

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15344-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

TABLI	E 4:		20-PIN	ALLO	OCATIO	N TABLE	(PIC16(L	.)F15344	4)										
I/O(2)	20-Pin PDIP/SOIC/SSOP	20-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	Timers	CCP	MWM	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupt	Pull-up	Basic
RA0	19	16	ANA0	_	C1IN0+	—	DAC1OUT	—	_	—	—	—	—	_	_	_	IOCA0	Υ	ICSPDAT
RA1	18	15	ANA1	VREF+	C1IN0- C2IN0-	_	DAC1REF+	T0CKI ⁽¹⁾	_	_	_	_	-	_	—	_	IOCA1	Y	ICSPCLK
RA2	17	14	ANA2	—	-	—	—	—	—	-	CWG1IN ⁽¹⁾	—	ZCD1	—	CLCIN0 ⁽¹⁾	—	INT ⁽¹⁾ IOCA2	Y	-
RA3	4	1	-	—	—	—	—	—	—	_	—	—	—	—	_	_	IOCA3	Υ	MCLR VPP
RA4	3	20	ANA4	—	C1IN1-	_	_	T1G ⁽¹⁾	_	_	-	_	-	_	—	—	IOCA4	Y	CLKOUT OSC2
RA5	2	19	ANA5	_	_	—	—	T1CKI ⁽¹⁾ T2IN			—	—	-	—		—	IOCA5	Y	CLKIN OSC1 EIN
RB4	13	10	ANB4 ADACT ⁽¹⁾	—	—	—	—	—	—	—	-	SCK1 ⁽¹⁾ SCL1 ^(1,4)	-	-	CLCIN2 ⁽¹⁾	—	IOCB4	-	—
RB5	12	9	ANB5	—	—	—	—	—	—		—	—	-	RX1 ⁽¹⁾ DT1 ⁽¹⁾	CLCIN3 ⁽¹⁾	—	IOCB5		
RB6	11	8	ANB6	—	—	—	—	—	—		—	SDA1 ^(1,4) SDI1 ⁽¹⁾	-	—		—	IOCB6	Y	
RB7	10	7	ANB7	—	-	-	-	-	—	_	_	-	-	TX1 ⁽¹⁾ CK1 ⁽¹⁾	_	—	IOCB7	Y	_
RC0	16	13	ANC0	_	C2IN0+	_	_	_	—	_	_	SCK1 ⁽¹⁾ SCL1 ^(1,4)	-	TX2 ⁽¹⁾ CK2 ⁽¹⁾	—	_	IOCC0	Y	_
RC1	15	12	ANC1	—	C1IN1- C2IN1-	—	—	—	—	-	—	SDA1 ^(1,4) SDI1 ⁽¹⁾	—	RX2 ⁽¹⁾ DT2 ⁽¹⁾	—	—	IOCC1	Y	-
RC2	14	11	ANC2	—	C1IN2- C2IN2-	—	—	—	—		—	—	—	—		—	IOCC2	Y	
RC3	7	4	ANC3	—	C1IN3- C2IN3-	—	—	—	CCP2 ⁽¹⁾	—	—	—	—	—	CLCIN1 ⁽¹⁾	-	IOCC3	Y	—
RC4	6	3	ANC4	—	—	_	_	—	—	_	—	_	—	_	—	_	IOCC4	Υ	_
RC5	5	2	ANC5		_				CCP1 ⁽¹⁾		_		—		—	-	IOCC5	Υ	
RC6	8	5	ANC6	—	—	—	_	—	_	—	_	SS1 ⁽¹⁾	—	_	—	_	IOCC6	Υ	_

1: Note

This is a PPS re-mappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. All digital output signals shown in this row are PPS re-mappable. These signals may be mapped to output onto one of several PORTx pin options. 2:

3:

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by the INLVL register, instead of the I²C specific or 4: SMBUS input buffer thresholds.

Name	Function	Input Type	Output Type	Description
RC0/ANC0/C2IN0+/SCK1 ⁽¹⁾ /SCL1 ^(1,4) /	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	ANC0	AN	_	ADC Channel C0 input.
	C2IN0+	AN	_	Comparator 2 positive input.
	SCK1 ⁽¹⁾	TTL/ST	CMOS/OD	MSSP1 SPI clock input/output (default input location, SCK1 is a PPS remappable input and output).
	SCL1 ^(1,4)	l ² C	OD	MSSP1 I ² C input/output.
	TX2 ⁽¹⁾	—	CMOS	EUSART2 asynchronous transmit.
	CK2 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART2 synchronous mode clock input/output.
	IOCC0	TTL/ST	_	Interrupt-on-change input.
RC1/ANC1/C1IN1-/C2IN1-/SDA1 ^(1,4) /	RC1	TTL/ST	CMOS/OD	General purpose I/O.
	ANC1	AN	_	ADC Channel C1 input.
	C1IN1-	AN	—	Comparator 1 negative input.
	C2IN1-	AN	_	Comparator 2 negative input.
	SDA1 ^(1,4)	l ² C	OD	MSSP1 I ² C serial data input/output.
	SDI1 ⁽¹⁾	TTL/ST	_	MSSP1 SPI serial data input.
	RX2 ⁽¹⁾	TTL/ST	_	EUSART2 Asynchronous mode receiver data input.
	DT2 ⁽¹⁾	TTL/ST	CMOS/OD	EUSART2 Synchronous mode data input/output.
	IOCC1	TTL/ST	_	Interrupt-on-change input.
RC2/ANC2/C1IN2-/C2IN2-/IOCC2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	ANC2	AN	_	ADC Channel C2 input.
	C1IN2-	AN	_	Comparator 1 negative input.
	C2IN2-	AN	—	Comparator 2 negative input.
	IOCC2	TTL/ST	-	Interrupt-on-change input.
RC3/ANC3/C1IN3-/C2IN3-/CCP2 ⁽¹⁾ /	RC3	TTL/ST	CMOS/OD	General purpose I/O.
	ANC3	AN	-	ADC Channel C3 input.
	C1IN3-	AN	—	Comparator 1 negative input.
	C2IN3-	AN	_	Comparator 2 negative input.
	CCP2 ⁽¹⁾	TTL/ST	CMOS/OD	Capture/compare/PWM2 (default input location for capture function).
	CLCIN1 ⁽¹⁾	TTL/ST	_	Configurable Logic Cell source input.
	IOCC3	TTL/ST	_	Interrupt-on-change input.
RC4/ANC4/IOCC4	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	ANC4	AN	_	ADC Channel C4 input.
	IOCC4	TTL/ST	—	Interrupt-on-change input.

TABLE 1-2. PIC16(L)E15344 PINOLIT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels

XTAL = Crystal levels I²C = Schmitt Trigger input with I²C

HV = High Voltage 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 15-3 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS 4: assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

5: For 14/16-pin package only.

For 20-pin package only 6:

Note

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
 - Device Information Area (DIA)
 - Device Configuration Information (DCI)
 - Revision ID
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F15324/44	4096	0FFFh

4.1 **Program Memory Organization**

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 4-1 shows the memory sizes implemented. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

TABLE 4-10:	SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63	(CONTINUED)
-------------	--	-------------

						· · · ·	- /				
Address	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Bank 5											
				CPU COR	E REGISTERS;	see Table 4-3 for	specifics				
28Ch	T2TMR	Holding Register for t	Iding Register for the 8-bit TMR2 Register							0000 0000	0000 0000
28Dh	T2PR	TMR2 Period Registe	r							1111 1111	1111 1111
28Eh	T2CON	ON		CKPS<2:0>			OUT	PS<3:0>		0000 0000	0000 0000
28Fh	T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
290h	T2CLKCON	—	-	-	—		CS	8<3:0>		0000	0000
291h	T2RST	—	-	—	_		RSE	EL<3:0>		0000	0000
292h 29Fh	_				Unimpler	nented				—	_

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

4.6.1 TRADITIONAL/BANKED DATA MEMORY

The traditional or banked data memory is a region from FSR address 0x000 to FSR address 0x1FFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 4-9: TRADITIONAL/BANKED DATA MEMORY MAP

PIC16(L)F15324/44

© 2017 Microchip Technology Inc.

EXAMPLE 13-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY (PFM)

; This sample ; 1.A valid ad ; 2.ADDRH and	row erase routine assum dress within the erase ADDRL are located in cc	nes the following: row is loaded in variables ADDRH:ADDRL ommon RAM (locations 0x70 - 0x7F)
BANKSEL	NVMADRL	
MOVF	ADDRL,W	
MOVWF	NVMADRL	; Load lower 8 bits of erase address boundary
MOVF	ADDRH,W	
MOVWF	NVMADRH	; Load upper 6 bits of erase address boundary
BCF	NVMCON1, NVMREGS	; Choose PFM memory area
BSF	NVMCON1, FREE	; Specify an erase operation
BSF	NVMCON1,WREN	; Enable writes
BCF	INTCON, GIE	; Disable interrupts during unlock sequence
;	REQU	JIRED UNLOCK SEQUENCE:
MOVLW	55h	; Load 55h to get ready for unlock sequence
MOVWF	NVMCON2	; First step is to load 55h into NVMCON2
MOVLW	AAh	; Second step is to load AAh into W
MOVWF	NVMCON2	; Third step is to load AAh into NVMCON2
BSF	NVMCON1,WR	; Final step is to set WR bit
;		
BSF	INTCON,GIE	; Re-enable interrupts, erase is complete
BCF	NVMCON1,WREN	; Disable writes

TABLE 13-2: NVM ORGANIZATION AND ACCESS INFORMATION

	Master Values		N		FSR Access			
Memory Function	Program Counter (PC), ICSP™ Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR< 14:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	0000h		8000h		
Liser Memory	0001h		0	0001h		8001h		
Oser Memory	0003h	DEM	0	0003h	Read	8003h	Read Only	
INT Vector	0004h	FEM	0	0004h	Write	8004h	Read-Unly	
Hoor Momony	0005h		0	0005h		8005h		
User Memory	0FFFh		0	0FFFh		8FFFh		
	8000h	DEM	1	0000h	Read			
USELID	8003h	FEM	1	0003h	Write			
Reserved	8004h	—	-	0004h	_			
Rev ID	8005h		1	0005h	Road Only			
Device ID	8006h]	1	0006h	Read-Only			
CONFIG1	8007h		1	0007h		INU	ALLESS	
CONFIG2	8008h	PFM	1	0008h	Duri			
CONFIG3	8009h		1	0009h	Read Write			
CONFIG4	800Ah		1	000Ah	Willo			
CONFIG5	800Bh		1	000Bh				
DIA and DCI	8100h-82FFh	PFM and Hard coded	1	0100h- 02FFh	Read-Only	No	Access	

14.3 Register Definitions: PORTA

U-0	U-0	R/W-x/u	R/W-x/u	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	RA5	RA4	RA3	RA2	RA1	RA0	
bit 7		•		•			bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
-								

REGISTER 14-1: PORTA: PORTA REGISTER

bit 7-6	Unimplemented: Read as '0'
bit 5-0	RA<5:0>: PORTA I/O Value bits ⁽¹⁾
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register returns of actual I/O pin values.

REGISTER 14-2: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	TRISA5	TRISA4	—	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	TRISA<5:4>: PORTA Tri-State Control bits 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 3	Unimplemented: Read as '0'
bit 2-0	TRISA<2:0>: PORTA Tri-State Control bits 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

REGISTER 14-20: ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSC<7:0>**: Analog Select between Analog or Digital Function on Pins RC<7:0>, respectively⁽¹⁾ 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.

2: Present on PIC16(L)F15344 only.

REGISTER 14-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Present on PIC16(L)F15344 only.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	
bit 7	•	•		•			bit 0	
Legend:								
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is uncha	inged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other R			her Resets	

REGISTER 14-22: ODCONC: PORTC OPEN-DRAIN CONTROL REGISTER

bit 7-0 **ODCC<7:0>:** PORTC Open-Drain Enable bits For RC<7:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

'0' = Bit is cleared

Note 1: Present on PIC16(L)F15344 only.

'1' = Bit is set

REGISTER 14-23: SLRCONC: PORTC SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRC<7:0>: PORTC Slew Rate Enable bits

- For RC<7:0> pins, respectively
- 1 = Port pin slew rate is limited
- 0 = Port pin slews at maximum rate

Note 1: Present on PIC16(L)F15344 only.

REGISTER 14-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

INLVLC<7:0>: PORTC Input Level Select bits

For RC<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

Note 1: Present on PIC16(L)F15344 only.

15.8 Register Definitions: PPS Input Selection

REGISTER 15-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION⁽¹⁾

U-0	U-0	R/W-q/u	R/W-q/u	R/W/q/u	R/W-q/u	R/W-q/u	R/W-q/u
—	—			xxxPF	PS<5:0>		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res				
'1' = Bit is set		'0' = Bit is cleared q = value depends on peripheral					

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **xxxPPS<5:0>:** Peripheral xxx Input Selection bits See Table 15-1 and Table 15-2.

- **Note 1:** The "xxx" in the register name "xxxPPS" represents the input signal function name, such as "INT", "T0CKI", "RX", etc. This register summary shown here is only a prototype of the array of actual registers, as each input function has its own dedicated SFR (ex: INTPPS, T0CKIPPS, RXPPS, etc.).
 - 2: Each specific input signal may only be mapped to a subset of these I/O pins, as shown in Table 15-1 and Table 15-2. Attempting to map an input signal to a non-supported I/O pin will result in undefined behavior. For example, the "INT" signal map be mapped to any PORTA or PORTB pin. Therefore, the INTPPS register may be written with values from 0x00-0x0F (corresponding to RA0-RB7). Attempting to write 0x10 or higher to the INTPPS register is not supported and will result in undefined behavior.

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	
—	—	—			RxyPPS<4:0>			
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 15-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

bit 4-0 **RxyPPS<4:0>:** Pin Rxy Output Source Selection bits See Table 15-4 and Table 15-5.

Note 1: TRIS control is overridden by the peripheral as required.

REGISTER 15-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PPSLOCKED
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0

PPSLOCKED: PPS Locked bit

1 = PPS is locked. PPS selections can not be changed.

0= PPS is not locked. PPS selections can be changed.

21.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

21.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	_	_	_	INTEDG	125
PIE4	—	—	_	_	—	_	TMR2IE	TMR1IE	130
PIR4	—	—	_	_	—	_	TMR2IF	TMR1IF	138
T1CON	_	_	CKPS	<1:0>	_	SYNC	RD16	ON	286
T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	_	—	287
T1GATE	_	_	_	— GSS<4:0>				289	
T1CLK	—	—	_	— — CS<3:0>				288	
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						278*		
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						278*		
T1CKIPPS	— — Т1СКIPPS<5:0>						200		
T1GPPS	—	—	T1GPPS<5:0>						200
CCPxCON	CCPxEN	CCPxOE	CCPxOUT CCPxFMT CCPxMODE<3:0>				322		
CLCxSELy	_	—	– LCxDyS<4:0>				368		
ADACT	_	_	— — ADACT<3:0>			237			

TABLE 26-3: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: -

d: — = Unimplemented location, read as '0'. Shaded cells are not used with the Timer1 modules.
 * Page with register information.

FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

LCxG1D4T LCxG1D4N LCxG1D3T LCxG1D3N LCxG1D2T LCxG1D2N LCxG1D1T LCxG1D1T bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Resets bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0 0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared -n/n = Value at POR and BOR/Value at all other Resets bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
'1' = Bit is set '0' = Bit is cleared bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
bit 7 LCxG1D4T: Gate 0 Data 4 True (non-inverted) bit 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
 1 = CLCIN3 (true) is gated into CLCx Gate 0 0 = CLCIN3 (true) is not gated into CLCx Gate 0 bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
bit 6 LCxG1D4N: Gate 0 Data 4 Negated (inverted) bit 1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0
1 = CLCIN3 (inverted) is gated into CLCx Gate 0 $0 = CLCIN3 (inverted) is not gated into CLCx Gate 0$
$\Omega = CI CIN3$ (inverted) is not gated into CI CY Cate 0
$\sigma = \sigma = \sigma = \sigma + \sigma \sigma = \sigma + \sigma \sigma = \sigma + \sigma = \sigma + \sigma = \sigma =$
bit 5 LCxG1D3T: Gate 0 Data 3 True (non-inverted) bit
1 = CLCIN2 (true) is gated into CLCx Gate 0
0 = CLCIN2 (true) is not gated into CLCx Gate 0
bit 4 LCxG1D3N: Gate 0 Data 3 Negated (inverted) bit
 1 = CLCIN2 (inverted) is gated into CLCx Gate 0 0 = CLCIN2 (inverted) is not gated into CLCx Gate 0
bit 3 LCxG1D2T: Gate 0 Data 2 True (non-inverted) bit
1 = CLCIN1 (true) is gated into CLCx Gate 0
0 = CLCIN1 (true) is not gated into I CLCx Gate 0
bit 2 LCxG1D2N: Gate 0 Data 2 Negated (inverted) bit
1 = CLCIN1 (inverted) is gated into CLCx Gate 0
bit 1
bit 1 LCXG1D11: Gate 0 Data 1 True (non-inverted) bit $1 = CLCIN0 (true)$ is gated into CLCX Gate 0
0 = CLCINO (true) is not gated into CLCx Gate 0
bit 0 LCxG1D1N: Gate 0 Data 1 Negated (inverted) bit
1 = CLCIN0 (inverted) is gated into CLCx Gate 0
0 = CLCIN0 (inverted) is not gated into CLCx Gate 0

REGISTER 31-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER

33.1.1.5 TSR Status

The TRMT bit of the TXxSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXxREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

33.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXxSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXxSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXxREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXxREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 33.1.2.7** "Address **Detection**" for more information on the Address mode.

33.1.1.7 Asynchronous Transmission Set-up:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXxIF interrupt bit to be set.
- If interrupts are desired, set the TXxIE interrupt enable bit of the PIE3 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXxREG register. This will start the transmission.

FIGURE 33-3: ASYNCHRONOUS TRANSMISSION

33.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXxSTA register. The Break character transmission is then initiated by a write to the TXxREG. The value of data written to TXxREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 33-9 for the timing of the Break character sequence.

33.3.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXxREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXxREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXxREG becomes empty, as indicated by the TXxIF, the next data byte can be written to TXxREG.

33.4 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

33.4.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART.

33.4.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

33.4.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

33.4.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 33.4.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXxREG register.