E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15344-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with PIC16(L)F15324/44 Microcontrollers	
3.0	Enhanced Mid-Range CPU	
4.0	Memory Organization	
5.0	Device Configuration	
6.0	Device Information Area	
7.0	Device Configuration Information	
8.0	Resets	
9.0	Oscillator Module (with Fail-Safe Clock Monitor)	
10.0	Interrupts	121
11.0	Power-Saving Operation Modes	
12.0	Windowed Watchdog Timer (WWDT)	150
	Nonvolatile Memory (NVM) Control	
	I/O Ports	
15.0	Peripheral Pin Select (PPS) Module	
16.0	Peripheral Module Disable	
17.0	Interrupt-On-Change	
18.0	Fixed Voltage Reference (FVR)	
19.0	Temperature Indicator Module	
20.0	Analog-to-Digital Converter (ADC) Module	
21.0	5-Bit Digital-to-Analog Converter (DAC1) Module	
	Numerically Controlled Oscillator (NCO) Module	
	Comparator Module	
	Zero-Cross Detection (ZCD) Module	
	Timer0 Module	
	Timer1 Module with Gate Control	
27.0	Timer2 Module With Hardware Limit Timer (HLT)	
28.0		
	Pulse-Width Modulation (PWM)	
	Complementary Waveform Generator (CWG) Module	
	Configurable Logic Cell (CLC)	
	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	
	Reference Clock Output Module	
	In-Circuit Serial Programming™ (ICSP™)	
	Instruction Set Summary	
	Electrical Specifications	
38.0		
39.0	Development Support	
40.0	Packaging Information	508

TABLE 4-6: PIC16(L)F15324/44 MEMORY MAP, BANKS 16-23

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Register		Core Register		Core Register		Core Register		Core Register		Core Register		Core Register		Core Register
	(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)		(Table 4-3)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch	WDTCON0	88Ch	CPUDOZE	90Ch	FVRCON	98Ch	_	A0Ch	—	A8Ch		B0Ch	—	B8Ch	_
80Dh	WDTCON1	88Dh	OSCCON1	90Dh		98Dh	_	A0Dh	—	A8Dh		B0Dh	_	B8Dh	_
80Eh	WDTL	88Eh	OSCCON2	90Eh	DAC1CON0	98Eh	—	A0Eh		A8Eh		B0Eh	_	B8Eh	_
80Fh	WDTH	88Fh	OSCCON3	90Fh	DAC1CON1	98Fh	CMOUT	A0Fh		A8Fh		B0Fh	_	B8Fh	_
810h	WDTU	890h	OSCSTAT1	910h	—	990h	CM1CON0	A10h	—	A90h	—	B10h	—	B90h	—
811h	BORCON	891h	OSCEN	911h	_	991h	CM1CON1	A11h	_	A91h		B11h	_	B91h	—
812h	VREGCON ⁽²⁾	892h	OSCTUNE	912h	_	992h	CM1NCH	A12h		A92h		B12h	_	B92h	_
813h	PCON0	893h	OSCFRQ	913h	_	993h	CM1PCH	A13h	—	A93h		B13h	_	B93h	_
814h	PCON1	894h	—	914h	—	994h	CM2CON0	A14h	—	A94h	—	B14h	—	B94h	—
815h	—	895h	CLKRCON	915h	—	995h	CM2CON1	A15h	—	A95h	_	B15h	—	B95h	—
816h	_	896h	CLKCLK	916h	—	996h	CM2NCH	A16h	—	A96h	—	B16h	—	B96h	—
817h	_	897h	_	917h	_	997h	CM2PCH	A17h	—	A97h	_	B17h	_	B97h	_
818h	_	898h	_	918h	_	998h	_	A18h	—	A98h	_	B18h	_	B98h	_
819h	_	899h	_	919h	_	999h	_	A19h	RC2REG	A99h	_	B19h	_	B99h	_
81Ah	NVMADRL	89Ah	_	91Ah	_	99Ah	—	A1Ah	TX2REG	A9Ah	—	B1Ah	_	B9Ah	—
81Bh	NVMADRH	89Bh	_	91Bh	_	99Bh	—	A1Bh	SP2BRGL	A9Bh	—	B1Bh	_	B9Bh	_
81Ch	NVMDATL	89Ch	_	91Ch	_	99Ch	_	A1Ch	SP2BRGH	A9Ch	_	B1Ch	_	B9Ch	_
81Dh	NVMDATH	89Dh	_	91Dh	_	99Dh	_	A1Dh	RC2STA	A9Dh	—	B1Dh	_	B9Dh	—
81Eh	NVMCON1	89Eh	_	91Eh	_	99Eh	_	A1Eh	TX2STA	A9Eh	—	B1Eh	_	B9Eh	—
81Fh	NVMCON2	89Fh	—	91Fh	ZCDCON	99Fh	—	A1Fh	BAUD2CON	A9Fh	—	B1Fh	—	B9Fh	—
820h		8A0h		920h		9A0h		A20h		AA0h		B20h		BA0h	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h	Common RAM	8F0h	Common RAM	970h	Common RAM	9F0h	Common RAM	A70h	Common RAM	AF0h	Common RAM	B70h	Common RAM	BF0h	Common RAM
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
87Fh	70h-7Fh	8FFh	70h-7Fh	97Fh	70h-7Fh	9FFh	70h-7Fh	A7Fh	70h-7Fh	AFFh	70h-7Fh	B7Fh	70h-7Fh	BFFh	70h-7Fh

Note1:Unimplemented locations read as '0'.2:Register not implemented on LF devices.

										,	
Bank Offset Bank 0-Bank 63	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
All Banks											
x00h or x80h	INDF0	Addressing physical re	g this location gister)	n uses cont	ents of FSF	R0H/FSR0L	to address	data memo	ry (not a	****	XXXX XXXX
x01h or x81h	INDF1	Addressing physical re	g this location gister)	n uses cont	ents of FSF	R1H/FSR1L	to address	data memo	ry (not a	XXXX XXXX	XXXX XXXX
x02h or x82h	PCL				PC	CL				0000 0000	0000 0000
x03h or x83h	STATUS	—	—	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	FSR0L	Indirect Da	ndirect Data Memory Address 0 Low Pointer							uuuu uuuu
x05h or x85h	FSR0H	FSR0H	Indirect Da	ta Memory	Address 0 I	High Pointe	r			0000 0000	0000 0000
x06h or x86h	FSR1L	FSR1L	Indirect Da	ta Memory	Address 1 I	Low Pointer				0000 0000	uuuu uuuu
x07h or x87h	FSR1H	FSR1H	Indirect Da	ta Memory	Address 1 I	High Pointe	r			0000 0000	0000 0000
x08h or x88h	BSR	—	—	— BSR<5:0>						00 0000	00 0000
x09h or x89h	WREG	Working R	egister							0000 0000	uuuu uuuu
x0Ah or x8Ah	PCLATH	—	Write Buffe	r for the up	per 7 bits of	f the Progra	m Counter			-000 0000	-000 0000
x0Bh or x8Bh	INTCON	GIE	PEIE	—	—	—	—	_	INTEDG	001	001

 TABLE 4-9:
 SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (ALL BANKS)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These Registers can be accessed from any bank.

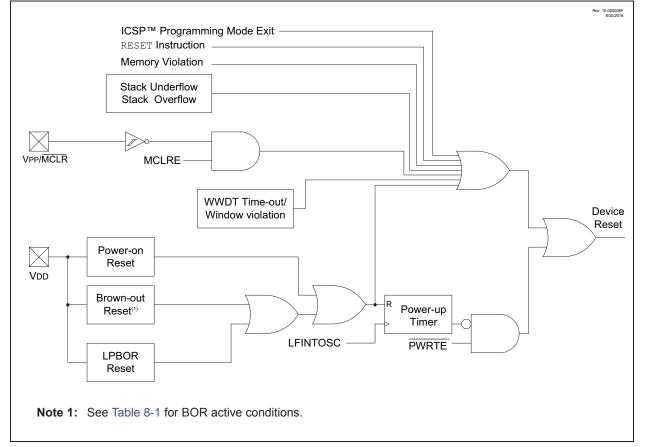
TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (C	Continued)		1		1	1	I	1			
1F38h	ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	11 1111	11 1111
1F39h	WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00 0000	00 0000
1F3Ah	ODCONA	_	_	ODCA5	ODCA4	_	ODCA2	ODCA1	ODCA0	00 0000	00 0000
1F3Bh	SLRCONA	—	_	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	11 1111	11 1111
1F3Ch	INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
1F3Dh	IOCAP	—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
1F3Eh	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
1F3Fh	IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
1F40h — 1F42h	_				Unimpler	nented				_	_
1F43h	ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	_	_	1111	1111
1F44h	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	_	0000	0000
1F45h	ODCONB ⁽¹⁾	ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	_	0000	0000
1F46h	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	—	_	—		1111	1111
1F47h	INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	_	_	1111	1111
1F48h	IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	0000	0000
1F49h	IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	—	_	_	0000	0000
1F4Ah	IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	_	0000	0000
1F4Bh — 1F4Dh	_				Unimpler	nented				_	_
1F4Eh	ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
1F4Fh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
1F50h	ODCONC	ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
1F51h	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
1F52h	INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
1F53h	IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
1F54h	IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
1F55h	IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
1F56h 1F6Fh	_	Unimplemented								-	_

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Present only in PIC16(L)F15344.

A simplified block diagram of the On-Chip Reset Circuit

is shown in Figure 8-1.


8.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- · Programming mode exit
- Memory Violation Reset (MEMV)

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

FIGURE 8-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

© 2017 Microchip Technology Inc.

8.15 Register Definitions: Power Control

Legend:

R = Readable bit

HC = Bit is cleared by hardware

REGISTER 8-	2: PCON	D: POWER C	ONTROL RE	GISTER 0			
R/W/HS-0/q	R/W/HS-0/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
bit 7			·				bit 0

HS = Bit is set by hardware

U = Unimplemented bit, read as '0'

REGISTER 8-2: PCON0: POWER CONTROL REGISTER 0

W = Writable bit

	bit								
u = Bit is unch	anged	x = Bit is unknown	-m/n = Value at POR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition						
bit 7	STKOVF: S	tack Overflow Flag bit							
		Overflow occurred							
	0 = A Stack Overflow has not occurred or cleared by firmware								
bit 6		tack Underflow Flag bit							
		k Underflow occurred k Underflow has not occurred or cleared by firmware							
bit 5		DT Window Violation Flag							
bit 0			as not occurred or set to '1' by firmware						
	0 = A WDT	Window Violation Reset ha	as occurred (a CLRWDT instruction was executed either without window (cleared by hardware)						
bit 4		chdog Timer Reset Flag bi							
			occurred or set to '1' by firmware						
		-	urred (cleared by hardware)						
bit 3	RMCLR: MO	CLR Reset Flag bit							
		= A MCLR Reset has not occurred or set to '1' by firmware							
		Reset has occurred (clea	red by hardware)						
bit 2		nstruction Flag bit							
	 1 = A RESET instruction has not been executed or set to '1' by firmware 0 = A RESET instruction has been executed (cleared by hardware) 								
bit 1		r-on Reset Status bit							
		er-on Reset occurred							
		0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)							
bit 0	BOR: Brown	n-out Reset Status bit							
		n-out Reset occurred							
		-out Reset occurred (must	t be set in software after a Power-on Reset or Brown-out Reset						
	occurs)								

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
_	_	LATA5	LATA4		LATA2	LATA1	LATA0		
bit 7						•	bit 0		
Legend:									
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	inged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared									

REGISTER 14-3: LATA: PORTA DATA LATCH REGISTER

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾
bit 3	Unimplemented: Read as '0'

bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register returns actual I/O pin values.

REGISTER 14-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ANSA<5:4> : Analog Select between Analog or Digital Function on pins RA<5:4>, respectively 1 =Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

14.7 Register Definitions: PORTC

REGISTER 14-17: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
RC7 ⁽²⁾	RC6 ⁽²⁾	RC5	RC4	RC3	RC2	RC1	RC0		
bit 7				•			bit 0		
Legend:									
R = Readable b	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			own	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ired						

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

2: Present on PIC16(L)F15344 only.

REGISTER 14-18: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

- TRISC<7:0>: PORTC Tri-State Control bits
- 1 = PORTC pin configured as an input (tri-stated)
- 0 = PORTC pin configured as an output

Note 1: Present on PIC16(L)F15344 only.

REGISTER 14-19: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATC7 ⁽²⁾	LATC6 ⁽²⁾	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

- **Note 1:** Writes to PORTC are actually written to corresponding LATC register. The actual I/O pin values are read from the PORTC register.
 - 2: Present on PIC16(L)F15344 only.

Note 1: Writes to PORTC are actually written to corresponding LATC register. The actual I/O pin values are read from the PORTC register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PMD0	SYSCMD	FVRMD	—	—	—	NVMMD	CLKRMD	IOCMD	205
PMD1	NCO1MD	_	—	—	_	TMR2MD	TMR1MD	TMR0MD	206
PMD2	—	DAC1MD	ADCMD	—	_	CMP2MD	CMP1MD	ZCDMD	207
PMD3	—	—	PWM6MD	PWM5MD	PWM4MD	PWM3MD	CCP2MD	CCP1MD	208
PMD4	UART2MD	UART1MD	—	MSSP1MD	—	—	—	CWG1MD	209
PMD5	—	—		CLC4MD	CLC3MD	CLC2MD	CLC1MD	—	210

 TABLE 16-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

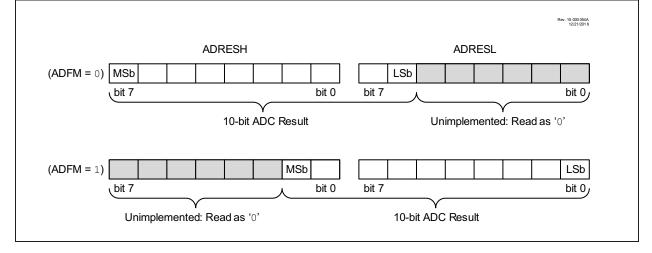
Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

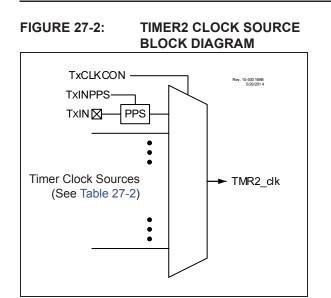
20.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the ADCRC oscillator is selected.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIE1 register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all three of these bits are set, the execution will switch to the Interrupt Service Routine (ISR).


20.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 20-3 shows the two output formats.

FIGURE 20-3: 10-BIT ADC CONVERSION RESULT FORMAT

27.1 Timer2 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 27-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- · any device Reset
- · External Reset Source event that resets the timer.

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

27.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each TMR2_clk cycle. When the two values match, the comparator resets the value of TMR2 to 00h on the next rising TMR2_clk edge and increments

the output postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register, a one TMR2_clk period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

27.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

27.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

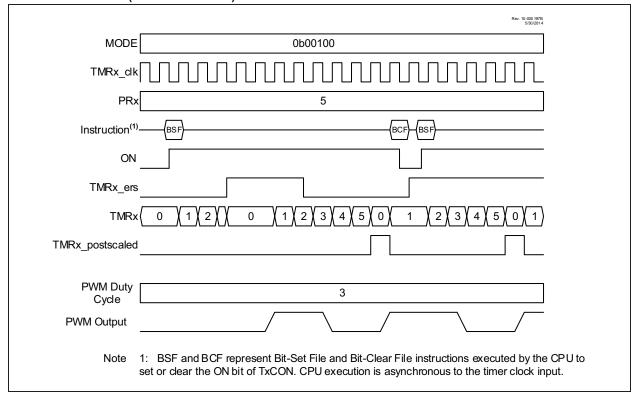
27.2 Timer2 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 28.0** "**Capture/Compare/PWM Modules**" for more details on setting up Timer2 for use with the CCP, as well as the timing diagrams in **Section 27.5** "**Operation Examples**" for examples of how the varying Timer2 modes affect CCP PWM output.

27.3 External Reset Sources


In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2 with the T2RST register. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

27.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- Reset on rising or falling edge (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

FIGURE 27-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM (MODE = 00100)

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two clock delay. Refer to Figure 27-6.

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 28-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

28.3.8 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

28.3.9 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

28.3.10 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

32.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- · Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 32-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 32-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. Data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 32-5 shows a typical connection between two processors configured as master and slave devices.

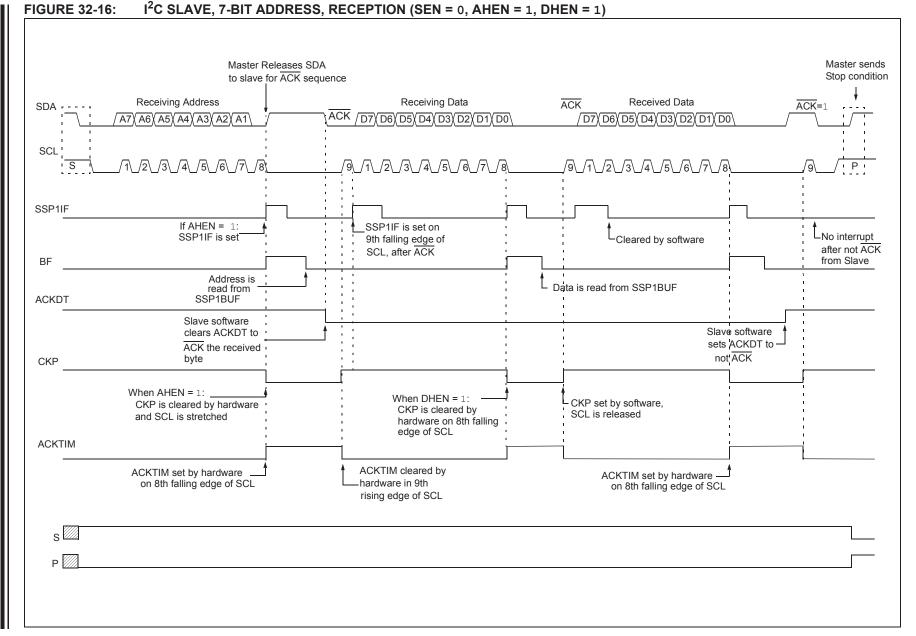
Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.


If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

Preliminary

PIC16(L)F15324/44

Note 1: If at the beginning of the Start condition,

its Idle state.

the SDA and SCL pins are already

sampled low, or if during the Start condi-

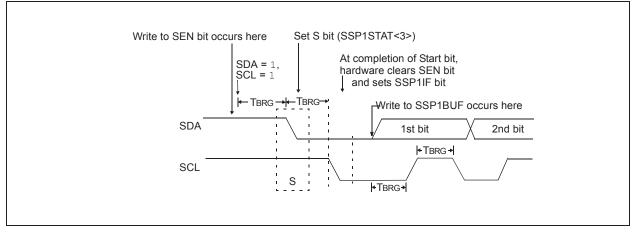
tion, the SCL line is sampled low before

the SDA line is driven low, a bus collision

occurs, the Bus Collision Interrupt Flag,

BCLIF, is set, the Start condition is

aborted and the I²C module is reset into


2: The Philips I²C specification states that a

bus collision cannot occur on a Start.

32.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 32-26), the user sets the Start Enable bit, SEN bit of the SSP1CON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSP1ADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSP1STAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSP1ADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSP1CON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

FIGURE 32-26: FIRST START BIT TIMING

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0				
SPEN ⁽¹⁾	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
bit 7							bit (
Legend:											
R = Readable		W = Writable		•	nented bit, read						
u = Bit is unch	anged	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	SPEN: Serial	Port Enable bi	_t (1)								
	1 = Serial po		•								
		rt disabled (he	d in Reset)								
bit 6	RX9: 9-Bit Re	ceive Enable l	pit								
	1 = Selects 9										
	0 = Selects 8										
bit 5	-	e Receive Enat	ole bit								
	Asynchronous		innorod								
		s mode – value mode – Maste									
	-	single receive	-								
) = Disables single receive									
		his bit is cleared after reception is complete. Synchronous mode – Slave									
	-	s mode – slave	ianored								
bit 4		nuous Receive	•								
	Asynchronous										
			eive until enal	ole bit CREN is	cleared						
		continuous red	eive								
	Synchronous										
		continuous rec continuous rec		ole bit CREN is	cleared (CREN	l overrides SR	EN)				
bit 3		ress Detect En									
bit 5		s mode 9-bit (F									
	-			nterrupt and lo	ad of the receive	e buffer when t	he ninth bit ir				
		ve buffer is set									
				are received a	nd ninth bit can	be used as pa	rity bit				
		<u>s mode 8-bit (F</u>									
		s mode – value	gnored								
bit 2	FERR: Framing	-	ndated by rec		register and rec	coivo povt valio	(h)(to)				
	0 = No framing						i byte)				
bit 1	OERR: Overr	•									
		error (can be c	leared by clea	ring bit CREN)						
bit 0		bit of Received	Data								
				and must be o	calculated by us	er firmware.					
		ule automatica	Illy changes th	ne pin from tri-s	state to drive as		gure the				

REGISTER 33-2: RCxSTA: RECEIVE STATUS AND CONTROL REGISTER

PIC16(L)F15324/44

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, <u>PD</u> is cleared. Time-out Status bit, <u>TO</u> is set. Watchdog Timer and its prescaler are cleared. See <u>Section 11.2</u> " <u>Sleep Mode</u> " for more information.

SUBWF	Subtract W from f				
Syntax:	[label] SU	JBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - (W) \rightarrow (d	lestination)			
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.				
	C = 0 W > f				
	C = 1	$W \leq f$			
	DC = 0	W<3:0> > f<3:0>			
	DC = 1 W<3:0> ≤ f<3:0>				

SUBWFB	Subtract W from f with Borrow					
Syntax:	SUBWFB f {,d}					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$					
Status Affected:	C, DC, Z					
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

SUBLW	Subtract W from literal					
Syntax:	[label] SU	JBLW k				
Operands:	$0 \leq k \leq 255$					
Operation:	$k -(W) \to (W$	')				
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.					
	C = 0	W > k				
	C = 1	$W \leq k$				

W<3:0> > k<3:0>

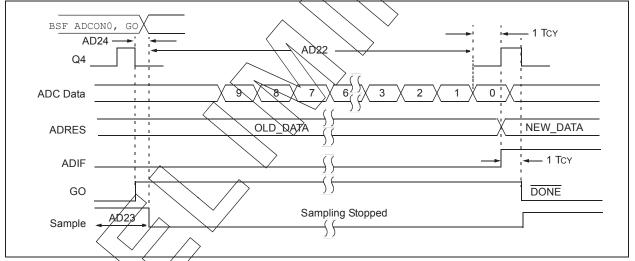
 $W<3:0> \le k<3:0>$

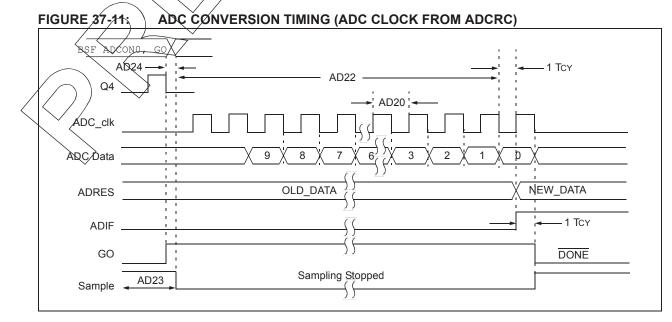
DC = 0

DC = 1

SWAPF	Swap Nibbles in f				
Syntax:	[label] SWAPF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$				
Status Affected:	None				
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.				

© 2017 Microchip Technology Inc.

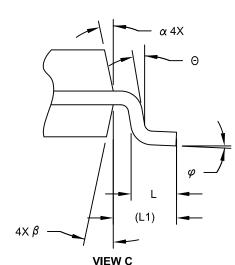

TABLE 37-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS

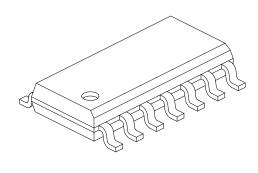

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD20	Tad	ADC Clock Period	1		9	μs	The requirement is to set ADCCS correctly to produce this period/fiequency.	
AD21			1	2	6	μs	Using FRC as the ADC clock source ADOSC = 1	
AD22	TCNV	Conversion Time	-	11	-	TAD	Set of GO/DONE bit to Clear of GO/DONE bit	
AD23	TACQ	Acquisition Time	—	2		μs	× ×	
AD24	Тнср	Sample and Hold Capacitor Disconnect Time	-	_	_/	μs	Fosc-based clock source Frc-based clock source	

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 37-10: ADC CONVERSION TIMING (ADC CLOCK FOSC-BASED)





© 2017 Microchip Technology Inc.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Lir	MIN	NOM	MAX			
Number of Pins	N	14				
Pitch	е	1.27 BSC				
Overall Height	A	1.75				
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	-	0.25		
Overall Width	E	6.00 BSC				
Molded Package Width	E1	3.90 BSC				
Overall Length	D	8.65 BSC				
Chamfer (Optional)	h	0.25 - 0.50				
Foot Length	L	0.40 - 1.27				
Footprint	L1	1.04 REF				
Lead Angle	Θ	0°				
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.10	-	0.25		
Lead Width	b	0.31	_	0.51		
Mold Draft Angle Top	α	5° - 15°				
Mold Draft Angle Bottom	β	5° - 15°				

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2