

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15324t-i-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2:PACKAGES

Device	(S)PDIP	SOIC	SSOP	TSSOP	UQFN (4x4)
PIC16(L)F15324	•	•		•	•
PIC16(L)F15344	•	•	•		•

4.5 Stack

All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 4-4 through Figure 4-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

4.5.1 ACCESSING THE STACK

The stack is accessible through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. STKPTR can be monitored to obtain to value of stack memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.

Reference Figure 4-4 through Figure 4-7 for examples of accessing the stack.

REGISTI	ER 5-7:	REVI	SIONID	C REVIS		REGIS	IER						
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0		MJRREV<5:0>					MNRREV<5:0>					
bit 13													bit 0
Legend:													
	R = Read	able bit											
	'0' = Bit is	cleared				'1' = Bit	t is set		x = Bit	is unkno	own		

bit 13-12 Fixed Value: Read-only bits

These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6 MJRREV<5:0>: Major Revision ID bits These bits are used to identify a major revision. bit 5-0 MNRREV<5:0>: Minor Revision ID bits

These bits are used to identify a minor revision.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0			
—	—	TMR0IE	IOCIE	—	—	—	INTE			
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set '0' = Bit is cleared HS = Hardware set										
bit 7-6	Unimplemen	ted: Read as ')'							

REGISTER 10-2: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

bit 5	 TMR0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	 IOCIE: Interrupt-on-Change Interrupt Enable bit 1 = Enables the IOC change interrupt 0 = Disables the IOC change interrupt
bit 3-1	Unimplemented: Read as '0'
bit 0	 INTE: INT External Interrupt Flag bit⁽¹⁾ 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt

Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 15-1).

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt
	controlled by PIE1-PIE7. Interrupt sources
	controlled by the PIE0 register do not
	require PEIE to be set in order to allow
	interrupt vectoring (when GIE is set).

20.4 Register Definitions: ADC Control

REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		CHS<	5:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpleme	nted bit, read as '	0'	
u = Bit is uncha	nged	x = Bit is unknow	/n	-n/n = Value at I	POR and BOR/Va	lue at all other Res	sets
'1' = Bit is set		'0' = Bit is cleare	d				
bit 7-2	CHS<5:0>: A 111111 = 111100 = 111101 = 111011 = 010111 = 010110 = 010100 = 010010 = 010001 = 010000 = 001111 = 001100 = 001011 = 001100 = 001011 = 001010 = 001011 = 001010 = 000011 = 000011 = 000001 = 000001 = 000001 = 000000 = 000000 = 000000 = 000000 =	nalog Channel Selec FVR Buffer 2 refere FVR 1Buffer 1 refere DAC1 output voltag Temperature sensor AVss (Analog Groun RC7 ⁽⁴⁾ RC6 ⁽⁴⁾ RC5 RC4 RC3 RC2 RC1 RC0 RB7 ⁽⁴⁾ RB6 ⁽⁴⁾ RB5 ⁽⁴⁾ RB5 ⁽⁴⁾ RB4 ⁽⁴⁾ 110 = Reserved RA5 RA4 RA3 RA4 RA3 RA2 RA1 RA0	ct bits nce voltage ⁽²⁾ ence voltage ⁽²⁾ e ⁽¹⁾ output ⁽³⁾ nd)				
bit 1	GO/DONE: A 1 = ADC conv This bit is 0 = ADC conv	DC Conversion State version cycle in prog automatically cleare version completed/no	us bit ress. Setting this d by hardware v ot in progress	s bit starts an ADC when the ADC conv	conversion cycle version has comp	leted.	
bit 0	ADON: ADC 1 = ADC is er 0 = ADC is dis	Enable bit habled sabled and consume	es no operating	current			
Note 1: Se 2: Se	e Section 21.0 " e Section 18.0 "	5-Bit Digital-to-Ana Fixed Voltage Refe	log Converter rence (FVR)" fo	(DAC1) Module" for more information	for more informati 1.	on.	

- 3: See Section 19.0 "Temperature Indicator Module" for more information.
- 4: Present only on the PIC16(L)F15344.

			TINOL NEO				
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		—	—	ADPRE	F<1:0>
bit 7					•	•	bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7	ADFM: ADC 1 = Right just loaded. 0 = Left just loaded.	Result Format S stified. Six Most ified. Six Least	Select bit Significant bit Significant bits	s of ADRESH	are set to '0' w are set to '0' w	when the conve	ersion result is prsion result is
bit 6-4	ADCS<2:0>: 111 = ADCF 110 = Fosc, 101 = Fosc, 100 = Fosc, 011 = ADCF 010 = Fosc, 001 = Fosc, 000 = Fosc,	: ADC Conversion RC (dedicated Re /64 /16 /4 RC (dedicated Re /32 /8 /2	on Clock Selec C oscillator) C oscillator)	ct bits			
bit 3-2	Unimpleme	nted: Read as '0	3				
bit 1-0	ADPREF<1: 11 = VREF+ 10 = VREF+ 01 = Reserv 00 = VREF+	0>: ADC Positivities connected to a sconnected to a sconnect	e Voltage Refe nternal Fixed external VREF- VDD	erence Configu Voltage Refere + pin ⁽¹⁾	iration bits ence (FVR) mod	dule ⁽¹⁾	

REGISTER 20-2: ADCON1: ADC CONTROL REGISTER 1

Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Table 37-14 for details.

28.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- Use the desired output pin RxyPPS control to select CCPx as the source and disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load the PR2 register with the PWM period value.
- Configure the CCP module for the PWM mode by loading the CCPxCON register with the appropriate values.
- Load the CCPRxL register, and the CCPRxH register with the PWM duty cycle value and configure the CCPxFMT bit of the CCPxCON register to set the proper register alignment.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR4 register. See Note below.
 - Configure the CKPS bits of the T2CON register with the Timer prescale value.
 - Enable the Timer by setting the Timer2 ON bit of the T2CON register.

- 6. Enable PWM output pin:
 - Wait until the Timer overflows and the TMR2IF bit of the PIR4 register is set. See Note below.
 - Enable the CCPx pin output driver by clearing the associated TRIS bit.
- Note: In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

28.3.3 CCP/PWM CLOCK SELECTION

The PIC16(L)F15324/44 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

SIMPLIFIED CWG BLOCK DIAGRAM (PUSH-PULL MODE)

PIC16(L)F15324/44

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	pends on condit	ion	
bit 7	OVRD: Steer	ing Data D bit					
bit 6	OVRC: Steer	ing Data C bit					
bit 5	OVRB: Steer	ing Data B bit					
bit 4	OVRA: Steer	ing Data A bit					
bit 3	STRD: Steeri	ing Enable D bi	t(2)				
	1 = CWG1D	output has the	CWG1_data	waveform with	polarity control	from POLD bit	
	0 = CWG1D	output is assig	ned the value	of OVRD bit			
bit 2	STRC: Steeri	ing Enable C bi	<u>t</u> (∠)				
	1 = CWG1C	output has the	CWG1_data	waveform with	polarity control	from POLC bit	
bit 1	STPB: Steeri	ing Enable B bit	(2)				
DIT I	1 = CWG1B		CWG1 data	waveform with	polarity control	from POL B bit	
	0 = CWG1B	output is assign	ned the value	of OVRB bit			
bit 0	STRA: Steeri	ing Enable A bi	(2)				
	1 = CWG1A	output has the	CWG1_data	waveform with	polarity control	from POLA bit	
	0 = CWG1A	output is assig	ned the value	of OVRA bit	-		
Note 1: Th	ne bits in this re	gister apply onl	y when MOD	E<2:0> = 00x.			

REGISTER 30-7: CWG1STR: CWG1 STEERING CONTROL REGISTER⁽¹⁾

2: This bit is effectively double-buffered when MODE<2:0> = 001.

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- · 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking

- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- · Selectable SDA hold times

Figure 32-2 is a block diagram of the I^2C interface module in Master mode. Figure 32-3 is a diagram of the I^2C interface module in Slave mode.

FIGURE 32-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0) **FIGURE 32-14:**

PIC16(L)F15324/4

32.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSP1CON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 32-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- Slave software reads ACKTIM bit of SSP1CON3 register, and R/W and D/A of the SSP1STAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSP1BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSP1CON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSP1BUF setting the BF bit.

Note: SSP1BUF cannot be loaded until after the ACK.

13. Slave sets the CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSP1CON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

FIGURE 32-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

PIC16(L)F15324/44

33.4 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

33.4.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

33.4.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

33.4.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 33.4.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.

33.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXxSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 33.4.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode.

If two words are written to the TXxREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in the TXxREG register.
- 3. The TXxIF bit will not be set.
- After the first character has been shifted out of TSR, the TXxREG register will transfer the second character to the TSR and the TXxIF bit will now be set.
- 5. If the PEIE and TXxIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 33.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXxREG register.

Λ

TABLE 37-2. SUPPLY CORRENT (IDD), 777										
PIC16LF	15324/44		Standard Operating Conditions (unless otherwise stated)							
PIC16F15324/44										
Param. No.	Symbol	Device Characteristics	Min.	Тур.†	Max.	Units	VDD	Conditions Note		
D100	Idd _{XT4}	XT = 4 MHz	—	360	400	μA	3.0V			
D100	IDD _{XT4}	XT = 4 MHz	—	380	450	μΑ	3.00			
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.4	1.8	/mA	3.0			
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.5	1.9	≻ mA	3 .0V			
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	—	2.3	3.2	/mA `	⊂3.0V			
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	$\left \right\rangle$	2.4	3,2 '	mA	3.0V			
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz		2.3	3.2	∕mA	3.0V			
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz		24	3.2	mA	3.0V			
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	K	1.05	1.5	mA	3.0V			
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	\searrow	1.15	1.5	mA	3.0V			
D105	IDD _{DOZE} ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.1		mA	3.0V			
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	\triangleright	1.2	—	mA	3.0V			

TABLE 37-2: SUPPLY CURRENT (IDD)^(1,2,4)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low, MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: $IDD_{DOZE} = [IDD_{IDLE} / (N_1)/N] + IDD_{HFO} 16/N$ where N = DOZE Ratio (Register 11-2).

- 4: PMD bits are all in the default state, no modules are disabled.
- 5: = F device

TABLE 37-7: EXTERNAL CLOCK/OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Typt	Max.	Units	Conditions	
ECL Osc	illator		$\overline{\wedge}$		\bigtriangledown			
OS1	F _{ECL}	Clock Frequency		\square	> 500	kHz		
OS2	T _{ECL_DC}	Clock Duty Cycle	40		60	%		
ECM Oscillator								
OS3	F _{ECM}	Clock Frequency		$\rangle -$	4	MHz		
OS4	T _{ECM_DC}	Clock Duty Cycle	40	—	60	%		
ECH Oscillator								
OS5	F _{ECH}	Clock Frequency	> -	—	32	MHz		
OS6	T _{ECH_DC}	Clock Duty Sycle	40	—	60	%		
LP Oscil	lator		•	•				
OS7	F _{LP}	Clock Frequency		—	100	kHz	Note 4	
XT Oscil	lator /		•	•			•	
OS8	F _{XT}		—	—	4	MHz	Note 4	
HS Oscillator								
OS9	F _{HS}	Clock Frequency	—	—	20	MHz	Note 4	
System Oscillator								
OS20	Fose	System Clock Frequency	—	—	32	MHz	(Note 2, Note 3)	
ØS21	FCY	Instruction Frequency	—	Fosc/4	—	MHz		
0\$22	т _{сү}	Instruction Period	125	1/F _{CY}	—	ns		

These parameters are characterized but not tested.

Qata in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: The system clock frequency (Fosc) is selected by the "main clock switch controls" as described in Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)".

3: The system clock frequency (Fosc) must meet the voltage requirements defined in the Section 37.2 "Standard Operating Conditions".

4: LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device. For clocking the device with the external square wave, one of the EC mode selections must be used.

TABLE 37-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2	—	_	μS			
RST02*	Tioz	I/O high-impedance from Reset detection	_	—	2	μs			
RST03	TWDT	Watchdog Timer Time-out Period	—	16	—	ms	16 ms Wominal-Reset Time		
RST04*	TPWRT	Power-up Timer Period	—	65	_	ms			
RST05	Tost	Oscillator Start-up Timer Period ^(1,2)	—	1024	—	/TOSC			
RST06	VBOR	Brown-out Reset Voltage ⁽⁴⁾	2.55	2.70	2.85	X	BORV = 0		
			2.30	2.45	2.60	N N (BORV = 1 (F devices)		
			1.80	1.90	2.10	$\setminus v \vee$	$\overrightarrow{BORV} = 1$ (LF devices)		
RST07	VBORHYS	Brown-out Reset Hysteresis	—	40 🧹	/	mV '			
RST08	TBORDC	Brown-out Reset Response Time	_	3	$\backslash - \backslash$	μs			
RST09	VLPBOR	Low-Power Brown-out Reset Voltage	1.8	/ 1.9	2.2	V V	LF Devices Only		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 37-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2):

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristic	Min.	Турт	Max.	Units	Conditions	
AD01	NR	Resolution			10	bit		
AD02	EIL	Integral Error	$\supset -$	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD03	Edl	Differential Error	-	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD04	EOFF	Offset Error	—	0.5	2.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD05	Egn	Gain Error 🗸 🖊 🔨	—	±0.2	±1.0	LSb	ADCREF+ = 3.0V, ADCREF-= 0V	
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-)	1.8	—	Vdd	V		
AD07	VAIN	Full-Scale Range	ADREF-	—	ADREF+	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_	10	_	kΩ		
AD09	RVREF	ADC Voltage Reference Ladder	_	50	_	kΩ	Note 3	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ABC conversion result never decreases with an increase in the input and has no missing codes.

3: This is the impedance seen by the VREF pads when the external reference pads are selected.

<sup>Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.
2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible.</sup> 0.1 μF and 0.01 μF values in parallel are recommended.

TABLE 37-17: ZERO CROSS DETECT (ZCD) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур†	Max.	Units	Comments	
ZC01	VPINZC	Voltage on Zero Cross Pin	_	0.75	—	V	\sim	
ZC02	IZCD_MAX	Maximum source or sink current	_	—	600	μΑ)		
ZC03	TRESPH	Response Time, Rising Edge	—	1	_	ļus		
	TRESPL	Response Time, Falling Edge	_	1	_	μs		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETEDS				
	IVILLIIVIETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	Х			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A