

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15344-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

Name	Function	Input Type	Output Type	Description
RC5/ANC5/CCP1 ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC5	TTL/ST	_	Interrupt-on-change input.
RC6/ANC6/SS1 ⁽¹⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	—	ADC Channel C6 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	IOCC6	TTL/ST	—	Interrupt-on-change input.
RC7/ANC7/IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN	_	ADC Channel C7 input.
	IOCC7	TTL/ST	—	Interrupt-on-change input.
Vdd	Vdd	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.
Legend: AN = Analog input or outp	ut CMOS =	CMOS cou	mpatible input or ou	Itput OD = Open-Drain

TABLE 1-3: PIC16(L)F15344 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

= Crystal levels XTAL

= Schmitt Trigger input with I²C

I²C

HV = High Voltage

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-3 for details on which PORT pins may be used for this signal. 2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin

options as described in Table 15-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

5: For 14/16-pin package only.

Note 1:

> 6: For 20-pin package only

IADLL 4	FIU. SFLO	ALTONCTION	REGISTER	SUMMART	DANKS U-					-	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 11		•							•	÷	
				0011000		The Act					
	CPU CORE REGISTERS; see Table 4-3 for specifics										
58Ch	NCO1ACCL	1ACCL NCO1ACC<7:0>								0000 0000	0000 0000
58Dh	NCO1ACCH				NCO1AC	C<15:8>				0000 0000	0000 0000
58Eh	NCO1ACCU	—	—	—	—		NCO1A	CC<19:16>		0000	0000
58Fh	NCO1INCL				NCO1IN	C<7:0>				0000 0001	0000 0001
590h	NCO1INCH				NCO1INC	C<15:8>				0000 0000	0000 0000
591h	NCO1INCU	—	—	—	—		NCO1I	NC<19:16>		0000	0000
592h	NCO1CON	N1EN	_	N1OUT	N1POL	—	—	—	N1PFM	0-000	0-000
593h	NCO1CLK	1	1PWS<2:0>		—	—		N1CKS<2:0	>	000000	000000
594h	—				Unimpler	mented				_	_
595h	_				Unimpler	mented				_	
596h	_				Unimpler	mented				_	
597h	—				Unimpler	mented				—	—
598h	—				Unimpler	mented				—	—
599h	—				Unimpler	mented				—	—
59Ah	—				Unimpler	mented				—	—
59Bh	—				Unimpler	mented				—	—
59Ch	TMR0L	Holding Register for th	e Least Significan	t Byte of the 16-bi	t TMR0 Register					0000 0000	0000 0000
59Dh	TMR0H	Holding Register for th	e Most Significant	Byte of the 16-bit	TMR0 Register					1111 1111	1111 1111
59Eh	T0CON0	T0EN	_	TOOUT	T016BIT		T0OU	TPS<3:0>		0-00 0000	0-00 0000
59Fh	T0CON1		T0CS<2:0>		T0ASYNC		TOCH	(PS<3:0>		0000 0000	0000 0000

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

EXAMP	LE 13-4: V	WRITING TO PROGRAM	I FLASH MEMORY
; This	s write routi	ne assumes the followin	ng:
; 1.6	64 bytes of d	ata are loaded, startir	ng at the address in DATA_ADDR
; 2. E	lach word of	data to be written is m	ade up of two adjacent bytes in DATA_ADDR,
; s	stored in lit	tle endian format	
; 3. A	valid start	ing address (the least	significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. A	DDRH and ADD	RL are located in commo	on RAM (locations 0x70 - 0x7F)
; 5. N	IVM interrupt	s are not taken into ac	:count
	BANKSEL	NVMADRH	
	MOVF	ADDRH,W	
	MOVWF	NVMADRH	; Load initial address
	MOVF	ADDRL,W	
	MOVWF	NVMADRL	
	MOVLW	LOW DATA_ADDR	; Load initial data address
	MOVWF	FSROL	
	MOVLW	HIGH DATA_ADDR	
	MOVWF	FSROH	
	BCF	NVMCON1, NVMREGS	; Set Program Flash Memory as write location
	BSF	NVMCON1,WREN	; Enable writes
	BSF	NVMCON1,LWLO	; Load only write latches
LOOP			
	MOVIW	FSR0++	
	MOVWF	NVMDATL	; Load first data byte
	MOVIW	FSR0++	
	MOVWF	NVMDATH	; Load second data byte
	MOVF	NVMADRL,W	
	XORLW	0x1F	; Check if lower bits of address are 00000
	ANDLW	0×1F	; and if on last of 32 addresses
	BTFSC	STATUS,Z	; Last of 32 words?
	GOTO	START_WRITE	; If so, go write latches into memory
	CALL	UNLOCK_SEQ	; If not, go load latch
	INCF	NVMADRL, F	; Increment address
	GOTO	LOOP	
START	WRITE		
-	BCF	NVMCON1, LWLO	; Latch writes complete, now write memory
	CALL	UNLOCK SEQ	; Perform required unlock sequence
	BCF	NVMCON1, WREN	; Disable writes
UNLOCE	K SEO		
ONLOOI	MOVIW	55h	
	BCF	TNTCON, GIE	: Disable interrupts
	MOVWF	NVMCON2	; Begin unlock seguence
	MOVLW	AAh	
	MOVWF	NVMCON2	
	BSF	NVMCON1,WR	
	BSF	INTCON, GIE	; Unlock sequence complete, re-enable interrupts
	return		-

14.0 I/O PORTS

TABLE 14-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC
PIC16(L)F15324	•		٠
PIC16(L)F15344	•	•	•

Each port has standard registers for its operation. These registers are:

- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)
- TRISx registers (data direction)
- ANSELx registers (analog select)
- WPUx registers (weak pull-up)
- INLVLx (input level control)
- SLRCONx registers (slew rate)
- ODCONx registers (open-drain)

Most port pins share functions with device peripherals, both analog and digital. In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output; however, the pin can still be read.

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled.

Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 14-1.

FIGURE 14-1: GENERIC I/O PORT OPERATION

14.1 I/O Priorities

Each pin defaults to the PORT data latch after Reset. Other functions are selected with the peripheral pin select logic. See **Section 15.0** "**Peripheral Pin Select** (**PPS**) Module" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx register. Digital output functions may continue to control the pin when it is in Analog mode.

Analog outputs, when enabled, take priority over the digital outputs and force the digital output driver to the high-impedance state.

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	_	LATA5	LATA4	—	LATA2	LATA1	LATA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 14-3: LATA: PORTA DATA LATCH REGISTER

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾
hit 3	Inimplemented: Read as '0'

bit 3 Unimplemented: Read as '0' bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register returns

REGISTER 14-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ANSA<5:4> : Analog Select between Analog or Digital Function on pins RA<5:4>, respectively 1 =Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

actual I/O pin values.

Desired Input Pin	Value to Write to Register
RAO	0x00
	0,00
RA1	0x01
RA2	0x02
RA3	0x03
RA4	0x04
RA5	0x05
RB4 ⁽¹⁾	0x0C
RB5 ⁽¹⁾	0x0D
RB6 ⁽¹⁾	0x0E
RB7 ⁽¹⁾	0x0F
RC0	0x10
RC1	0x11
RC2	0x12
RC3	0x13
RC4	0x14
RC5	0x15
RC6 ⁽¹⁾	0x16
RC7 ⁽¹⁾	0x17

TABLE 15-3: PPS INPUT REGISTER VALUES

Note 1: Present on PIC16(L)F15344 only.

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
—		IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1 ⁽¹⁾	IOCAF0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared HS - Bit is set in hardware								

REGISTER 17-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

bit 7-6 Unimplemented: read as '0'

bit 5-0 **IOCAF<5:0>:** Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

Note 1: If the debugger is enabled, these bits are not available for use.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	125
PIE0	—	—	TMR0IE	IOCIE	—	—	—	INTE	126
IOCAP	IOCAP7 ⁽¹⁾	IOCAP6 ⁽¹⁾	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	214
IOCAN	IOCAN7 ⁽¹⁾	IOCAN6 ⁽¹⁾	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	214
IOCAF	IOCAF7 ⁽¹⁾	IOCAF6 ⁽¹⁾	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	215
IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	—	216
IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	_	—	216
IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—	217
IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	218
IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	218
IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	219

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: Present only in PIC16(L)F15344.

21.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

21.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

REGISTER 23-2:	CMxCON1: COMPARATOR Cx CONTROL REGISTER 1
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0		
				_	_	INTP	INTN		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-2	Unimplemented: Read as '0'
bit 1	INTP: Comparator Interrupt on Positive-Going Edge Enable bits
	 1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit 0 = No interrupt flag will be set on a positive-going edge of the CxOUT bit
bit 0	INTN: Comparator Interrupt on Negative-Going Edge Enable bits
	 1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit

PIC16(L)F15324/44

REGISTER 2	5-2: T0CO	N1: TIMER0 (CONTROL R	EGISTER 1			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	T0CS<2:0>		TOASYNC		T0CKP	S<3:0>	
bit 7							bit (
Legend:							
R = Readable bit		W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-5	T0CS<2:0>: 111 = LC1_0 110 = Reserv 101 = MFINT 100 = LFINT 011 = HFINT 010 = Fosc/2 001 = T0CKI 000 = T0CKI	Timer0 Clock S out ved OSC (500 kHz OSC OSC 4 PPS (Inverted) PPS (True)	Source select b	pits			
bit 4	T0ASYNC: T 1 = The input 0 = The input	MR0 Input Asy It to the TMR0 (t to the TMR0 c	nchronization counter is not counter is sync	Enable bit synchronized hronized to Fo	to system clock	5	
bit 3-0	TOCKPS<3:0 1111 = 1:327 1110 = 1:163 1101 = 1:819 1100 = 1:409 1011 = 1:204 1010 = 1:102 1001 = 1:512 1000 = 1:256 0111 = 1:128 0100 = 1:4 0010 = 1:4 0001 = 1:2 0000 = 1:1	 D>: Prescaler R 768 384 302 306 48 24 25 33 	ate Select bit				

30.5 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWG1DBR and CWG1DBF registers, respectively.

30.5.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 30-9.

30.5.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWG1CON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWG1A and CWG1C signals will change upon the first rising input edge following a direction change, but the modulated signals (CWG1B or CWG1D, depending on the direction of the change) will experience a delay dictated by the dead-band counters. This is demonstrated in Figure 30-3.

30.6 Rising Edge and Reverse Dead Band

CWG1DBR controls the rising edge dead-band time at the leading edge of CWG1A (Half-Bridge mode) or the leading edge of CWG1B (Full-Bridge mode). The CWG1DBR value is double-buffered. When EN = 0, the CWG1DBR register is loaded immediately when CWG1DBR is written. When EN = 1, then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

30.7 Falling Edge and Forward Dead Band

CWG1DBF controls the dead-band time at the leading edge of CWG1B (Half-Bridge mode) or the leading edge of CWG1D (Full-Bridge mode). The CWG1DBF value is double-buffered. When EN = 0, the CWG1DBF register is loaded immediately when CWG1DBF is written. When EN = 1 then software must set the LD bit of the CWG1CON0 register, and the buffer will be loaded at the next falling edge of the CWG input signal. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output.

Refer to Figure 30-6 and Figure 30-7 for examples.

30.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 30-12.

30.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

30.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event.

30.10.2 EXTERNAL INPUT SOURCE

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Comparator C1OUT_sync
- Comparator C2OUT_sync
- Timer2 TMR2_postscaled
- CWG1IN input pin

Shutdown inputs are selected using the CWG1AS1 register (Register 30-6).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling autoshutdown, as long as the shutdown input level persists.

30.11 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0) **FIGURE 32-14:**

PIC16(L)F15324/4

REGISTER 32-7: SSP1BUF: MSSP1 BUFFER REGISTER

SSP1BUF<7:0> bit 7	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 7				SSP1BL	JF<7:0>			
	bit 7							bit 0

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSP1BUF<7:0>: MSSP Buffer bits

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSP1

Name	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							
INTCON	GIE	PEIE		—		—		INTEDG	125		
PIR1	OSFIF	CSWIF	/IF — — — — ADIF								
PIE1	OSFIE	CSWIE	ADIE								
SSP1STAT	SMP	SMP CKE D/A P S R/W UA BF									
SSP1CON1	WCOL SSPOV SSPEN CKP SSPM<3:0>								422		
SSP1CON2	GCEN	ACKSTAT	ACKDT ACKEN RCEN PEN RSEN SEN								
SSP1CON3	ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN								421		
SSP1MSK	SSPMSK<7:0>								425		
SSP1ADD	SSPADD<7:0>								425		
SSP1BUF	SSPBUF<7:0>								426		
SSP1CLKPPS	SSP1CLKPPS<5:0>								200		
SSP1DATPPS	SSP1DATPPS<5:0>								200		
SSP1SSPPS	_	_			SSP1SSP	PS<5:0>			200		
RxyPPS	_	—	—		F	RxyPPS<4:0>			201		

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP module

Note 1: When using designated I²C pins, the associated pin values in INLVLx will be ignored.

33.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See Section 9.2.2.2 "Internal Oscillator Frequency Adjustment" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section 33.3.1 "Auto-Baud Detect"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

33.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCxSTA register and the received data as indicated by RCxREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when:

- · RXxIF bit is set
- · FERR bit is set
- RCxREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 33.3.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RXxIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDxCON register before placing the EUSART in Sleep mode.

TABLE	37-5:	MEMORY PROGRAMMING S	PECIFICA	TIONS			\bigwedge
Standar	d Operatii	ng Conditions (unless otherwise stat	ted)				
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
High Vo	Itage Entr	y Programming Mode Specifications	5				
MEM01	V _{IHH}	Voltage on MCLR/VPP pin to enter programming mode	8	—	9	× <	(Note 2) Note 3)
MEM02	I _{PPGM}	Current on MCLR/VPP pin during programming mode	—	1	—	mA	(Note 2)
Programming Mode Specifications							
MEM10	V_{BE}	VDD for Bulk Erase	—	2.7	$- \setminus$	1×	
MEM11	I _{DDPGM}	Supply Current during Programming operation	—	- /	10	m,A	
Program	n Flash Mo	emory Specifications		<		$\langle \rangle$	
MEM30	E _P	Flash Memory Cell Endurance	10k			E/W	-40°C ≤ TA ≤ +85°C (Note 1)
MEM32	T _{P_RET}	Characteristic Retention		40		Year	Provided no other specifications are violated
MEM33	V _{P_RD}	VDD for Read operation	VDDMIN	\neq $/$	VDDMAX	V	
MEM34	V _{P_REW}	VDD for Row Erase or Write operation	VDDMIN		VDDMAX	V	
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write		20	2.5	ms	

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

Required only if CONFIG4, bit LVP is disabled. 2:

The MPLAB® ICD2 does not support variable VPP output. Circuitry to limit the ICD2 VPP voltage must be placed 3: between the ICD2 and target system when programming or debugging with the ICD2.

© 2017 Microchip Technology Inc.