215
Figure 18.12. P1MDIN: Port1 Input Mode Register	215
Figure 18.13. P1MDOUT: Port1 Output Mode Register	216
Figure 18.14. P2: Port2 Data Register	216
Figure 18.15. P2MDIN: Port2 Input Mode Register	217
Figure 18.16. P2MDOUT: Port2 Output Mode Register	217
Figure 18.17. P3: Port3 Data Register	218
Figure 18.18. P3MDOUT: Port3 Output Mode Register	218
Figure 18.19. P4: Port4 Data Register	221
Figure 18.20. P4MDOUT: Port4 Output Mode Register	221
Figure 18.21. P5: Port5 Data Register	222
Figure 18.22. P5MDOUT: Port5 Output Mode Register	222
Figure 18.23. P6: Port6 Data Register	223
Figure 18.24. P6MDOUT: Port6 Output Mode Register	223
Figure 18.25. P7: Port7 Data Register	224
Figure 18.26. P7MDOUT: Port7 Output Mode Register	224
19. Controller Area Network (CAN0, C8051F060/1/2/3)	225
Figure 19.1. CAN Controller Diagram	226
Figure 19.2. Typical CAN Bus Configuration	226
Figure 19.3. CAN0DATH: CAN Data Access Register High Byte	231
Figure 19.4. CAN0DATL: CAN Data Access Register Low Byte	231
Figure 19.5. CAN0ADR: CAN Address Index Register	232
Figure 19.6. CAN0CN: CAN Control Register	232
Figure 19.7. CAN0TST: CAN Test Register	233
Figure 19.8. CANOSTA: CAN Status Register	233
20. System Management BUS / I2C BUS (SMBUS0)	235
Figure 20.1. SMBus0 Block Diagram	235
Figure 20.2. Typical SMBus Configuration	236
Figure 20.3. SMBus Transaction	237
Figure 20.4. Typical Master Transmitter Sequence	238
Figure 20.5. Typical Master Receiver Sequence	238
Figure 20.6. Typical Slave Transmitter Sequence	239
Figure 20.7. Typical Slave Receiver Sequence	240
Figure 20.8. SMBUCN: SMBUSU Control Register	243
Figure 20.9. SMBUCK: SMBUSU Clock Rate Register	244
FIGURE 20.10. SMBUDAT: SMBUSU DATA REGISTER	245
FIGURE 20.11. SIVIBUADK: SIVIBUSU ADDRESS REGISTER	246
Figure 20.12. SIVIBUS I A: SIVIBUSU STATUS REGISTER	247
21. Ennanced Serial Peripheral Interface (SPIV)	251

	MIPS (Peak)	Flash Memory	RAM	External Memory Interface	SMBus/I2C and SPI	CAN	UARTS	Timers (16-bit)	Programmable Counter Array	Digital Port I/O's	16-bit 1 Msps ADC Typical INL (LSBs)	10-bit 200 ksps ADC Inputs	Voltage Reference	Temperature Sensor	DAC Resolution (bits)	DAC Outputs	Analog Comparators	Package
C8051F060	25	64 k	4352	\checkmark	\checkmark	\checkmark	2	5	\checkmark	59	±0.75	8	~	~	12	2	3	100 TQFP
C8051F061	25	64 k	4352	-	\checkmark	V	2	5	\checkmark	24	±0.75	8	\checkmark	\checkmark	12	2	3	64 TQFP
C8051F062	25	64 k	4352	\checkmark	\checkmark	\checkmark	2	5	\checkmark	59	±1.5	8	\checkmark	\checkmark	12	2	3	100 TQFP
C8051F063	25	64 k	4352	-	~	\checkmark	2	5	\checkmark	24	±1.5	8	~	\checkmark	12	2	3	64 TQFP
C8051F064	25	64 k	4352	\checkmark	\checkmark	-	2	5	\checkmark	59	±0.75	-	\checkmark	-	-	-	3	100 TQFP
C8051F065	25	64 k	4352	-	\checkmark	-	2	5	\checkmark	24	±0.75	-	\checkmark	-	-	-	3	64 TQFP
C8051F066	25	32 k	4352	\checkmark	\checkmark	-	2	5	\checkmark	59	±0.75	-	\checkmark	-	-	-	3	100 TQFP
C8051F067	25	32 k	4352	-	\checkmark	-	2	5	\checkmark	24	±0.75	-	\checkmark	-	-	-	3	64 TQFP

 Table 1.1. Product Selection Guide

T

_

-

Figure 5.2. 16-bit ADC0 and ADC1 Data Path Diagram

5.1. Single-Ended or Differential Operation

ADC0 and ADC1 can be programmed to operate independently as single-ended ADCs, or together to accept a differential input. In single-ended mode, the ADCs can be configured to sample simultaneously, or to use different conversion speeds. In differential mode, ADC1 is a slave to ADC0, and its configuration is based on ADC0 settings, except during offset or gain calibrations. The DIFFSEL bit in the Channel Select Register AMX0SL (Figure 5.6) selects between single-ended and differential mode.

5.1.1. Pseudo-Differential Inputs

The inputs to the ADCs are pseudo-differential. The actual voltage measured by each ADC is equal to the voltage between the AINn pin and the AINnG pin. AINnG must be a DC signal between -0.2 and 0.6 V. In most systems, AINnG will be connected to AGND. If not tied to AGND, the AINnG signal can be used to negate a limited amount of fixed offset, but it is recommended that the internal offset calibration features of the device be used for this purpose. When operating in differential mode, AIN0G and AIN1G should be tied together. AINn must remain above AINnG in both modes for accurate conversion results.

5.3.3. Settling Time Requirements

The ADC requires a minimum tracking time before an accurate conversion can be performed. This tracking time is determined by the ADC input resistance, the ADC sampling capacitance, any external source resistance, and the accuracy required for the conversion. Figure 5.5 shows the equivalent ADC input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required settling time for a given settling accuracy (*SA*) may be approximated by Equation 5.1. An absolute minimum tracking time of 280 ns is required prior to the start of a conversion.

$$t = \ln\left(\frac{2^n}{SA}\right) \times R_{TOTAL} C_{SAMPLE}$$

Equation 5.1. ADC0 Settling Time Requirements

Where:

SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) *t* is the required settling time in seconds

 R_{TOTAL} is the sum of the ADC input resistance and any external source resistance. *n* is the ADC resolution in bits (16).

6.2. DMA0 Instruction Format

DMA instructions can request single-ended data from both ADC0 and ADC1, as well as the differential combination of the two ADC inputs. The instruction format is identical to the DMA0IDT register, shown in Figure 6.7. Depending on which bits are set to '1' in the instruction word, either 2 or 4 bytes of data will be written to XRAM for each DMA instruction cycle (excluding End-Of-Operation instructions). Table 6.1 details all of the valid DMA instructions. Instructions not listed in the table are not valid DMA instructions, and should not be used. Note that the ADCs can be independently controlled by the microcontroller when their outputs are not requested by the DMA.

Instruction Word	Description	First Data Written to XRAM (2 bytes)	Second Data Written to XRAM (2 bytes)
0000000b	End-Of-Operation	none	none
1000000b	End-Of-Operation with Continuous Conversion	none	none
x0010000b	Retrieve ADC0 Data	ADC0H:ADC0L	none
x0100000b	Retrieve ADC1 Data	ADC1H:ADC1L	none
x0110000b	Retrieve ADC0 and ADC1 Data	ADC0H:ADC0L	ADC1H:ADC1L
x10x0000b	Retrieve Differential Data	ADC0H:ADC0L (differential result from both ADCs)	none
x11x0000b	Retrieve Differential and ADC1 Data	ADC0H:ADC0L (differential result from both ADCs)	ADC1H:ADC1L

6.3. XRAM Addressing and Setup

The DMA Interface can be configured to access either on-chip or off-chip XRAM. Any writes to on-chip XRAM by the DMA Control Logic occur when the processor core is not accessing the on-chip XRAM. This ensures that the DMA will not interfere with processor instruction timing.

Off-chip XRAM access (only available on the C8051F060/2/4/6) is controlled by the DMA0HLT bit in DMA0CF (DMA Configuration Register, Figure 6.5). The DMA will have full access to off-chip XRAM when this bit is '0', and the processor core will have full access to off-chip XRAM when this bit is '1'. The DMA0HLT bit should be controlled in software when both the processor core and the DMA Interface require access to off-chip XRAM data space. Before setting DMA0HLT to '1', the software should check the DMA0XBY bit to ensure that the DMA is not currently accessing off-chip XRAM. The processor core cannot access off-chip XRAM while DMA0HLT is '0'. The processor will continue as though it was able to perform the desired memory access, but the data will not be written to or read from off-chip XRAM. When the processor core is finished accessing off-chip XRAM, DMA0HLT should be set back to '0'in software to return control to the DMA Interface. The DMA Control Logic will wait until DMA0HLT is '0' before writing data to off-chip XRAM. If new data becomes available to the DMA Interface before the previous data has been written, an overflow condition will occur, and the new data word may be lost.

The Data Address Pointer Registers (DMA0DSH and DMA0DSL) contain the 16-bit XRAM address location where the DMA interface will write data. When the DMA is initially enabled, the DMA Data Address

Figure 7.8. ADC2H: ADC2 Data Word MSB Register

Figure 7.9. ADC2L: ADC2 Data Word LSB Register

SFR Page: SFR Address	2 5: 0xF8	(bit address	able)									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
AD2EN	AD2TM	AD2INT	AD2BUSY	AD2CM1	AD2CM0	AD2WINT	AD2LJST	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_				
Bit 7:	AD2EN: AD	C2 Enable	Bit.									
	1: ADC2 Enabled. ADC2 is active and ready for data conversions.											
Bit6.	ADC2 Enabled. ADC2 is active and ready for data conversions. AD2TM: ADC2 Track Mode Bit.											
Dito.	0: Normal Track Mode: When ADC2 is enabled tracking is continuous unless a conversion											
	is in progres	S.			, naoning i		e unicee u					
	1: Low-powe	er Track Mo	de: Tracking	Defined b	y AD2CM2-	-0 bits (see	below).					
Bit5:	AD2INT: AD	C2 Convers	sion Comple	ete Interrupt	Flag.							
	0: ADC2 has	s not compl	eted a data	conversion	since the la	ast time AD2	2INT was c	leared.				
D:4 4.	1: ADC2 has	s completed	d a data con	version.								
BIT 4:	AD2BUST: A	ADCZ Busy	BII.									
	0 [•] ADC2 cor	version is (complete or	a conversio	on is not cu	rrently in pro	oaress AD	2INT is set				
	to logic 1 on	the falling	edge of AD2	BUSY.								
	1: ADC2 cor	version is i	in progress.									
	Write:											
	0: No Effect.											
	1: Initiates A	DC2 Conve	ersion if AD2	2CM2-0 = 0	00b							
BITS 3-2:	AD2CM1-0:	ADC2 Star M = 0:	t of Convers	ion wode S	elect.							
		nversion ir	nitiated on e	verv write o	f '1' to AD2	BUSY						
	01: ADC2 cc	nversion ir	nitiated on o	verflow of T	imer 3.	0001.						
	10: ADC2 co	nversion ir	nitiated on ri	sing edge o	f external C	NVSTR2 p	in.					
	11: ADC2 co	nversion in	itiated on ov	erflow of T	imer 2.							
	When AD2T	M = 1:										
	00: Tracking	initiated or	n write of '1'	to AD2BUS	SY and lasts	s 3 SAR clo	cks, followe	ed by con-				
	version.	initiated or	overflow o	Timor 3 ar	d lasts 3 S	AP clocks	followed by	conver-				
	sion	initiated of		Timer 5 ai	10 10313 3 3		ioliowed by	conver-				
	10: ADC2 tra	acks only w	hen CNVS	R2 input is	logic low: c	conversion s	starts on ris	ina				
	CNVSTR2 e	dge.			- 3 , -			5				
	11: Tracking	initiated on	overflow of	Timer 2 an	d lasts 3 SA	AR clocks, fo	ollowed by	conversion.				
Bit 1:	AD2WINT: A	DC2 Wind	ow Compare	e Interrupt F	lag.							
	0: ADC2 Wir	ndow Comp	parison Data	match has	not occurre	ed since this	s flag was I	ast cleared.				
Bit O.		DC2 Loft L	Darison Data	match has	occurred.							
	0: Data in Al		2L registers	are right-iu	stified							
	1: Data in Al	DC2H:ADC	2L registers	are left-jus	tified.							
			5									

Figure 7.10. ADC2CN: ADC2 Control Register

7.3. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC2 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD2WINT in register ADC2CN) can also be used in polled mode. The ADC2 Greater-Than (ADC2GTH, ADC2GTL) and Less-Than (ADC2LTH, ADC2LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC2 Less-Than and ADC2 Greater-Than registers.

While in the ADC2 ISR, a PCA interrupt occurs. Recall the PCA interrupt is configured as a *high* priority interrupt, while the ADC2 interrupt is configured as a *low* priority interrupt. Thus, the CIP-51 will now vector to the high priority PCA ISR. Upon doing so, the CIP-51 will automatically place the SFR page needed to access the PCA's special function registers into the SFRPAGE register, SFR Page 0x00. The value that was in the SFRPAGE register before the PCA interrupt (SFR Page 2 for ADC2) is pushed down the stack into SFRNEXT. Likewise, the value that was in the SFRNEXT register before the PCA interrupt (in this case SFR Page 0x0F for Port 5) is pushed down to the SFRLAST register, the "bottom" of the stack. Note that a value stored in SFRLAST (via a previous software write to the SFRLAST register) will be overwritten. See Figure 13.6 below.

Figure 13.6. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR

Table 13.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.
TMR4L	0xCC	2	Timer/Counter 4 Low	page 301
WDTCN	0xFF	All Pages	Watchdog Timer Control	page 167
XBR0	0xE1	F	Port I/O Crossbar Control 0	page 210
XBR1	0xE2	F	Port I/O Crossbar Control 1	page 211
XBR2	0xE3	F	Port I/O Crossbar Control 2	page 212
XBR3	0xE4	F	Port I/O Crossbar Control 3	page 213

^{*1} Refers to a register in the C8051F060/2/4/6 only.

 $^{\ast 2}$ Refers to a register in the C8051F060/2 only.

*3 Refers to a register in the C8051F061/3 only.

^{*4} Refers to a register in the C8051F060/1/2/3 only.

^{*5} Refers to a register in the C8051F064/5/6/7 only.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
CY	AC	F0	RS1	RS0	OV	F1	PARITY	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
							SFR Address SFR Page	s: 0xD0 e: All Pages			
Bit7:	CY: Carry	Flag.									
	This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow										
	(subtractio	on). It is cle	eared to 0 by all	other arit	nmetic ope	erations.					
Bit6:	AC: Auxilia	ary Carry I	-lag.								
	I NIS DIT IS	set when t	ne last arithmet	ic operations of the second	n resulted	to 0 by all o	ther arithme	fic opera-			
	tions.	505110010	i) the high blue								
Bit5:	F0: User F	lag 0.									
	This is a b	it-address	able, general pu	urpose flag	g for use u	nder softwar	e control.				
Bits4-3:	RS1-RS0:	Register I	Bank Select.								
	These bits	select wh	ich register ban	ik is used	buring reg	Ister accesse	es.				
	RS1	RS0	Register Bank	Add	ress						
	0	0	0	0x00	0x07						
	0	1	1	0x08	0x0F						
	1	0	2	0x10	· 0x17						
	1	1	3	0x18	· 0x1F						
Bit2:	OV: Overfl	low Flag.	dor the followin		tonooo:						
	• An ADD		SUBB instructi	on causes	a sign-ch	ange overflo	W				
	• A MUL ir	struction	results in an ove	erflow (res	ult is great	ter than 255)					
	• A DIV ins	struction c	auses a divide-b	by-zerò co	ndition.	,					
	The OV bi	t is cleared	to 0 by the AD	D, ADDC,	SUBB, M	UL, and DIV	instructions	in all other			
D:44 .	Cases.										
BITT	F1: USEFF This is a h	it-address	able general p	urnose flav	n for use u	nder softwar	e control				
Bit0:	PARITY: P	arity Flag	abie, general p		y 101 use u		c control.				
	This bit is a	set to 1 if t	he sum of the ei	ight bits in	the accum	nulator is odd	and cleared	l if the sum			
	is even.										

Figure 13.16. PSW: Program Status Word

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
EADC0	CP2IE	CP1IE	CP0IE	EPCA0	EWADC0	ESMB0	ESPI0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
							SFR Address	s: 0xE6 a: All Pages				
							SITTAY	e. All l'ages				
Bit7:	EADC0: Ena	ble ADC0 I	End of Conv	version Inte	rrupt.							
	This bit sets the masking of the ADC0 End of Conversion Interrupt.											
	0: Disable ADC0 Conversion Interrupt.											
	1: Enable interrupt requests generated by the ADC1 Conversion Interrupt.											
Bit6:	CP2IE: Enat	ole Compar	ator (CP2)	Interrupt.								
	This bit sets	the maskin	g of the CP	2 interrupt.								
	0: Disable C	P2 Interrup	IS.	atod by the								
Bit6.	CP1IE: Enab	enupt requi	ator (CP1)	Interrunt	CFZIF liay.							
Dito.	This bit sets	the maskin	a of the CP	1 interrupt								
	0: Disable C	P1 interrup	ts.	i intorrupti								
	1: Enable int	errupt requ	ests genera	ated by the	CP1IF flag.							
Bit6:	CP0IE: Enat	ole Compar	ator (CP0)	Interrupt.	Ū							
	This bit sets	the maskin	g of the CP	0 interrupt.								
	0: Disable C	P0 interrup	ts.									
Dire	1: Enable int	errupt requ	ests genera	ated by the	CP0IF flag.							
Bit3:	EPCA0: Ena	ble Prograi	mmable Co	unter Array	(PCA0) Inte	errupt.						
	I NIS DIT SETS	the maskin	g of the PC	AU Interrup	ts.							
	1. Enable int		ests dener	ated by PC/	20							
Bit2 [.]	EWADC0 [.] E	nable Wind	low Compa	rison ADC0	Interrupt							
BREI	This bit sets	the maskin	g of ADC0	Window Co	mparison in	terrupt.						
	0: Disable Al	DC0 Windo	w Compari	son Interrup	ot.	•						
	1: Enable Int	errupt requ	iests genera	ated by AD	C0 Window	Compariso	ns.					
Bit1:	ESMB0: Ena	able System	n Managem	ent Bus (SM	MBus0) Inter	rrupt.						
	This bit sets	the maskin	g of the SN	IBus interru	pt.							
	0: Disable al	I SMBus int	terrupts.		0.4							
D:+O+	1: Enable int	errupt requ	ests genera	ated by the	SI flag.							
DILU.	This hit sate	the maskin	a of SDI0 in	torrunt	io) menupi.							
	0: Disable al	SPI0 inter	rupts.	nonupi.								
	1: Enable Int	errupt reau	iests genera	ated by the	SPI0 flag.							
		1 1	0	,	5							

Figure 13.21. EIE1: Extended Interrupt Enable 1

16. Flash Memory

The C8051F060/1/2/3/4/5/6/7 devices include on-chip, reprogrammable Flash memory for program code and non-volatile data storage. The C8051F060/1/2/3/4/5 include 64 k + 128 bytes of Flash, and the C8051F066/7 include 32 k + 128 bytes of Flash. The Flash memory can be programmed in-system, a single byte at a time, through the JTAG interface or by software using the MOVX write instructions. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. The bytes would typically be erased (set to 0xFF) before being reprogrammed. Flash write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operation is not required. The CPU is stalled during write/erase operations are held, and are then serviced in their priority order once the Flash operation has completed. Refer to Table 16.1 for the electrical characteristics of the Flash memory.

16.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the JTAG interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the JTAG commands to program Flash memory, see Section "26. JTAG (IEEE 1149.1)" on page 317.

The Flash memory can be programmed from software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1. This directs the MOVX writes to Flash memory instead of to XRAM, which is the default target. The PSWE bit remains set until cleared by software. To avoid errant Flash writes, it is recommended that interrupts be disabled while the PSWE bit is logic 1.

Flash memory is read using the MOVC instruction. MOVX reads are always directed to XRAM, regardless of the state of PSWE.

<u>NOTE</u>: To ensure the integrity of Flash memory contents, it is strongly recommended that the onchip VDD monitor be enabled by connecting the VDD monitor enable pin (MONEN) to VDD and setting the PORSF bit in the RSTSRC register to '1' in any system that writes and/or erases Flash memory from software. See "Reset Sources" on page 163 for more information.

A write to Flash memory can clear bits but cannot set them; only an erase operation can set bits in Flash. **A byte location to be programmed must be erased before a new value can be written**. The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). The following steps illustrate the algorithm for programming Flash from user software.

- Step 1. Disable interrupts.
- Step 2. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.
- Step 3. Set PSEE (PSCTL.1) to enable Flash erases.
- Step 4. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.
- Step 5. Use the MOVX command to write a data byte to any location within the 512-byte page to be erased.
- Step 6. Clear PSEE to disable Flash erases
- Step 7. Use the MOVX command to write a data byte to the desired byte location within the erased 512-byte page. Repeat this step until all desired bytes are written (within the target page).

16.3.1. Summary of Flash Security Options

There are three Flash access methods supported on the C8051F060/1/2/3/4/5/6/7; 1) Accessing Flash through the JTAG debug interface, 2) Accessing Flash from firmware residing below the Flash Access Limit, and 3) Accessing Flash from firmware residing at or above the Flash Access Limit.

Accessing Flash through the JTAG debug interface:

- 1. The Read and Write/Erase Lock bytes (security bytes) provide security for Flash access through the JTAG interface.
- 2. Any unlocked page may be read from, written to, or erased.
- 3. Locked pages cannot be read from, written to, or erased.
- 4. Reading the security bytes is always permitted.
- 5. Locking additional pages by writing to the security bytes is always permitted.
- 6. If the page containing the security bytes is **unlocked**, it can be directly erased. **Doing so will reset the security bytes and unlock all pages of Flash.**
- 7. If the page containing the security bytes is **locked**, it cannot be directly erased. **To unlock the page containing the security bytes**, a full JTAG device erase is required. A full JTAG device erase will erase all Flash pages, including the page containing the security bytes and the security bytes themselves.
- 8. The Reserved Area cannot be read from, written to, or erased at any time.

Accessing Flash from firmware residing below the Flash Access Limit:

- 1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user firmware.
- 2. Any page of Flash except the page containing the security bytes may be read from, written to, or erased.
- 3. The page containing the security bytes cannot be erased. Unlocking pages of Flash can only be performed via the JTAG interface.
- 4. The page containing the security bytes may be read from or written to. Pages of Flash can be locked from JTAG access by writing to the security bytes.
- 5. The Reserved Area cannot be read from, written to, or erased at any time.

Accessing Flash from firmware residing at or above the Flash Access Limit:

- 1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user firmware.
- 2. Any page of Flash at or above the Flash Access Limit except the page containing the security bytes may be read from, written to, or erased.
- 3. Any page of Flash below the Flash Access Limit cannot be read from, written to, or erased.
- 4. Code branches to locations below the Flash Access Limit are permitted.
- 5. **The page containing the security bytes cannot be erased.** Unlocking pages of Flash can only be performed via the JTAG interface.
- 6. The page containing the security bytes may be read from or written to. Pages of Flash can be locked from JTAG access by writing to the security bytes.
- 7. The Reserved Area cannot be read from, written to, or erased at any time.

17.5.3. Split Mode with Bank Select

When EMI0CF.[3:2] are set to '10', the XRAM memory map is split into two areas, on-chip space and offchip space.

- Effective addresses below the 4 kB boundary will access on-chip XRAM space.
- Effective addresses beyond the 4 kB boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is onchip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower 8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are driven in "Bank Select" mode.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is onchip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

17.5.4. External Only

When EMI0CF[3:2] are set to '11', all MOVX operations are directed to off-chip space. On-chip XRAM is not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the 4 kB boundary.

- 8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven (identical behavior to an off-chip access in "Split Mode without Bank Select" described above). This allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower 8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

28 SMBus0 states, along with their corresponding status codes, are given in Table 1.1.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0	11111000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address SFR Page	s: 0xC1 s: 0
Bits7-3:	STA7-STA3: These bits co tus code cor when the SI the SI flag is results.	SMBus0 S ontain the S responds to flag (SMB0 logic 0. Wr	tatus Code. SMBus0 Sta a single Sl CN.3) is set iting to the	tus Code. T MBus state. to logic 1. ⁻ SMB0STA r	There are 28 A valid sta The content egister at a	3 possible s tus code is of SMB0S ny time will	atatus codes present in TA is not de yield indet	s; each sta- SMB0STA fined when erminate
Bits2-0:	STA2-STA0: the SI flag is	The three I logic 1.	east signific	cant bits of s	SMB0STA a	are always i	read as log	ic 0 when

Figure 20.12. SMB0STA: SMBus0 Status Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-			
							SFR Address SFR Page	: 0x9D : 0			
Bits 7-0:	SCR7-SCR0 These bits d for master m clock, and is and SPIOCK $f_{SCK} = \frac{1}{2 \times 10^{-10}}$	b: SPI0 Cloc etermine the iode operat given in the <i>R</i> is the 8-b <i>SYSCL</i> <i>(SPI0CK</i>)	the Rate. e frequency ion. The SC e following of it value hel K K K + 1)	/ of the SCk CK clock free equation, w d in the SPI	Coutput wh quency is a here SYSC 0CKR regis	en the SPIC divided ver LK is the sy ster.) module is rsion of the /stem clock	configured system frequency			
	for 0 <= SPI	0CKR <= 2	55								
Example:	Example: If SYSCLK = 2 MHz and SPI0CKR = 0x04,										
f _{SCK} =	$=\frac{2000000}{2\times(4+1)}$)									
$f_{SCK} =$	200 <i>kHz</i>										

Figure 21.10. SPI0CKR: SPI0 Clock Rate Register

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section "18.1. Ports 0 through 3 and the Priority Crossbar Decoder" on page 205 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see Figure 24.6).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal /INT0 is logic-level 1. Setting GATE0 to '1' allows the timer to be controlled by the external input signal / INT0 (see Section "13.3.5. Interrupt Register Descriptions" on page 154), facilitating pulse width measurements.

TR0	GATE0	/INT0	Counter/Timer
0	Х	Х	Disabled
1	0	Х	Enabled
1	1	0	Disabled
1	1	1	Enabled
V - Don't Coro			

X = Don't Care

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1.

24.2.3. Auto-Reload Mode

In Auto-Reload Mode, the counter/timer can be configured to count up or down and cause an interrupt/flag to occur upon an overflow/underflow event. When counting up, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) upon overflow/underflow, and the values in the Reload/ Capture Registers (RCAPnH and RCAPnL) are loaded into the timer and the timer is restarted. When the Timer External Enable Bit (EXENn) bit is set to '1' and the Decrement Enable Bit (DCENn) is '0', a falling edge ('1'-to-'0' transition) on the TnEX pin (configured as an input in the digital crossbar) will cause a timer reload (in addition to timer overflows causing auto-reloads). When DCENn is set to '1', the state of the TnEX pin controls whether the counter/timer counts *up* (increments) or *down* (decrements), and will not cause an auto-reload or interrupt event. See Section 24.2.1 for information concerning configuration of a timer to count down.

When counting down, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if enabled) when the value in the timer (TMRnH and TMRnL registers) matches the 16-bit value in the Reload/Capture Registers (RCAPnH and RCAPnL). This is considered an underflow event, and will cause the timer to load the value 0xFFFF. The timer is automatically restarted when an underflow occurs.

Counter/Timer with Auto-Reload mode is selected by clearing the CP/RLn bit. Setting TRn to logic 1 enables and starts the timer.

In Auto-Reload Mode, the External Flag (EXFn) toggles upon every overflow or underflow and does not cause an interrupt. The EXFn flag can be thought of as the most significant bit (MSB) of a 17-bit counter.

Figure 24.12. T2, 3, and 4 Auto-reload Mode Block Diagram

