

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15344-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RC5/ANC5/CCP1 ⁽¹⁾ /IOCC5	RC5	TTL/ST	CMOS/OD	General purpose I/O.
	ANC5	AN	_	ADC Channel C5 input.
	CCP1 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM1 (default input location for capture function).
	IOCC5	TTL/ST	_	Interrupt-on-change input.
RC6/ANC6/SS1 ⁽¹⁾ /IOCC6	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	ANC6	AN	—	ADC Channel C6 input.
	SS1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI slave select input.
	IOCC6	TTL/ST	—	Interrupt-on-change input.
RC7/ANC7/IOCC7	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	ANC7	AN	_	ADC Channel C7 input.
	IOCC7	TTL/ST	—	Interrupt-on-change input.
Vdd	Vdd	Power	_	Positive supply voltage input.
Vss	Vss	Power	_	Ground reference.
Legend: AN = Analog input or outp	ut CMOS =	CMOS cou	mpatible input or ou	Itput OD = Open-Drain

TABLE 1-3: PIC16(L)F15344 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

= Crystal levels XTAL

= Schmitt Trigger input with I²C

I²C

HV = High Voltage

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-3 for details on which PORT pins may be used for this signal. 2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin

options as described in Table 15-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

5: For 14/16-pin package only.

Note 1:

> 6: For 20-pin package only

9.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase Lock Loop (PLL) that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce a range from 1 to 32 MHz. The Low-Frequency Internal Oscillator (LFINTOSC) generates a 31 kHz frequency. The external oscillator block can also be used with the PLL. See **Section 9.2.1.4 "4x PLL"** for more details.

The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 9.3 "Clock Switching**" for additional information.

9.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset
- Write the NOSC<2:0> and NDIV<4:0> bits in the OSCCON1 register to switch the system clock source

See **Section 9.3 "Clock Switching"** for more information.

9.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 9-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, \leq 32 MHz
- ECM Medium power, ≤ 8 MHz
- ECL Low power, ≤ 0.5 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

9.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 9-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive crystals and resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 9-3 and Figure 9-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

REGISTER 9-4: OSCSTAT: OSCILLATOR STATUS REGISTER 1									
R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q	U-0	R-q/q		
EXTOR	HFOR	MFOR	LFOR	—	ADOR	_	PLLR		
bit 7							bit 0		
Legend:									
R = Readable bi	t	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'			
u = Bit is unchan	iged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other	Resets		
'1' = Bit is set		'0' = Bit is clear	red						
bit 7	EXTOR: EXTO 1 = The oscil 0 = The oscil	SC (external) O lator is ready to lator is not enab	scillator Ready b be used led, or is not yet	it ready to be used	1.				
bit 6	HFOR: HFINTO 1 = The oscil 0 = The oscil	DSC Oscillator F lator is ready to lator is not enab	eady bit be used led, or is not yet	ready to be used	1.				
bit 5	MFOR: MFINT 1 = The oscilla 0 = The oscilla	OSC Oscillator F ator is ready to b ator is not enable	Ready bit e used ed, or is not yet r	eady to be used.					
bit 4	LFOR: LFINTC 1 = The oscil 0 = The oscill	OSC Oscillator R lator is ready to lator is not enab	eady bit be used ed, or is not yet	ready to be used	I.				
bit 3	Unimplemente	ed: Read as '0'							
bit 2	ADOR: CRC O 1 = The oscil 0 = The oscill	scillator Ready l lator is ready to lator is not enab	bit be used led, or is not yet	ready to be used	I.				
bit 1	Unimplemente	ed: Read as '0'							
bit 0	PLLR: PLL is F 1 = The PLL	Ready bit is ready to be us	sed						

0 = The PLL is not enabled, the required input source is not ready, or the PLL is not locked.

REGISTER 10-3: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1										
R/W-0/0) R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0			
OSFIE	CSWIE	—	—	—	_	—	ADIE			
bit 7							bit 0			
Legend:										
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is u	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets			
'1' = Bit is s	set	'0' = Bit is clea	ared							
bit 7	OSFIE: Oscil	lator Fail Interru	upt Enable bit							
	1 = Enables t 0 = Disables	he Oscillator Fa the Oscillator F	ail Interrupt ail Interrupt							
bit 6	CSWIE: Cloc	k Switch Comp	lete Interrupt I	Enable bit						
	1 = The clock 0 = The clock	switch module switch module	interrupt is er interrupt is di	nabled sabled						
bit 5-1	Unimplemen	ted: Read as ')'							
bit 0	ADIE: Analog	j-to-Digital Con	verter (ADC) I	nterrupt Enabl	e bit					
	1 = Enables t	he ADC interru	pt	-						
	0 = Disables	the ADC interru	ipt							
Note:	Bit PEIE of the IN	TCON register	must be							
	set to enable an	ny peripheral	interrupt							
	controlled by regis	ters PIE1-PIE7								

11.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-on-Interrupt bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 11-1, the interrupt occurs during the 2^{nd} instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-On-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

11.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0). If the SLEEP instruction is executed while the IDLEN bit is set (IDLEN = 1), the CPU will enter the IDLE mode (Section 11.2.3 "Low-Power Sleep Mode").

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The \overline{PD} bit of the STATUS register is cleared
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set
- 4. CPU Clock and System Clock
- 5. 31 kHz LFINTOSC, HFINTOSC are unaffected and peripherals using them may continue operation in Sleep.
- 6. ADC is unaffected if the dedicated FRC oscillator is selected the conversion will be left abandoned if Fosc is selected and ADRES will have an incorrect value
- 7. I/O ports maintain the status they had before Sleep was executed (driving high, low, or high-impedance). This does not apply in the case of any asynchronous peripheral which is active and may affect the I/O port value
- 8. Resets other than WDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs.

Any module with a clock source that is not Fosc can be enabled. Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 21.0 "5-Bit Digital-to-Analog Converter (DAC1) Module", Section 18.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

11.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled.
- 2. BOR Reset, if enabled.
- 3. POR Reset.
- 4. Watchdog Timer, if enabled.
- 5. Any external interrupt.
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 8.12 "Memory Execution Violation"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	125
PIE0	—	—	TMR0IE	IOCIE	—	—	—	INTE	126
IOCAP	IOCAP7 ⁽¹⁾	IOCAP6 ⁽¹⁾	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	214
IOCAN	IOCAN7 ⁽¹⁾	IOCAN6 ⁽¹⁾	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	214
IOCAF	IOCAF7 ⁽¹⁾	IOCAF6 ⁽¹⁾	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	215
IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	—	—	—	—	216
IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	—	_	—	216
IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—	217
IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	218
IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	218
IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	219

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: Present only in PIC16(L)F15344.

19.4 Minimum Operating VDD

When the temperature circuit is operated in Low range, the device may be operated at any operating voltage that is within specifications. When the temperature circuit is operated in High range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 19-1 shows the recommended minimum VDD vs. Range setting.

TABLE 19-1: RECOMMENDED VDD vs. RANGE

Min.VDD, TSRNG = 1	Min. VDD, TSRNG = 0
(High Range)	(Low Range)
≥ 2.5	≥ 1.8

19.5 Temperature Indicator Range

The temperature indicator circuit operates in either High or Low range. The High range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range. High range requires a higher-bias voltage to operate and thus, a higher VDD is needed. The Low range is selected by clearing the TSRNG bit of the FVRCON register. The Low range generates a lower sensor voltage and thus, a lower VDD voltage is needed to operate the circuit.

The output voltage of the sensor is the highest value at -40° C and the lowest value at $+125^{\circ}$ C.

- **High Range:** The High range is used in applications with the reference for the ADC, VREF = 2.048V. This range may not be suitable for battery-powered applications.
- Low Range: This mode is useful in applications in which the VDD is too low for high-range operation. The VDD in this mode can be as low as 1.8V. VDD must, however, be at least 0.5V higher than the maximum sensor voltage depending on the expected low operating temperature.

19.6 Device Information Area (DIA) Data

During factory testing, internal ADC readings are taken at a single temperature point within the operating range of the device, and stored in the Data Information Area (DIA). Two readings are currently taken and stored in the DIA for each device. One with the low range setting selected and one for the high range setting. Both readings are taken at the same temperature reference point.

These single temperature point readings stored in the DIA can be used to perform the single-point calibration as described in **Section 19.2.1 "Calibration"** by solving Equation 19-1 for TOFFSET.

Note:	Note that the lower temperature range							
	(e.g., -40°C) will suffer in accuracy							
	because temperature conversion must							
	extrapolate below the reference points,							
	amplifying any measurement errors.							

Refer to Section 6.3 "Analog-to-Digital Conversion Data of the Temperature Sensor" for more information on the temperature indicator data stored in the DIA and how to access it.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFVR<1:0> ADFVR<1:0>		222		
ADCON0			CHS	S<5:0>	GO/DONE ADON				235
ADCON1	ADFM	A	ADCS<2:0> — —				ADPREF	<1:0>	236
ADACT	—	—	—	—		ADACT<3:0>			
ADRESH	ADRESH<7:0>							238	
ADRESL				AD	RESL<7:0>				238

TABLE 19-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Legend: Shaded cells are unused by the Temperature Indicator module.

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

TABLE 28-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS ((Fosc = 20 MHz)
---	-----------------

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 28-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

28.3.8 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

28.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

28.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

29.1.1 PWM CLOCK SELECTION

The PIC16(L)F15324/44 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

29.1.2 USING THE TMR2 WITH THE PWM MODULE

This device has a newer version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to **Section 27.5** "**Operation Examples**" for examples of PWM signal generation using the different modes of Timer2.

Note:	PWM operation requires that the timer						
	used as the PWM time base has the						
	FOSC/4 clock source selected.						

29.1.3 PWM PERIOD

Referring to Figure 29-1, the PWM output has a period and a pulse width. The frequency of the PWM is the inverse of the period (1/period).

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 29-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC$$
$$\cdot (TMR2 Prescale Value)$$

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWMx pin is set (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM pulse width is latched from PWMxDC.

Note:	If the pulse width value is greater than the						
	period	the	assigned	PWM	pin(s)	will	
	remain unchanged.						

29.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDC register. The PWMxDCH contains the eight MSbs and the PWMxDCL<7:6> bits contain the two LSbs.

The PWMDC register is double-buffered and can be updated at any time. This double buffering is essential for glitch-free PWM operation. New values take effect when TMR2 = PR2. Note that PWMDC is left-justified.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

Equation 29-2 is used to calculate the PWM pulse width.

Equation 29-3 is used to calculate the PWM duty cycle ratio.

EQUATION 29-2: PULSE WIDTH

Pulse Width = (PWMxDC) · TOSC · (TMR2 Prescale Value)

EQUATION 29-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(PWMxDC)}{4(PR2+1)}$

4(PR2 + 1)

29.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 29-4.

EQUATION 29-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2+1)]}{\log(2)}$$
 bits

29.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

29.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

29.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWMx registers to their Reset states.

TABLE 29-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 29-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

29.1.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the module for using the PWMx outputs:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- Configure the PWM output polarity by configuring the PWMxPOL bit of the PWMxCON register.
- 3. Load the PR2 register with the PWM period value, as determined by Equation 29-1.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value, as determined by Equation 29-2.
- 5. Configure and start Timer2:
- Clear the TMR2IF interrupt flag bit of the PIR4 register.
- Select the Timer2 prescale value by configuring the CKPS<2:0> bits of the T2CON register.
- Enable Timer2 by setting the Timer2 ON bit of the T2CON register.

- 6. Wait until the TMR2IF is set.
- 7. When the TMR2IF flag bit is set:
- Clear the associated TRIS bit(s) to enable the output driver.
- Route the signal to the desired pin by configuring the RxyPPS register.
- Enable the PWMx module by setting the PWMxEN bit of the PWMxCON register.

In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then the PWM module can be enabled during Step 2 by setting the PWMxEN bit of the PWMxCON register.

30.12 Configuring the CWG

The following steps illustrate how to properly configure the CWG.

- 1. Ensure that the TRIS control bits corresponding to the desired CWG pins for your application are set so that the pins are configured as inputs.
- 2. Clear the EN bit, if not already cleared.
- 3. Set desired mode of operation with the MODE bits.
- Set desired dead-band times, if applicable to mode, with the CWG1DBR and CWG1DBF registers.
- 5. Setup the following controls in the CWG1AS0 and CWG1AS1 registers.
 - a. Select the desired shutdown source.
 - Select both output overrides to the desired levels (this is necessary even if not using autoshutdown because start-up will be from a shutdown state).
 - c. Set which pins will be affected by auto-shutdown with the CWG1AS1 register.
 - d. Set the SHUTDOWN bit and clear the REN bit.
- 6. Select the desired input source using the CWG1ISM register.
- 7. Configure the following controls.
 - a. Select desired clock source using the CWG1CLKCON register.
 - b. Select the desired output polarities using the CWG1CON1 register.
 - c. Set the output enables for the desired outputs.
- 8. Set the EN bit.
- Clear TRIS control bits corresponding to the desired output pins to configure these pins as outputs.
- If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit to start the CWG.

30.12.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the LSBD and LSAC bits of the CWG1AS0 register. LSBD<1:0> controls the CWG1B and D override levels and LSAC<1:0> controls the CWG1A and C override levels. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not affect the override level.

30.12.2 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the REN bit of the CWG1CON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 30-13 and Figure 30-14.

30.12.2.1 Software Controlled Restart

When the REN bit of the CWG1AS0 register is cleared, the CWG must be restarted after an auto-shutdown event by software. Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the SHUTDOWN bit will remain set. The overrides will remain in effect until the first rising edge event after the SHUTDOWN bit is cleared. The CWG will then resume operation.

30.12.2.2 Auto-Restart

When the REN bit of the CWG1CON2 register is set, the CWG will restart from the auto-shutdown state automatically. The SHUTDOWN bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the SHUTDOWN bit is cleared. The CWG will then resume operation.

© 2017 Microchip Technology Inc

Preliminary

32.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1) MODULE

32.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Master mode
- · Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 32-1 is a block diagram of the SPI interface module.

32.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSP1CON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSP1IF, to be set (SSP interrupt, if enabled):

- Start condition generated
- Stop condition generated
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSP1BUF register to initiate transmission before the Start condition is complete. In this case, the SSP1BUF will not be written to and the WCOL bit will be set, indicating that a write to the SSP1BUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

32.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See Section 32.7 "Baud Rate Generator" for more detail.

33.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDxCON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPxBRG begins counting up using the BRG counter clock as shown in Figure 33-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPxBRGH, SPxBRGL register pair, the ABDEN bit is automatically cleared and the RXxIF interrupt flag is set. The value in the RCxREG needs to be read to clear the RXxIF interrupt. RCxREG content should be discarded. When calibrating for modes that do not use the SPxBRGH register the user can verify that the SPxBRGL register did not overflow by checking for 00h in the SPxBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 33-1. During ABD, both the SPxBRGH and SPxBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPxBRGH and SPxBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see <u>Section 33.3.3</u> "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPxBRGH:SPxBRGL register pair.

TABLE 33-1: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPxBRGL and SPxBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 33-6: AUTOMATIC BAUD RATE CALIBRATION

TABLE 37-21: EUSART SYNCHRONOUS TRANSMISSION CHARACTERISTICS

Standard	Operating Cor	~				
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	_	80	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		Clock high to data-out valid	/	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time	$\langle - \rangle$	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		(Master mode)		50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	TDTRF	Data-out rise time and fall time	$\left \right\rangle$	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			<u> </u>	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$

FIGURE 37-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 37-22: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No. Symbol	Characteristic	Min.	Max.	Units	Conditions			
US125 TDTV2CKL	SYNC RCV (Master and Slave)							
ŇŽ	Data-setup before CK \downarrow (DT hold time)	10	_	ns				
US126 TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns				