

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f15344t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3 Data Memory Organization

The data memory is partitioned into 64 memory banks with 128 bytes in each bank. Each bank consists of:

- 12 core registers
- Up to 100 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

FIGURE 4-2: BANKED MEMORY PARTITIONING

4.3.1 BANK SELECTION

The active bank is selected by writing the bank number into the Bank Select Register (BSR). All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 4.6** "**Indirect Addressing**" for more information.

Data memory uses a 13-bit address. The upper six bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

4.3.2 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 4-3.

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
k02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

TABLE 4-3: CORE REGISTERS

TABLE 4-4: PIC16(L)F15324/44 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Register		Core Register		Core Register		Core Register		Core Register		Core Register		Core Register		Core Register
	(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	_	10Ch	_	18Ch	SSP1BUF	20Ch	TMR1L	28Ch	TMR2	30Ch	CCPR1L	38Ch	PWM6DCL
00Dh	PORTB ⁽²⁾	08Dh	_	10Dh	_	18Dh	SSP1ADD	20Dh	TMR1H	28Dh	PR2	30Dh	CCPR1H	38Dh	PWM6DCH
00Eh	PORTC	08Eh	—	10Eh	—	18Eh	SSP1MASK	20Eh	T1CON	28Eh	T2CON	30Eh	CCP1CON	38Eh	PWM6CON
00Fh	—	08Fh	—	10Fh	—	18Fh	SSP1STAT	20Fh	T1GCON	28Fh	T2HLT	30Fh	CCP1CAP	38Fh	—
010h	-	090h	-	110h	_	190h	SSP1CON1	210h	T1GATE	290h	T2CLK	310h	CCPR2L	390h	_
011h	—	091h	_	111h	—	191h	SSP1CON2	211h	T1CLK	291h	T2ERS	311h	CCPR2H	391h	—
012h	TRISA	092h	-	112h	—	192h	SSP1CON3	212h	—	292h	—	312h	CCP2CON	392h	—
013h	TRISB ⁽²⁾	093h	_	113h	_	193h	_	213h	—	293h	_	313h	CCP2CAP	393h	—
014h	TRISC	094h	-	114h	_	194h	-	214h	—	294h	-	314h	PWM3DCL	394h	_
015h	—	095h	—	115h	_	195h	_	215h	—	295h	_	315h	PWM3DCH	395h	—
016h	-	096h	-	116h	_	196h	-	216h	—	296h	-	316h	PWM3CON	396h	_
017h	_	097h	_	117h	_	197h	_	217h	—	297h	_	317h	—	397h	—
018h	LATA	098h	—	118h	—	198h	—	218h	—	298h	_	318h	PWM4DCL	398h	—
019h	LATB ⁽²⁾	099h	-	119h	RC1REG1	199h	-	219h	—	299h	-	319h	PWM4DCH	399h	_
01Ah	LATC	09Ah	—	11Ah	TX1REG1	19Ah	_	21Ah	_	29Ah	_	31Ah	PWM4CON	39Ah	—
01Bh	—	09Bh	ADRESL	11Bh	SP1BRG1L	19Bh	-	21Bh	—	29Bh	-	31Bh	—	39Bh	_
01Ch	—	09Ch	ADRESH	11Ch	SP1BRG1H	19Ch	_	21Ch	—	29Ch	_	31Ch	PWM5DCL	39Ch	—
01Dh	-	09Dh	ADCON0	11Dh	RC1STA1	19Dh	-	21Dh	—	29Dh	-	31Dh	PWM5DCH	39Dh	_
01Eh	_	09Eh	ADCON1	11Eh	TX1STA1	19Eh	_	21Eh	—	29Eh	_	31Eh	PWM5CON	39Eh	—
01Fh	—	09Fh	ADACT	11Fh	BAUD1CON1	19Fh	_	21Fh	—	29Fh	_	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h	General	3A0h	
													Purpose		
													Register		
			General	32Fh	16 Bytes										
			Purpose	330h			Unimplemented								
	General		Register				Read as '0'								
	Purpose		80 Bytes		Unimplemented										
	Register												Read as '0		
	So Byles														
		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
		0F0h	Common RAM	170h	Common RAM	1F0h	Common RAM	270h	Common RAM	2F0h	Common RAM	370h	Common RAM	3F0h	Common RAM
			Accesses												
07Fh		0FFh	70h-7Fh	17Fh	70h-7Fh	1FFh	70h-7Fh	27Fh	70h-7Fh	2FFh	70h-7Fh	37Fh	70h-7Fh	3FFh	70h-7Fh

Note 1: Unimplemented locations read as '0'.

2: Present only in PIC16(L)F15344.

BOR IS ALWAYS OFF

When the BOREN bits of the Configuration Words are

programmed to '00', the BOR is off at all times. The

device start-up is not delayed by the BOR ready

8.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

FIGURE 8-2: BROWN-OUT SITUATIONS

VDD VBOR Internal TPWRT(1) Reset Vdd VBOR Internal < TPWR1 TPWRT(1) Reset VDD VBOR Internal T_{PWRT}(1) Reset Note 1: TPWRT delay only if PWRTE bit is programmed to '0'.

8.2.4

condition or the VDD level.

© 2017 Microchip Technology Inc.

NOSC<2:0>/ COSC<2:0>	Clock Source			
111	EXTOSC ⁽¹⁾			
110	HFINTOSC ⁽²⁾			
101	LFINTOSC			
100	Reserved			
011	Reserved (operates like NOSC = 110)			
010	EXTOSC with 4x PLL ⁽¹⁾			
001	HFINTOSC with 2x PLL ⁽¹⁾			
000	Reserved (it operates like NOSC = 110)			
Note 1: EXTOSC config	urad by the EEVTOSC bits of			

TABLE 9-1: NOSC/COSC BIT SETTINGS

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

2: HFINTOSC settings are configured with the HFFRQ bits of the OSCFRQ register (Register 9-6).

TABLE 9-2: NDIV/CDIV BIT SETTINGS

NDIV<3:0>/ CDIV<3:0>	Clock divider	
1111-1010	Reserved	
1001	512	
1000	256	
0111	128	
0110	64	
0101	32	
0100	16	
0011	8	
0010	4	
0001	2	
0000	1	

REGISTER 9-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	U-0	U-0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	—	—	ORDY	NOSCR	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	pit 7 CSWHOLD: Clock Switch Hold bit						
	 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; if this bit 						
	is clear at the time that NOSCR becomes '1', the switch will occur						
bit 6-5	Unimplemented: Read as '0'.						
bit 4	ORDY: Oscillator Ready bit (read-only)						
	1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC						
	0 = A clock switch is in progress						
bit 3	NOSCR: New Oscillator is Ready bit (read-only)						
	1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" condition						
	0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready						
bit 2-0	Unimplemented: Read as '0'						

REGISTER 10-16: PIR6: PERIPHERAL INTERRUPT REQUEST REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
	—	—	—	—	—	CCP2IF	CCP1IF
bit 7							bit 0
Leaend:							

•		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7-2 Unimplemented: Read as '0'

bit 1 CCP2

CCP2IF: CCP2 Interrupt Flag bit

Valuo	CCPM Mode					
value	Capture	Compare	PWM			
1	Capture occurred (must be cleared in software)	Compare match occurred (must be cleared in software)	Output trailing edge occurred (must be cleared in software)			
0	Capture did not occur	Compare match did not occur	Output trailing edge did not occur			

bit 0 CCP1IF: CCP1 Interrupt Flag bit

Valuo	CCPM Mode					
value	Capture	Compare	PWM			
1	Capture occurred (must be cleared in software)	Compare match occurred (must be cleared in software)	Output trailing edge occurred (must be cleared in software)			
0	Capture did not occur	Compare match did not occur	Output trailing edge did not occur			

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

14.2 PORTA Registers

14.2.1 DATA REGISTER

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 14-2). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 14.2.8 shows how to initialize PORTA.

Reading the PORTA register (Register 14-1) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The PORT data latch LATA (Register 14-3) holds the output port data, and contains the latest value of a LATA or PORTA write.

EXAMPLE 14-1: INITIALIZING PORTA

; This c ; initia ; other ; manner	code example alizing the P ports are in 5.	illustrates ORTA register. The itialized in the same
BANKSEL CLRF BANKSEL CLRF BANKSEL CLRF BANKSEL MOVLW MOVWF	PORTA PORTA LATA ANSELA ANSELA TRISA B'00111000' TRISA	; ;Init PORTA ;Data Latch ; ;digital I/O ; ;Set RA<5:3> as inputs ;and set RA<2:0> as ;outputs

14.2.2 DIRECTION CONTROL

The TRISA register (Register 14-2) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.2.3 OPEN-DRAIN CONTROL

The ODCONA register (Register 14-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONA bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONA bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.2.4 SLEW RATE CONTROL

The SLRCONA register (Register 14-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONA bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONA bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.2.5 INPUT THRESHOLD CONTROL

The INLVLA register (Register 14-8) controls the input voltage threshold for each of the available PORTA input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTA register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 37-4 for more information on threshold levels.

Note:	Changing the input threshold selection should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

REGISTER 14-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
SLRB7	SLRB6	SLRB5	SLRB4	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	SLRB<7:4>: PORTB Slew Rate Enable bits
	For RB<7:4> pins, respectively
	1 = Port pin slew rate is limited
	0 = Port pin slews at maximum rate

bit 3-0 Unimplemented: Read as '0'

REGISTER 14-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	_	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	INLVLB<7:4>: PORTB Input Level Select bits
	For RB<7:4> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change
bit 3-0	Unimplemented: Read as '0'

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4	—	—	—	—	185
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	_	185
LATB	LATB7	LATB6	LATB5	LATB4	—	—	—	_	186
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	—	—	—	_	186
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	_	187
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	_	187
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	—	—	—	_	188
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	_	_	188

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

© 2017 Microchip Technology Inc.

PIC16(L)F15324/44

REGISTER	16-2: PMD	1: PMD CONT	ROL REGIS	TER 1			
R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
NCO1MD			_	_	TMR2MD	TMR1MD	TMR0MD
bit 7	·	·	•				bit 0
Levende							
Legena:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7 NCO1MD: Disable Numerically Control Osc 1 = NCO1 module disabled 0 = NCO1 module enabled			cillator bit				
bit 6-3	Unimplemer	ted: Read as ')'				
bit 2	TMR2MD: Disable Timer TMR2 bit 1 = Timer2 module disabled 0 = Timer2 module enabled						
bit 1	t 1 TMR1MD: Disable Timer TMR1 bit 1 = Timer1 module disabled 0 = Timer1 module enabled						
bit 0	TMR0MD: Di 1 = Timer0 n 0 = Timer0 n	isable Timer TM nodule disabled nodule enabled	IR0 bit				

19.2.1 CALIBRATION

19.2.1.1 Single-Point Calibration

Single-point calibration is performed by application software using Equation 19-1 and the assumed Mt. A reading of VTSENSE at a known temperature is taken, and the theoretical temperature is calculated by temporarily setting TOFFSET = 0. Then TOFFSET is computed as the difference of the actual and calculated temperatures. Finally, TOFFSET is stored in nonvolatile memory within the device, and is applied to future readings to gain a more accurate measurement.

19.2.1.2 Higher-Order Calibration

If the application requires more precise temperature measurement, additional calibrations steps will be necessary. For these applications, two-point or three-point calibration is recommended.

Note 1:	The TOFFSET value may be determined
	by the user with a temperature test.

- 2: Although the measurement range is -40°C to +125 °C due to the variations in offset error, the single-point uncalibrated calculated TSENSE value may indicate a temperature from -140°C to +225°C before the calibration offset is applied.
- The user must take into consideration self-heating of the device at different clock frequencies and output pin loading. For package related thermal characteristics information, refer to Section TABLE 37-6: "Thermal Characteristics".

19.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count), depends on both the ADC resolution N and the reference voltage used for conversion, as shown in Equation 19-2. It is recommended to use the smallest VREF value, such as 2.048 FVR reference voltage, instead of VDD.

Note:	Refer	to	Sec	tion 3	37.0	"Electrical
	Specifi	Specifications			FVR	reference
	voltage	accu	iracy.			

EQUATION 19-2: TEMPERATURE RESOLUTION (°C/LSb)

$$Ma = \frac{V_{REF}}{2^N} \times Mt$$
$$\frac{V_{REF}}{2^N}$$

$$Ma = \frac{2^{N}}{Mv}$$

Where:

Mv = sensor voltage sensitivity (V/°C)

VREF = Reference voltage of the ADC module (in Volts)

N = Resolution of the ADC

The typical Mv value for a single diode is approximately -1.267 to -1.32 mV/C. The typical Mv value for a stack of two diodes (low range setting) is approximately -2.533 mV/C. The typical Mv value for a stack of three diodes (high range setting) is approximately -3.8 mV/C.

19.3 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait a minimum of 25 us for the ADC value to settle, after the ADC input multiplexer is connected to the temperature indicator output, before the conversion is performed.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	125		
PIE4	—	—	_	_	—	_	TMR2IE	TMR1IE	130		
PIR4	—	—	_	_	—	_	TMR2IF	TMR1IF	138		
T1CON	_	_	CKPS	i<1:0> —		SYNC	RD16	ON	286		
T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	_	—	287		
T1GATE	_	_	_		GSS<4:0>						
T1CLK	—	_	_	_		CS<3:0>					
TMR1L	Holding Reg	ister for the L	east Significa	int Byte of the	e 16-bit TMR1 R	278*					
TMR1H	Holding Reg	ister for the N	lost Significa	Significant Byte of the 16-bit TMR1 Register							
T1CKIPPS	_	_		T1CKIPPS<5:0>							
T1GPPS	—	—			T1GPPS	6<5:0>			200		
CCPxCON	CCPxEN	CCPxOE	CCPxOUT	CCPxFMT	CCPxFMT CCPxMODE<3:0>						
CLCxSELy	_	—	_		L	CxDyS<4:0>			368		
ADACT	_	_	_	_		ADACT	<3:0>		237		

TABLE 26-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: -

d: — = Unimplemented location, read as '0'. Shaded cells are not used with the Timer1 modules.
 * Page with register information.

28.2.1 CCPX PIN CONFIGURATION

The software must configure the CCPx pin as an output by clearing the associated TRIS bit and defining the appropriate output pin through the RxyPPS registers. See Section 15.0 "Peripheral Pin Select (PPS) Module" for more details.

The CCP output can also be used as an input for other peripherals.

Note: Clearing the CCPxCON register will force the CCPx compare output latch to the default low level. This is not the PORT I/O data latch.

28.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 26.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

28.2.3 AUTO-CONVERSION TRIGGER

All CCPx modes set the CCP interrupt flag (CCPxIF). When this flag is set and a match occurs, an Auto-conversion Trigger can take place if the CCP module is selected as the conversion trigger source.

Refer to Section 20.2.4 "Auto-Conversion Trigger" for more information.

Note:	Removing the match condition by
	changing the contents of the CCPRxH
	and CCPRxL register pair, between the
	clock edge that generates the
	Auto-conversion Trigger and the clock
	edge that generates the Timer1 Reset, will
	preclude the Reset from occurring

28.2.4 COMPARE DURING SLEEP

Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep, unless the timer is running. The device will wake on interrupt (if enabled).

28.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 28-3 shows a typical waveform of the PWM signal.

28.3.1 STANDARD PWM OPERATION

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- · PR2 registers
- T2CON registers
- CCPRxL registers
- CCPxCON registers

Figure 28-4 shows a simplified block diagram of PWM operation.

Note: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.

FIGURE 28-3: C

CCP PWM OUTPUT SIGNAL

30.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 30.9 "CWG Steering Mode**".

30.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWG1CLKCON register.

31.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

31.1.1 DATA SELECTION

There are 40 signals available as inputs to the configurable logic. Four 40-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 31-2. Data inputs in the figure are identified by a generic numbered input name.

Table 31-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<4:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation to identify specific multiplexers: LCxD1S<4:0> through LCxD4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 31-3 through Register 31-6).

TABLE 31-2: CLCx DATA INPUT SELECTION

LCxDyS<4:0> Value	CLCx Input Source
101000 to 111111 [40+]	Reserved
100111 [39]	CWG1B output
100110 [38]	CWG1A output
100101 [37]	Reserved
100100 [36]	Reserved
100011 [35]	MSSP1 SCK output
100010 [34]	MSSP1 SDO output
100001 [33]	EUSART2 (TX/CK) output
100000 [32]	EUSART2 (DT) output
011111 [31]	EUSART1 (TX/CK) output
011110 [30]	EUSART1 (DT) output
011101 [29]	CLC4 output
011100 [28]	CLC3 output
011011 [27]	CLC2 output
011010 [26]	CLC1 output
011001 [25]	IOCIF
011000 [24]	ZCD output
010111 [23]	C2OUT
010110 [22]	C1OUT
010101 [21]	NCO1 output
010100 [20]	PWM6 output
010011 [19]	PWM5 output
010010 [18]	PWM4 output
010001 [17]	PWM3 output
010000 [16]	CCP2 output
001111 [15]	CCP1 output
001110 [14]	Timer2 overflow
001101 [13]	Timer1 overflow
001100 [12]	Timer0 overflow
001011 [11]	CLKR
001010 [10]	ADCRC
001001 [9]	Reserved
001000 [8]	MFINTOSC (32 kHz)
000111 [7]	MFINTOSC (500 kHz)
000110 [6]	LFINTOSC
000101 [5]	HFINTOSC
000100 [4]	Fosc
000011 [3]	CLCIN3PPS
000010 [2]	CLCIN2PPS
000001 [1]	CLCIN1PPS
000000 [0]	CL CINOPPS

32.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an $\overline{\text{ACK}}$ is placed in the ACKSTAT bit of the SSP1CON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the \overline{ACK} value sent back to the transmitter. The ACKDT bit of the SSP1CON2 register is set/cleared to determine the response.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSP1STAT register or the SSPOV bit of the SSP1CON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSP1CON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0) **FIGURE 32-15:**

PIC16(L)F15324/44

32.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 32-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSP1STAT register is set.
- 4. Slave sends ACK and SSP1IF is set.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSP1BUF clearing the BF flag.
- 7. Slave loads low address into SSP1ADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSP1ADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSP1IF is set.

Note: If the low address does not match, SSP1IF and UA are still set so that the slave software can set SSP1ADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSP1IF.
- 11. Slave reads the received matching address from SSP1BUF clearing BF.
- 12. Slave loads high address into SSP1ADD.
- Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSP1IF is set.
- 14. If SEN bit of SSP1CON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSP1IF.
- 16. Slave reads the received byte from SSP1BUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

32.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSP1ADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 32-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 32-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

33.1.1.5 TSR Status

The TRMT bit of the TXxSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXxREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

33.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXxSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXxSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXxREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXxREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 33.1.2.7** "Address **Detection**" for more information on the Address mode.

33.1.1.7 Asynchronous Transmission Set-up:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXxIF interrupt bit to be set.
- If interrupts are desired, set the TXxIE interrupt enable bit of the PIE3 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXxREG register. This will start the transmission.

FIGURE 33-3: ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	125	
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	447	
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	446	
BAUDxCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	448	
RCxREG	EUSART Rece	eive Data Regis	ster				449*			
TXxREG	EUSART Trar	nsmit Data Reg	egister					449*		
SPxBRGL				SPxBR	G<7:0>				449*	
SPxBRGH				SPxBR	G<15:8>	JAT 2 JAT 2 Image: Strain of the strain of			450*	
RXPPS	—	—			RXPP	S<5:0>			200	
CKPPS	—	—			CXPP	S<5:0>			200	
RxyPPS	_	_	—		F	RxyPPS<4:0>				
CLCxSELy	_	—			LCxDy	S<5:0>		Bit 1 Bit 0 — INTEDG OERR RX9D TRMT TX9D WUE ABDEN		

TABLE 33-2: SUMMARY OF REGISTERS ASSOCIATED WITH EUSART

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the EUSART module.

* Page with register information.

TABLE 37-18: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	—		ns	
		With Prescaler		10	—	—	/ ns		
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	—	—/	/ns /	
		With Prescaler			10	—	_/	RS	
42*	T⊤0P	T0CKI Period	1		Greater of:	—	—	ns <	N = prescale value
					20 or <u>Tcy + 40</u> N				\triangleright
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler 0.5		0.5 Tcy + 20	—/	$\overline{\frown}$	ns	
		Time	Synchronous, with Prescaler		15	— /	\checkmark	715	
			Asynchronous		30 🔨	—	$\setminus \prec$	ns	
46*	T⊤1L	T1CKI Low	Synchronous, N	No Prescaler	0.5 Tcy + 20		$\langle - \rangle$	ns	
		Time	Synchronous, with Prescaler		15	$\backslash - \backslash$	\downarrow	ns	
			Asynchronous		< 30	1	$\geq -$	ns	
47*	T⊤1P	T1CKI Input	Synchronous		Greater of.		/ _	ns	N = prescale value
		Period		~ ^	30 or <u>Tcy ¥ 40</u> N				
			Asynchronous		60	~ <u> </u>	_	ns	
48	F⊤1	Secondary O (oscillator en	econdary Oscillator Input Frequency Range 32.4 32.768 33.1 k scillator enabled by setting bit T1OSCEN					kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	dge to Timer	2 Tosc		7 Tosc		Timers in Sync mode

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C onless otherwise stated. These parameters are for design guidance only and are not tested.

© 2017 Microchip Technology Inc.

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	16				
Pitch	е		0.65 BSC			
Overall Height	Α	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.127 REF				
Overall Width	E	4.00 BSC				
Exposed Pad Width	E2	2.50	2.60	2.70		
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.50	2.60	2.70		
Terminal Width	b	0.25	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-257A Sheet 2 of 2