

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15344-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-7: PIC16(L)F15324/44 MEMORY MAP, BANKS 56-63

	BANK 56		BANK 57		BANK 58		BANK 59		BANK 60		BANK 61		BANK 62		BANK 63	
1C00h	Core Register (Table 4-3)	1C80h	Core Register (Table 4-3)	1D00h	Core Register (Table 4-3)	1D80h	Core Register (Table 4-3)	1E00h	Core Register (Table 4-3)	1E80h	Core Register (Table 4-3)	1F00h	Core Register (Table 4-3)	1F80h	Core Register (Table 4-3)	
1C0BH		1C8Ch		1D0BH 1D0Ch		1Dobii 1D8Ch		1E0Bh		1E0DII 1E8Ch		1F0DII 1F0Ch		1F8Ch		
1C0Dh		1C8Dh		1D00h		D8Dh1		1E00h		1E8Dh		1F0Dh		1F8Dh		
1C0Eh	_	1C8Eh	_	1D0Eh	_	1D8Eh		1E0Eh		1E8Eh		1F0Eh		1F8Eh		
1C0Fh	_	1C8Fh	_	1D0Fh	_	1D8Fh		1E0Fh		1E8Fh		1F0Fh		1F8Fh		
1C10h	—	1C90h	_	1D10h	_	1D90h	—	1E10h		1E90h		1F10h		1F90h		
1C11h	_	1C91h	_	1D11h	_	1D91h	_	1E11h		1E91h		1F11h		1F91h		
1C12h	_	1C92h		1D12h	_	1D92h	_	1E12h		1E92h		1F12h		1F92h		
1C13h	—	1C93h	—	1D13h	—	1D93h	—	1E13h		1E93h		1F13h		1F93h		
1C14h	—	1C94h	—	1D14h	—	1D94h	_	1E14h		1E94h		1F14h		1F94h		
1C15h	—	1C95h	—	1D15h	—	1D95h	_	1E15h		1E95h		1F15h		1F95h		
1C16h	—	1C96h	—	1D16h	—	1D96h	—	1E16h		1E96h		1F16h	B BBB 6 / /	1F96h		
1C17h	—	1C97h	—	1D17h	—	1D97h	—	1E17h	CLC Controls	1E97h	nnnPPS Controls	1F17h	RxyPPS Controls	1F97h	(See Table 4-8 for	
1C18h	—	1C98h	_	1D18h	_	1D98h	—	1E18h	(See Table 4-8 for	1E98h	(See Table 4-8 for	1F18h	(See Table 4-8 for	1F98h	register mapping	
1C19h	_	1C99h	_	1D19h	_	1D99h		1E19h	register mapping	1E99h	register mapping	1F19h	register mapping	1F99h	details)	
1C1Ah	—	1C9Ah	_	1D1Ah	—	1D9Ah		1E1Ah	details)	1E9Ah	details)	1F1Ah	details)	1F9Ah		
1C1Bh	_	1C9Bh	_	1D1Bh	_	1D9Bh		1E1Bh		1E9Bh		1F1Bh		1F9Bh		
1C1Ch	—	1C9Ch	—	1D1Ch	_	1D9Ch		1E1Ch		1E9Ch		1F1Ch		1F9Ch		
1C1Dh	—	1C9Dh	—	1D1Dh	_	1D9Dh		1E1Dh		1E9Dh		1F1Dh		1F9Dh		
1C1Eh	_	1C9Eh	_	1D1Eh	_	1D9Eh		1E1Eh		1E9Eh		1F1Eh		1F9Eh		
1C1Fh	—	1C9Fh	—	1D1Fh	—	1D9Fh	—	1E1Fh		1E9Fh		1F1Fh		1F9Fh		
1C20h		1CA0h		1D20h		1DA0h		1E20h		1EA0h		1F20h		1FA0h		
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'									
1C6Fh		1CEFh		1D6Fh		1DEFh		1E6Fh		1EEFh		1F6Fh		1FEFh		
1C70h	Common RAM	1CF0h	Common RAM	1D70h	Common RAM	1DF0h	Common RAM	1E70h	Common RAM	1EF0h	Common RAM	1F70h	Common RAM	1FF0h	Common RAM	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses	
1C7Fh	70h-7Fh	1CFFh	70h-7Fh	1D7Fh	70h-7Fh	1DFFh	70h-7Fh	1E7Fh	70h-7Fh	1EFFh	70h-7Fh	1F7Fh	70h-7Fh	1FFFh	70h-7Fh	

Note 1: Unimplemented locations read as '0'.

2: The banks 24-55 have been omitted from the tables in the data sheet since the banks have unimplemented registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 61												
						and Table 4.0 fee						
				CPU COF	REREGISTERS;	see Table 4-3 tol	specifics					
1E8Ch	—				Unimple	mented				—	—	
1E8Dh	—				Unimple	mented				_	—	
1E8Eh	_				Unimple	mented				—	—	
1E8Fh	PPSLOCK	_	—	_	—	—	—	—	PPSLOCKED	0	0	
1E90h	INTPPS	_	—			INTP	PS<5:0>			00 1000	uu uuuu	
1E91h	T0CKIPPS	_	—		00 0100	uu uuuu						
1E92h	T1CKIPPS	_	—	01 0000	uu uuuu							
1E93h	T1GPPS	_	—	00 1101	uu uuuu							
1E94h			Unimplemented									
 1E9Bh	—	Uninplemented									_	
1E9Ch	T2INPPS	T2INPPS — — T2INPPS<5:0>								01 0011	uu uuuu	
1E9Dh												
1EA0h	—		Unimplemented								_	
1EA1h	CCP1PPS	_	_			CCP1	PPS<5:0>			01 0010	uu uuuu	
1EA2h	CCP2PPS	_	—			CCP2	PPS<5:0>			01 0001	uu uuuu	
1EA3h			•		11.1							
1EB0h	_				Unimple	mented				_	_	
1EB1h	CWG1PPS	_	_			CWG1	PPS<5:0>			00 1000	uu uuuu	
1EB2h					L India L -							
 1EBAh	_				Unimple	mented				_	_	
1EBBh	CLCIN0PPS	_	_			CLCIN	0PPS<5:0>			00 0000	uu uuuu	
1EBCh	CLCIN1PPS	_	_			CLCIN	1PPS<5:0>			00 0001	uu uuuu	
1EBDh	CLCIN2PPS	_	_			CLCIN	2PPS<5:0>			00 1110	uu uuuu	
1EBEh	CLCIN3PPS	_	_			CLCIN	3PPS<5:0>			00 1111	uu uuuu	
1EBFh												
 1EC2h	—				Unimple	mented				—	—	
1EC3h	ADACTPPS	—	—			CLCIN	3PPS<5:0>			001100	uuuuuu	
1EC4h	_				Unimple	mented				_	_	

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on:	Value on:
		-			-		_	-		POR, BOR	MCLR
Bank 62 (C	ontinued)		•	-			-		1		
1F38h	ANSELA	_	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	11 1111	11 1111
1F39h	WPUA	_	—	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00 0000	00 0000
1F3Ah	ODCONA	—	—	ODCA5	ODCA4	—	ODCA2	ODCA1	ODCA0	00 0000	00 0000
1F3Bh	SLRCONA	—	—	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	11 1111	11 1111
1F3Ch	INLVLA	—	—	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
1F3Dh	IOCAP	—	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
1F3Eh	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
1F3Fh	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
1F40h											
 1F42h	_				Unimplei	mented				_	_
1F43h	ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_		_	1111	1111
1F44h	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	_	_	_	_	0000	0000
1F45h	ODCONB ⁽¹⁾	ODCB7	ODCB6	ODCB5	ODCB4	_	_	—	_	0000	0000
1F46h	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	_	_	—	_	1111	1111
1F47h	INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	—	_	1111	1111
1F48h	IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	0000	0000
1F49h	IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	_	—	_	0000	0000
1F4Ah	IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	_	—	_	0000	0000
1F4Bh				•							
— 1F4Dh	—				Unimplei	mented				_	—
1F4Eh	ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
1F4Fh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
1F50h	ODCONC	ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
1F51h	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
1F52h	INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
1F53h	IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
1F54h	IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
1F55h	IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
1F56h			•								
 1F6Fh	—				Unimplei	mented				—	—

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Present only in PIC16(L)F15344.

9.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 32 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (1 MHz) or '001' (32 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time.

The HFINTOSC frequency can be selected by setting the HFFRQ<2:0> bits of the OSCFRQ register. The MFINTOSC is an internal clock source within the HFINTOSC that provides two (500 kHz, 32 kHz) constant clock outputs. These constant clock outputs are available for selection to various peripherals, internally.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

9.2.2.2 Internal Oscillator Frequency Adjustment

The internal oscillator is factory-calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 9-7).

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

9.2.2.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory-calibrated 31 kHz internal clock source. The LFINTOSC is the clock source for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The LFINTOSC can also be used as the system clock, or as a clock or input source to certain peripherals.

The LFINTOSC is selected as the clock source through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register.

9.2.2.4 Oscillator Status and Manual Enable

The 'ready' status of each oscillator is displayed in the OSCSTAT register (Register 9-4). The oscillators can also be manually enabled through the OSCEN register (Register 9-7). Manual enabling makes it possible to verify the operation of the EXTOSC oscillator. This can be achieved by enabling the selected oscillator, then watching the corresponding 'ready' state of the oscillator in the OSCSTAT register.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
—	—	TMR0IE	IOCIE	—	—	—	INTE
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7-6	Unimplemen	ted: Read as ')'				

REGISTER 10-2: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

bit 5	 TMR0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	 IOCIE: Interrupt-on-Change Interrupt Enable bit 1 = Enables the IOC change interrupt 0 = Disables the IOC change interrupt
bit 3-1	Unimplemented: Read as '0'
bit 0	 INTE: INT External Interrupt Flag bit⁽¹⁾ 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt

Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 15-1).

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt
	controlled by PIE1-PIE7. Interrupt sources
	controlled by the PIE0 register do not
	require PEIE to be set in order to allow
	interrupt vectoring (when GIE is set).

REGISTER 1	1-2: CPUDOZ	E: DOZE AN	D IDLE REG	ISTER						
R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
IDLEN	DOZEN ^(1,2)	ROI	DOE	_		DOZE<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, r	ead as '0'				
u = Bit is unch	anged	x = Bit is unkn	IOWN	-n/n = Value Resets	at POR and	BOR/Value at a	all other			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	IDLEN: Idle Enal 1 = A SLEEP ins 0 = A SLEEP ins	ble bit truction inhibits truction places	s the CPU cloc the device int	k, but not the o full Sleep m	peripheral cl ode	ock(s)				
bit 6	bit 6 DOZEN: Doze Enable bit ^(1,2) 1 = The CPU executes instruction cycles according to DOZE setting 0 = The CPU executes all instruction cycles (fastest, highest power operation)									
bit 5	 ROI: Recover-on 1 = Entering the operation. 0 = Interrupt ent 	I-Interrupt bit Interrupt Servio ry does not cha	ce Routine (ISI ange DOZEN	R) makes DO2	ZEN = 0 bit, b	ringing the CPL	J to full-speed			
bit 4	DOE: Doze on E 1 = Executing R 0 = RETFIE doe	xit bit ETFIE makes es not change [DOZEN = 1, b DOZEN	ringing the CF	PU to reduced	d speed operati	on.			
bit 3	Unimplemented	: Read as '0'								
bit 2-0	DOZE<2:0>: Rat 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4 000 =1:2	tio of CPU Insti	ruction Cycles	to Peripheral	Instruction C	ycles				

- **Note 1:** When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.
 - 2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

PIC16(L)F15324/44

© 2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFVR	222	
ADCON0			CHS<	5:0>			GO/DONE	ADON	235
ADCON1	ADFM		ADCS<2:0>		_	_	ADPREF<1:0>		236
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PSS<1:0> — DAC1NSS		244		

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: - = unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

20.4 Register Definitions: ADC Control

REGISTER 20-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		CHS<	5:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpleme	nted bit, read as '	0'	
u = Bit is uncha	nged	x = Bit is unknow	/n	-n/n = Value at I	POR and BOR/Va	lue at all other Res	sets
'1' = Bit is set		'0' = Bit is cleare	d				
bit 7-2	CHS<5:0>: A 111111 = 111100 = 111101 = 111011 = 010111 = 010110 = 010100 = 010010 = 010001 = 010000 = 001111 = 001100 = 001011 = 001100 = 001011 = 001010 = 001011 = 001010 = 000011 = 000011 = 000001 = 000001 = 000001 = 000000 = 000000 = 000000 = 000000 =	nalog Channel Selec FVR Buffer 2 refere FVR 1Buffer 1 refere DAC1 output voltag Temperature sensor AVss (Analog Groun RC7 ⁽⁴⁾ RC6 ⁽⁴⁾ RC5 RC4 RC3 RC2 RC1 RC0 RB7 ⁽⁴⁾ RB6 ⁽⁴⁾ RB5 ⁽⁴⁾ RB5 ⁽⁴⁾ RB4 ⁽⁴⁾ 110 = Reserved RA5 RA4 RA3 RA4 RA3 RA2 RA1 RA0	ct bits nce voltage ⁽²⁾ ence voltage ⁽²⁾ e ⁽¹⁾ output ⁽³⁾ nd)				
bit 1	GO/DONE: A 1 = ADC conv This bit is 0 = ADC conv	DC Conversion State version cycle in prog automatically cleare version completed/no	us bit ress. Setting this d by hardware v ot in progress	s bit starts an ADC when the ADC conv	conversion cycle version has comp	leted.	
bit 0	ADON: ADC 1 = ADC is er 0 = ADC is dis	Enable bit habled sabled and consume	es no operating	current			
Note 1: Se 2: Se	e Section 21.0 " e Section 18.0 "	5-Bit Digital-to-Ana Fixed Voltage Refe	log Converter rence (FVR)" fo	(DAC1) Module" for more information	for more informati 1.	on.	

- 3: See Section 19.0 "Temperature Indicator Module" for more information.
- 4: Present only on the PIC16(L)F15344.

REGISTER 20-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

1' = Bit is set

REGISTER 20-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

'0' = Bit is cleared

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | S<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

Lower two bits of 10-bit conversion

bit 5-0 Reserved: Do not use.

© 2017 Microchip Technology Inc.

22.1 NCO OPERATION

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 22-1.

The NCO output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO output is then distributed internally to other peripherals and can be optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_overflow).

The NCO period changes in discrete steps to create an average frequency.

EQUATION 22-1: NCO OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

22.1.1 NCO CLOCK SOURCES

Clock sources available to the NCO include:

- HFINTOSC
- Fosc
- LC1_out
- LC2_out
- LC3_out
- LC4_out
- MFINTOSC (500 kHz)
- MFINTOSC (32 kHz)
- CLKR

The NCO clock source is selected by configuring the N1CKS<2:0> bits in the NCO1CLK register.

22.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

22.1.3 ADDER

The NCO Adder is a full adder, which operates synchronously from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

22.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not useraccessible.

TABLE 30-3:SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
CWG1CLKCON	-	_	_	-			_	CS	357		
CWG1ISM	—	_	_	— — IS<3:0>							
CWG1DBR	—	_		DBR<5:0>							
CWG1DBF	—	_		DBF<5:0>							
CWG1CON0	EN	LD	_	_	_	356					
CWG1CON1	—	_	IN	_	POLD	POLC	POLB	POLA	352		
CWG1AS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC<1:0> —			_	354		
CWG1AS1	_	_	_	AS4E	AS3E	AS2E	AS1E	AS0E	355		
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	356		

Legend: -= unimplemented locations read as '0'. Shaded cells are not used by CWG.

FIGURE 32-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

FIGURE 32-22: I²C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

33.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See Section 9.2.2.2 "Internal Oscillator Frequency Adjustment" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section 33.3.1 "Auto-Baud Detect"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

33.6 Register Definitions: EUSART Control

REGISTER 33-1: TXxSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7			I		I		bit 0
							1
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7	CSRC: Clock Asynchronous Unused in this Synchronous 1 = Master n 0 = Slave m	Source Select <u>s mode</u> : s mode – value <u>mode</u> : node (clock ge ode (clock fron	bit ignored nerated interr n external sou	ally from BRG)		
bit 6	TX9: 9-bit Tra 1 = Selects 9 0 = Selects 8	Insmit Enable I 9-bit transmiss 8-bit transmiss	bit ion ion				
bit 5	TXEN: Transr 1 = Transmit 0 = Transmit	mit Enable bit ⁽¹ enabled disabled)				
bit 4	SYNC: EUSA 1 = Synchror 0 = Asynchror	RT Mode Sele nous mode onous mode	ct bit				
bit 3	SENDB: Send Asynchronous 1 = Send SY bit; cleare 0 = SYNCH I Synchronous Unused in this	d Break Chara <u>s mode</u> : NCH BREAK o ed by hardware 3REAK transm <u>mode</u> : s mode – value	cter bit on next transr e upon comple ission disable e ignored	nission – Start etion ed or completed	bit, followed by	12 '0' bits, fol	lowed by Stop
bit 2	BRGH: High Asynchronous 1 = High spe 0 = Low spee Synchronous Unused in this	Baud Rate Sel <u>s mode</u> : ed ed <u>mode:</u> s mode – value	ect bit e ignored				
bit 1	TRMT: Transr 1 = TSR emp 0 = TSR full	mit Shift Regist oty	er Status bit				
bit 0	TX9D: Ninth I Can be addre	oit of Transmit ss/data bit or a	Data ı parity bit.				
Note 1: SF	REN/CREN over	rides TXEN in	Sync mode.				

LSLF	Logical Left Shift				
Syntax:	[<i>label</i>]LSLF f{,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(f < 7 >) \rightarrow C$ $(f < 6:0 >) \rightarrow dest < 7:1 >$ $0 \rightarrow dest < 0 >$				
Status Affected:	C, Z				
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.				
	C register f -0				

LSRF	Logical Right Shift					
Syntax:	[<i>label</i>]LSRF f{,d}					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$					
Operation:	$0 \rightarrow \text{dest}<7>$ (f<7:1>) $\rightarrow \text{dest}<6:0>$, (f<0>) $\rightarrow C$,					
Status Affected:	C, Z					
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.					
	0→ register f C					

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

Λ

IADLE	TABLE 37-2. SUPPLY CORRENT (IDD), AND								
PIC16LF15324/44			Standard Operating Conditions (unless otherwise stated)						
PIC16F15324/44									
Param. No.	n. Symbol Device Characteristics			Тур.†	Max.	Units	X DD	Conditions Note	
D100	Idd _{XT4}	XT = 4 MHz	—	360	400	μA	3.0V		
D100	IDD _{XT4}	XT = 4 MHz	—	380	450	μΑ	3.00		
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.4	1.8	/mA	3.0		
D101	IDD _{HFO16}	HFINTOSC = 16 MHz	—	1.5	1.9	≻ mA	3 .0∨		
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	—	2.3	3.2	/mA `	⊂3.0V		
D102	IDD _{HFOPLL}	HFINTOSC = 32 MHz	$\left \right\rangle$	2.4	3,2 '	mA	3.0V		
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz		2.3	3.2	∕mA	3.0V		
D103	IDD _{HSPLL32}	HS+PLL = 32 MHz		24	3.2	mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	K	1.05	1.5	mA	3.0V		
D104	IDDIDLE	IDLE mode, HFINTOSC = 16 MHz	\searrow	1.15	1.5	mA	3.0V		
D105	IDD _{DOZE} ⁽³⁾	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	-	1.1	—	mA	3.0V		
D105	IDD _{DOZE} (3)	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16	\triangleright	1.2	—	mA	3.0V		

TABLE 37-2: SUPPLY CURRENT (IDD)^(1,2,4)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins are outputs driven low, MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: $IDD_{DOZE} = [IDD_{IDLE} / (N_1)/N] + IDD_{HFO} 16/N$ where N = DOZE Ratio (Register 11-2).

- 4: PMD bits are all in the default state, no modules are disabled.
- 5: = F device

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-257A Sheet 1 of 2