

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15344-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: PIC16(L)F153XX FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (KW)	Program Flash Memory (KB)	Storage Area Flash (B)	Data SRAM (bytes)	I/OPins	10-bit ADC	5-bit DAC	Comparator	8-bit/ (with HLT) Timer	16-bit Timer	Window Watchdog Timer	CCP/10-bit PWM	CWG	NCO	CLC	Zero-Cross Detect	Temperature Indicator	Memory Access Partition	Device Information Area	EUSART/ I ² C-SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾
PIC16(L)F15313	(C)	2	3.5	224	256	6	5	1	1	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	1/1	Υ	Υ	Ι
PIC16(L)F15323	(C)	2	3.5	224	256	12	11	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	1/1	Υ	Υ	Ι
PIC16(L)F15324	(D)	4	7	224	512	12	11	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15325	(B)	8	14	224	1024	12	11	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15344	(D)	4	7	224	512	18	17	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	Ι
PIC16(L)F15345	(B)	8	14	224	1024	18	17	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/1	Υ	Υ	
PIC16(L)F15354	(A)	4	7	224	512	25	24	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	
PIC16(L)F15355	(A)	8	14	224	1024	25	24	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15356	(E)	16	28	224	2048	25	24	1	2	1	2	Υ	2/4	1	1	4	Υ	Υ	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15375	(E)	8	14	224	1024	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15376	(E)	16	28	224	2048	36	35	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15385	(E)	8	14	224	1024	44	43	1	2	1	2	Υ	2/4	1	1	4	Y	Y	Υ	Υ	2/2	Υ	Υ	Ι
PIC16(L)F15386	(E)	16	28	224	2048	44	43	1	2	1	2	Υ	2/4	1	1	4	Y	Υ	Υ	Υ	2/2	Υ	Υ	Ι

Note 1: I - Debugging integrated on chip.

Data Sheet Index:

A:

DS40001853	PIC16(L)F15354/5 Data Sheet, 28-Pin
------------	-------------------------------------

B: DS40001865 PIC16(L)F15325/45 Data Sheet, 14/20-Pin

C: Future Release PIC16(L)F15313/23 Data Sheet, 8/14-Pin

D: DS40001889 PIC16(L)F15324/44 Data Sheet, 14/20-Pin

E: DS40001866 PIC16(L)F15356/75/76/85/86 Data Sheet, 28/40/48-Pin

Note: For other small form-factor package availability and marking information, visit www.microchip.com/packaging or contact your local sales office.

ame	Function	Input Type	Output Type	Description
)UT ⁽²⁾	C1OUT		CMOS/OD	Comparator 1 output.
	C2OUT	_	CMOS/OD	Comparator 2 output.
	SDO1		CMOS/OD	MSSP1 SPI serial data output.
	SCK1	_	CMOS/OD	MSSP1 SPI serial clock output.
	DT1 ⁽³⁾	_	CMOS/OD	EUSART Synchronous mode data output.
	TX1	_	CMOS/OD	EUSART1 Asynchronous mode transmitter data output.
	CK1	_	CMOS/OD	EUSART1 Synchronous mode clock output.
	DT2 ⁽³⁾	_	CMOS/OD	EUSART Synchronous mode data output.
	TX2	_	CMOS/OD	EUSART2 Asynchronous mode transmitter data output.
	CK2	_	CMOS/OD	EUSART2 Synchronous mode clock output.
	SCL1 ^(3,4)	_	CMOS/OD	MSSP1 I ² C output.
	SDA1 ^(3,4)	_	CMOS/OD	MSSP1 I ² C output.
	TMR0	_	CMOS/OD	Timer0 output.
	CCP1	_	CMOS/OD	CCP1 output (compare/PWM functions).
	CCP2		CMOS/OD	CCP2 output (compare/PWM functions).
	PWM3OUT	_	CMOS/OD	PWM3 output.
	PWM4OUT	_	CMOS/OD	PWM4 output.
	PWM5OUT	_	CMOS/OD	PWM5 output.
	PWM6OUT	_	CMOS/OD	PWM6 output.
	CWG1A	_	CMOS/OD	Complementary Waveform Generator 1 output A.
	CWG1B	_	CMOS/OD	Complementary Waveform Generator 1 output B.
	CWG1C	_	CMOS/OD	Complementary Waveform Generator 1 output C.
	CWG1D	_	CMOS/OD	Complementary Waveform Generator 1 output D.
	CLC1OUT	_	CMOS/OD	Configurable Logic Cell 1 output.
	CLC2OUT	_	CMOS/OD	Configurable Logic Cell 2 output.
	CLC3OUT	_	CMOS/OD	Configurable Logic Cell 3 output.
	CLC4OUT	_	CMOS/OD	Configurable Logic Cell 4 output.
	NCO10UT	_	CMOS/OD	Numerically Controller Oscillator output.
	CLKR	_	CMOS/OD	Clock Reference module output.

TABLE 1-3: PIC16(L)F15344 PINOUT DESCRIPTION (CONTINUED)

HV = High Voltage XTAL = Crystal levels
 Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pipe Refer to Table 16.3 for details on which BORT ains may be used for this size?

Prins is a restricted to table 15-3 for details on which PORT pins may be used for this signal.
 All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 15-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

5: For 14/16-pin package only.

6: For 20-pin package only

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62 (C	Continued)	itinued)									
1F38h	ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	11 1111	11 1111
1F39h	WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	00 0000	00 0000
1F3Ah	ODCONA	_	_	ODCA5	ODCA4	_	ODCA2	ODCA1	ODCA0	00 0000	00 0000
1F3Bh	SLRCONA	—	_	SLRA5	SLRA4	—	SLRA2	SLRA1	SLRA0	11 1111	11 1111
1F3Ch	INLVLA	_	_	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	11 1111	11 1111
1F3Dh	IOCAP	—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
1F3Eh	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
1F3Fh	IOCAF	_	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
1F40h — 1F42h	_				Unimpler	nented				_	_
1F43h	ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	_	_	_	_	1111	1111
1F44h	WPUB ⁽¹⁾	WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	_	0000	0000
1F45h	ODCONB ⁽¹⁾	ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	_	0000	0000
1F46h	SLRCONB ⁽¹⁾	SLRB7	SLRB6	SLRB5	SLRB4	—	_	—		1111	1111
1F47h	INLVLB ⁽¹⁾	INLVLB7	INLVLB6	INLVLB5	INLVLB4	_	_	_	_	1111	1111
1F48h	IOCBP ⁽¹⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	0000	0000
1F49h	IOCBN ⁽¹⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	—	_	_	0000	0000
1F4Ah	IOCBF ⁽¹⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	_	0000	0000
1F4Bh — 1F4Dh	_				Unimpler	nented				_	_
1F4Eh	ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111
1F4Fh	WPUC	WPUC7 ⁽¹⁾	WPUC6 ⁽¹⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000
1F50h	ODCONC	ODCC7 ⁽¹⁾	ODCC6 ⁽¹⁾	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000
1F51h	SLRCONC	SLRC7 ⁽¹⁾	SLRC6 ⁽¹⁾	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111
1F52h	INLVLC	INLVLC7 ⁽¹⁾	INLVLC6 ⁽¹⁾	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111
1F53h	IOCCP	IOCCP7 ⁽¹⁾	IOCCP6 ⁽¹⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000
1F54h	IOCCN	IOCCN7 ⁽¹⁾	IOCCN6 ⁽¹⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000
1F55h	IOCCF	IOCCF7 ⁽¹⁾	IOCCF6 ⁽¹⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000
1F56h 1F6Fh	_		Unimplemented								_

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Present only in PIC16(L)F15344.

REGISTER 5-3: CONFIGURATION WORD 3: WINDOWED WATCHDOG (CONTINUED)

bit 4-0 WDTCPS<4:0>: WDT Period Select bits

WDTCPS	Value	Divider R	atio	Typical Time Out (FIN = 31 kHz)	- Software Control of WDTPS?
11111 (1)	01011	1:65536	2 ¹⁶	2 s	Yes
11110 10011	11110 10011	1:32	2 ⁵	1 ms	No
10010	10010	1:8388608	2 ²³	256 s	
10001	10001	1:4194304	2 ²²	128 s	
10000	10000	1:2097152	2 ²¹	64 s	
01111	01111	1:1048576	2 ²⁰	32 s	
01110	01110	1:524299	2 ¹⁹	16 s	
01101	01101	1:262144	2 ¹⁸	8 s	
01100	01100	1:131072	2 ¹⁷	4 s	
01011	01011	1:65536	2 ¹⁶	2 s	
01010	01010	1:32768	2 ¹⁵	1 s	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01000	01000	1:8192	2 ¹³	256 ms	
00111	00111	1:4096	2 ¹²	128 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00100	00100	1:512	2 ⁹	16 ms	
00011	00011	1:256	2 ⁸	8 ms	
00010	00010	1:128	2 ⁷	4 ms	
00001	00001	1:64	2 ⁶	2 ms	
00000	00000	1:32	2 ⁵	1 ms	

Note 1: 0b11111 is the default value of the WDTCPS bits.

REGISTER 10-12: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

U-0	R/W/HS-0/0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
	ZCDIF	_	_	_	—	C2IF	C1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7	Unimplemented: Read as '0'
bit 6	ZCDIF: Zero-Cross Detect (ZCD1) Interrupt Flag bit
	 1 = An enabled rising and/or falling ZCD1 event has been detected (must be cleared in software) 0 = No ZCD1 event has occurred
bit 5-2	Unimplemented: Read as '0'
bit 1	C2IF : Comparator C2 Interrupt Flag bit 1 = Comparator 2 interrupt asserted (must be cleared in software) 0 = Comparator 2 interrupt not asserted
bit 0	C1IF: Comparator C1 Interrupt Flag bit 1 = Comparator 1 interrupt asserted (must be cleared in software) 0 = Comparator 1 interrupt not asserted
Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of

Note:	Interrupt flag bits are set when an interrupt						
	condition occurs, regardless of the state of						
	its corresponding enable bit or the Global						
	Enable bit, GIE, of the INTCON register.						
	User software should ensure the						
	appropriate interrupt flag bits are clear						
	prior to enabling an interrupt.						

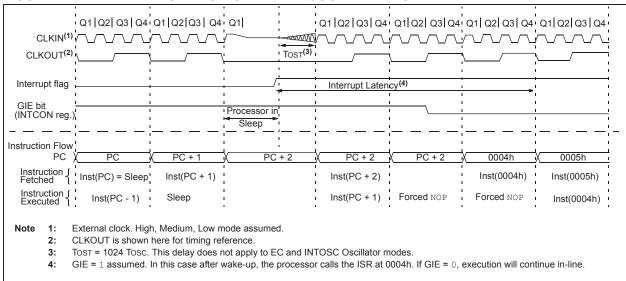
REGISTER 10-14: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
—	_	_	_	_	_	TMR2IF	TMR1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7-2 bit 1	Unimplemented: Read as '0' TRM2IF: Timer2 Interrupt Flag bit 1 = The TMR2 postscaler overflowed, or in 1:1 mode, a TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 event has occurred
bit 0	TRM1IF: Timer1 Overflow Interrupt Flag bit 1 = Timer1 overflow occurred (must be cleared in software) 0 = No Timer1 overflow occurred
Note:	Interrupt flag bits are set when an interrupt

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.


11.2.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared

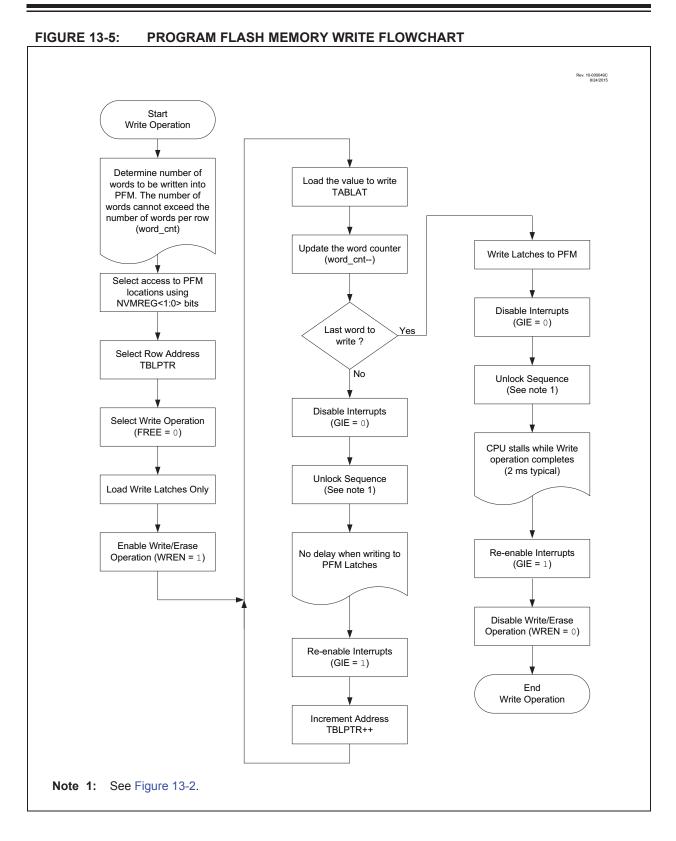
- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 11-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT

11.2.3 LOW-POWER SLEEP MODE

The PIC16F15324/44 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.


The PIC16F15324/44 allows the user to optimize the operating current in Sleep, depending on the application requirements.

Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. Depending on the configuration of these bits, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

11.2.3.1 Sleep Current vs. Wake-up Time

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking-up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

REGISTER 14-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
SLRB7	SLRB6	SLRB5	SLRB4	—	—	_	_
bit 7			·	·	•	-	bit 0
DIL 7							d

Legend:

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	SLRB<7:4>: PORTB Slew Rate Enable bits
	For RB<7:4> pins, respectively
	1 = Port pin slew rate is limited
	0 = Port pin slews at maximum rate

bit 3-0 Unimplemented: Read as '0'

REGISTER 14-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
INLVLB7	INLVLB6	INLVLB5	INLVLB4	—	—	—	—
bit 7	•			•	•		bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	INLVLB<7:4>: PORTB Input Level Select bits
	For RB<7:4> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change
bit 3-0	Unimplemented: Read as '0'

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4					185
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	_	_	185
LATB	LATB7	LATB6	LATB5	LATB4	—	—	_	_	186
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	—	—	_	_	186
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	—	—	_	_	187
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	_	187
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	_	_	_	_	188
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4				_	188

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

© 2017 Microchip Technology Inc.

18.3 Register Definitions: FVR Control

'1' = Bit is set

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF\	/R<1:0>	ADFVR<1:0>		
bit 7 bit 0								
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	t POR and BOI	R/Value at all o	ther Resets	

q = Value depends on condition

bit 7	FVREN: Fixed Voltage Reference Enable bit 1 = Fixed Voltage Reference is enabled 0 = Fixed Voltage Reference is disabled
bit 6	FVRRDY: Fixed Voltage Reference Ready Flag bit ⁽¹⁾ 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled
bit 5	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled
bit 4	TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = Temperature in High Range VOUT = 3VT 0 = Temperature in Low Range VOUT = 2VT
bit 3-2	CDAFVR<1:0>: Comparator FVR Buffer Gain Selection bits 11 = Comparator FVR Buffer Gain is 4x, (4.096V) ⁽²⁾ 10 = Comparator FVR Buffer Gain is 2x, (2.048V) ⁽²⁾ 01 = Comparator FVR Buffer Gain is 1x, (1.024V) 00 = Comparator FVR Buffer is off
bit 1-0	ADFVR<1:0>: ADC FVR Buffer Gain Selection bit 11 = ADC FVR Buffer Gain is 4x, $(4.096V)^{(2)}$ 10 = ADC FVR Buffer Gain is 2x, $(2.048V)^{(2)}$ 01 = ADC FVR Buffer Gain is 1x, $(1.024V)$ 00 = ADC FVR Buffer is off
Note 1: 2:	FVRRDY is always '1'. Fixed Voltage Reference output cannot exceed VDD.

'0' = Bit is cleared

3: See Section 19.0 "Temperature Indicator Module" for additional information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0>	ADFVR	<1:0>	222
ADCON0		CHS<5:0>						ADON	235
ADCON1	ADFM	ADCS<2:0>			_	_	ADPREI	F<1:0>	236
DAC1CON0	DAC1EN	_	DAC10E1	DAC1OE2 DAC1PSS<1:0>		_	DAC1NSS	244	

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: - = unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	—	DAC1NSS	244
DAC1CON1	—	—	—		244				
CM1PSEL	—	—	—	—	—	264			
CM2PSEL	—		_	—	— PCH<2:0>				264

 TABLE 21-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC1 MODULE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

23.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See Comparator Specifications in Table 37-14 for more information.

23.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 26.5 "Timer Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

23.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 23-2) and the Timer1 Block Diagram (Figure 26-1) for more information.

23.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

23.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxPSEL register directs an internal voltage reference or an analog pin to the noninverting input of the comparator:

- CxIN0+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See Section 18.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 21.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

23.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON1 register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- CxIN- pin
- FVR (Fixed Voltage Reference)
- · Analog Ground

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

26.6 Timer1 Interrupts

The timer register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When the timer rolls over, the respective timer interrupt flag bit of the PIR5 register is set. To enable the interrupt on rollover, you must set these bits:

- ON bit of the T1CON register
- TMR1IE bit of the PIE4 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note:	To avoid immediate interrupt vectoring,
	the TMR1H:TMR1L register pair should
	be preloaded with a value that is not immi-
	nently about to rollover, and the TMR1IF
	flag should be cleared prior to enabling
	the timer interrupts.

26.7 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- · ON bit of the T1CON register must be set
- TMR1IE bit of the PIE4 register must be set
- · PEIE bit of the INTCON register must be set
- · SYNC bit of the T1CON register must be set
- CS bits of the T1CLK register must be configured
- The timer clock source must be enabled and continue operation during sleep.

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Secondary oscillator will continue to operate in Sleep regardless of the SYNC bit setting.

26.8 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value CCPRxH:CCPRxL register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

For more information, see Section 28.0 "Capture/Compare/PWM Modules".

26.9 CCP Auto-Conversion Trigger

When any of the CCP's are configured to trigger an auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a timer interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1.

The timer should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of the timer can cause an Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with an Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see Section 28.2.4 "Compare During Sleep".

U-0	U-0	R-x	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
0-0	0-0		0-0							
	—	IN		POLD	POLC	POLB	POLA			
bit 7							bit 0			
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is s	et	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion				
bit 7-6	Unimplem	ented: Read as '	0'							
bit 5	IN: CWG Ir	nput Value bit								
bit 4	Unimplem	ented: Read as '	0'							
bit 3	POLD: CW	G1D Output Pola	arity bit							
	1 = Signal	output is inverted	put is inverted polarity							
	0 = Signal	output is normal	polarity							
bit 2	POLC: CW	G1C Output Pola	arity bit							
	0	1 = Signal output is inverted polarity								
	•	output is normal								
bit 1		G1B Output Pola								
		output is inverted								
0 = Signal output is normal polarity										
bit 0		G1A Output Pola	5							
		output is inverted								
	0 = Signal	0 = Signal output is normal polarity								

REGISTER 30-2: CWG1CON1: CWG1 CONTROL REGISTER 1

32.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSP1CON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

32.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSP1STAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSP1BUF with data to transfer to the master. If the SEN bit of SSP1CON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

32.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSP1ADD.

32.5.6.3 Byte NACKing

When AHEN bit of SSP1CON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSP1CON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

32.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 32-23).

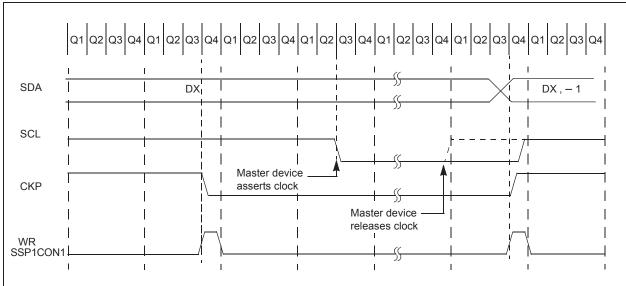
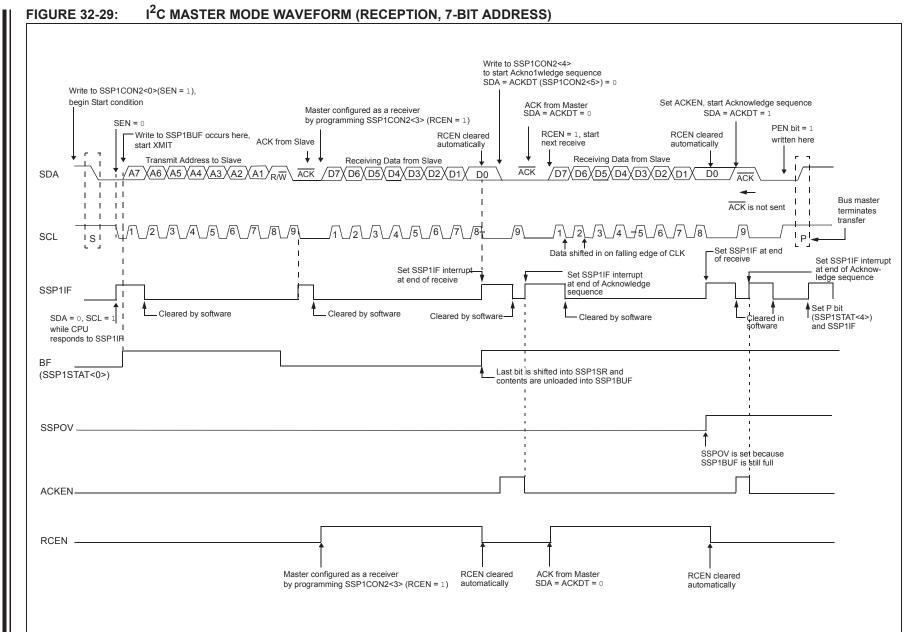



FIGURE 32-23: CLOCK SYNCHRONIZATION TIMING

 \wedge

TABLE 37-3:	POWER-DOWN CURRENT	(IPD) ^(1,2)
-------------	--------------------	------------------------

TABLE 37-3: POWER-DOWN CURRENT (IPD)(1)-7										
PIC16LF	15324/44			Standard Operating Conditions (unless otherwise stated)						
PIC16F15324/44				Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param. No.	Symbol	Device Characteristics	Min.	Тур.†	Max. +85°C	Max. +125°C	Units	VDD	Conditions Note	
D200	IPD	IPD Base	—	0.06	2	9	μΑ	3.01	\langle	
D200	IPD	IPD Base	—	0.4	4	12	/HA	3.0V	$\left\langle \right\rangle$	
D200A			_	18	22	27 \	A44	3.0∀	VREGPM = 0	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.8	4.0	11.5	μÀ	73.0₩		
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.9	5.0 <	13	μA	3.0V		
D203	IPD_FVR	FVR	_	33	<u>_47</u>	47	, Aμ	3.0V		
D203	IPD_FVR	FVR	_	28	44	44	μÀ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)		10	17	19	μA	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)		14	18	20	μΑ	3.0V		
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)		0.5	4	10	μΑ	3.0V		
D207	IPD_ADCA	ADC - Active	\leq	250	$ \geq $	> -	μΑ	3.0V	ADC is converting ⁽⁴⁾	
D207	IPD_ADCA	ADC - Active		280		[μΑ	3.0V	ADC is converting (4)	
D208	IPD_CMP	Comparator	-	30	A 2	44	μΑ	3.0V		
D208	IPD_CMP	Comparator	$\left \right\rangle$	33	44	45	μΑ	3.0V		

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to Vss.

3: All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

4: ADC clock source is FRC.

5: = F device /

TABLE 37-14: COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments	
CM01	VIOFF	Input Offset Voltage	_	—	±50	mV	VIEM = VDD/2	
CM02	VICM	Input Common Mode Range	GND	—	Vdd	V		
CM03	CMRR	Common Mode Input Rejection Ratio	—	50	—	dB <		
CM04	VHYST	Comparator Hysteresis	15	25	35	mV	$\langle \langle \rangle$	
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	_	300	600 /	_ns∕	$\langle \rangle$	
		Response Time, Falling Edge	—	220	500	Tus		
CMOS6	TMCV2VO ⁽²⁾	Mode Change to Valid Output	—	—	10	NS/	\sim	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

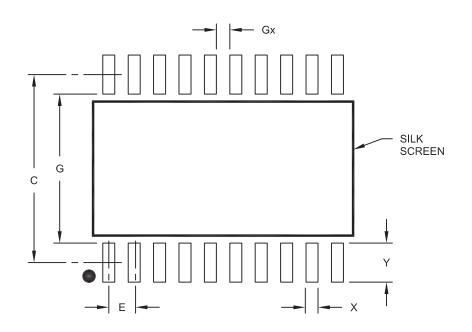
TABLE 37-15: 5-BIT DAC SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments			
DSB01	VLSB	Step Size	E,	(VDACREF+ VDACREF-)/32	_	V				
DSB01	VACC	Absolute Accuracy	\sum	\searrow	± 0.5	LSb				
DSB03*	RUNIT	Unit Resistor Value	$\backslash - \rangle$	5000		Ω				
DSB04*	Tst	Settling Time ⁽¹⁾	$\langle - \rangle$	· ─ ─ ─	10	μS				

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111'.


TABLE 37-16: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
FVR01	VEVR1	1x Gain (1.024V)	-4	—	+4	%	$\begin{array}{l} V\text{DD} \geq 2.5\text{V}, \ \text{-40}^{\circ}\text{C} \ \text{to} \\ 85^{\circ}\text{C} \end{array}$	
FVR02	VFVR2	2x Gain (2.048V)	-4	—	+4	%	$V\text{DD} \geq 2.5V\text{, }$ -40°C to 85°C	
FVR03	XFVR4	4x Gain (4.096V)	-5	—	+5	%	$VDD \ge 4.75V, -40^{\circ}C$ to $85^{\circ}C$	
FVR04	TFVRST	FVR Start-up Time	_	25	—	us		
FVR05	FVRA1x/FVRC1x	FVR output voltage for 1x setting stored in the DIA	-	1024	—	mV		
FVR06	FVRA2x/FVRC2x	FVR output voltage for 2x setting stored in the DIA	—	2048	_	mV		
FVR07	FVRA4x/FVRC4x	FVR output voltage for 4x setting stored in the DIA	—	4096	—	mV		

© 2017 Microchip Technology Inc.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E				
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	Х			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A