

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	224 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf15344t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-7: PIC16(L)F15324/44 MEMORY MAP, BANKS 56-63

	BANK 56		BANK 57		BANK 58		BANK 59		BANK 60		BANK 61		BANK 62		BANK 63	
1C00h	Core Register (Table 4-3)	1C80h	Core Register (Table 4-3)	1D00h	Core Register (Table 4-3)	1D80h	Core Register (Table 4-3)	1E00h	Core Register (Table 4-3)	1E80h	Core Register (Table 4-3)	1F00h	Core Register (Table 4-3)	1F80h	Core Register (Table 4-3)	
1C0BH		1C8Ch		1D0BH 1D0Ch		1Dobii 1D8Ch		1E0Bh		1E0DII 1E8Ch		1F0DII 1F0Ch		1F8Ch		
1C0Dh		1C8Dh		1D00h		D8Dh1		1E00h		1E8Dh		1F0Dh		1F8Dh		
1C0Eh	_	1C8Eh	_	1D0Eh	_	1D8Eh		1E0Eh		1E8Eh		1F0Eh		1F8Eh		
1C0Fh	_	1C8Fh	_	1D0Fh	_	1D8Fh		1E0Fh		1E8Fh		1F0Fh		1F8Fh		
1C10h	—	1C90h	_	1D10h	—	1D90h	—	1E10h		1E90h		1F10h		1F90h		
1C11h	_	1C91h	_	1D11h	_	1D91h	_	1E11h		1E91h		1F11h		1F91h		
1C12h	_	1C92h		1D12h	_	1D92h	_	1E12h		1E92h		1F12h		1F92h		
1C13h	_	1C93h	—	1D13h	—	1D93h	—	1E13h		1E93h		1F13h		1F93h		
1C14h	—	1C94h	—	1D14h	—	1D94h	_	1E14h		1E94h		1F14h		1F94h		
1C15h	—	1C95h	—	1D15h	—	1D95h	_	1E15h		1E95h		1F15h		1F95h		
1C16h	—	1C96h	—	1D16h	—	1D96h	—	1E16h		1E96h		1F16h	B BBB 6 4 4	1F96h		
1C17h	—	1C97h	—	1D17h	—	1D97h	—	1E17h	CLC Controls	1E97h	nnnPPS Controls	1F17h	RxyPPS Controls	1F97h	(See Table 4-8 for	
1C18h	—	1C98h	_	1D18h	_	1D98h	—	1E18h	(See Table 4-8 for	1E98h	(See Table 4-8 for	1F18h	(See Table 4-8 for	1F98h	register mapping	
1C19h	_	1C99h	_	1D19h	_	1D99h		1E19h	register mapping	1E99h	register mapping	1F19h	register mapping	1F99h	details)	
1C1Ah	—	1C9Ah	_	1D1Ah	—	1D9Ah		1E1Ah	details)	1E9Ah	details)	1F1Ah	details)	1F9Ah		
1C1Bh	_	1C9Bh	_	1D1Bh	_	1D9Bh		1E1Bh		1E9Bh		1F1Bh		1F9Bh		
1C1Ch	—	1C9Ch	—	1D1Ch	_	1D9Ch		1E1Ch		1E9Ch		1F1Ch		1F9Ch		
1C1Dh	—	1C9Dh	—	1D1Dh	_	1D9Dh		1E1Dh		1E9Dh		1F1Dh		1F9Dh		
1C1Eh	_	1C9Eh	_	1D1Eh	_	1D9Eh		1E1Eh		1E9Eh		1F1Eh		1F9Eh		
1C1Fh	—	1C9Fh	—	1D1Fh	—	1D9Fh	—	1E1Fh		1E9Fh		1F1Fh		1F9Fh		
1C20h		1CA0h		1D20h		1DA0h		1E20h		1EA0h		1F20h		1FA0h		
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'									
1C6Fh		1CEFh		1D6Fh		1DEFh		1E6Fh		1EEFh		1F6Fh		1FEFh		
1C70h	Common RAM	1CF0h	Common RAM	1D70h	Common RAM	1DF0h	Common RAM	1E70h	Common RAM	1EF0h	Common RAM	1F70h	Common RAM	1FF0h	Common RAM	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses	
1C7Fh	70h-7Fh	1CFFh	70h-7Fh	1D7Fh	70h-7Fh	1DFFh	70h-7Fh	1E7Fh	70h-7Fh	1EFFh	70h-7Fh	1F7Fh	70h-7Fh	1FFFh	70h-7Fh	

Note 1: Unimplemented locations read as '0'.

2: The banks 24-55 have been omitted from the tables in the data sheet since the banks have unimplemented registers.

IADLL 4	FIU. SFLO	ALTONCTION	REGISTER	SUMMART	DANKS 0-					-	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 11		•							•	÷	
				0011000		The Act					
				CPUCOF	KE REGISTERS;	see Table 4-3 Tor	specifics				
58Ch	NCO1ACCL				NCO1AC	C<7:0>				0000 0000	0000 0000
58Dh	NCO1ACCH				NCO1AC	C<15:8>				0000 0000	0000 0000
58Eh	NCO1ACCU	—	—	—	—		NCO1A	CC<19:16>		0000	0000
58Fh	NCO1INCL				NCO1IN	C<7:0>				0000 0001	0000 0001
590h	NCO1INCH				NCO1INC	C<15:8>				0000 0000	0000 0000
591h	NCO1INCU	—	—	—	—		NCO1I	NC<19:16>		0000	0000
592h	NCO1CON	N1EN	_	N1OUT	N1POL	—	—	—	N1PFM	0-000	0-000
593h	NCO1CLK	1	1PWS<2:0>		—	—		N1CKS<2:0	>	000000	000000
594h	_				Unimpler	mented				_	_
595h	_				Unimpler	mented				_	
596h	_				Unimpler	mented				_	
597h	—				Unimpler	mented				—	—
598h	—				Unimpler	mented				—	—
599h	—				Unimpler	mented				—	—
59Ah	—				Unimpler	mented				—	—
59Bh	—				Unimpler	mented				—	—
59Ch	Ch TMR0L Holding Register for the Least Significant Byte of the 16-bit TMR0 Register									0000 0000	0000 0000
59Dh	TMR0H	MR0H Holding Register for the Most Significant Byte of the 16-bit TMR0 Register									1111 1111
59Eh	T0CON0	T0EN	_	TOOUT	T016BIT		0-00 0000	0-00 0000			
59Fh	T0CON1		T0CS<2:0>		T0ASYNC		TOCH	(PS<3:0>		0000 0000	0000 0000

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IADEE .		ALIONOTION	INE OID I EIN		DANINO V-						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 15											
				CPU COF	RE REGISTERS;	see Table 4-3 for	rspecifics				
78Ch 795h	—	Unimplemented									—
796h	PMD0	SYSCMD	FVRMD	—	—	—	NVMMD	CLKRMD	IOCMD	00000	00000
797h	PMD1	NCO1MD	—	—	—	—	TMR2MD	TMR1MD	TMR0MD	0000	0000
798h	PMD2	—	DAC1MD	ADCMD	—	—	CMP2MD	CMP1MD	ZCDMD	-00000	-00000
799h	PMD3	—	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	CCP2MD	CCP1MD	00 0000	00 0000
79Ah	PMD4	UART2MD	UART1MD	—	MSSP1MD	—	—	—	CWG1MD	00-00	00-00
79Bh	PMD5	—	—	—	CLC4MD	CLC3MD	CLC2MD	CLC1MD	_	0 000-	0 000-
79Ch	—				Unimpler	mented				—	—
79Dh — Unimplemented										_	_
79Eh	_			_	_						
79Fh	_				Unimpler	mented				_	_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

IADLE -		ALTONOTION	KEORIER		DANKO V-						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2 Bit 1 Bit 0			V <u>alue o</u> n: MCLR
Bank 19											
				CPU COF	RE REGISTERS;	see Table 4-3 for	- specifics				
98Ch	—				Unimpler	mented				—	—
98Dh	—	- Unimplemented									—
98Eh	—				Unimpler	mented				_	—
98Fh	CMOUT	—	—	—	—	—	—	MC2OUT	MC1OUT	00	00
990h	CM1CON0	EN	OUT	—	POL	—	—	HYS	SYNC	00-000	00-000
991h	CM1CON1	—	—	—	—	—	—	INTP	INTN	00	00
992h	CM1NCH	—	—	—	—	—		NCH<2:0>		000	000
993h	CM1PCH	—	—	—	—	—		PCH<2:0>		000	000
994h	CM2CON0	EN	OUT	—	POL	—	—	HYS	SYNC	00-000	00-000
995h	CM2CON1	—	—	—	—	—	—	INTP	INTN	00	00
996h	CM2NCH	—	—	—	—	—		NCH<2:0>		000	000
997h CM2PCH — — — — — PCH<2:0>										000	000
998h 99Fh	28h _ Unimplemented										_

TABLE 4-10: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

9.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL, ECM, ECH and Secondary Oscillator).

9.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 9-8. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

FIGURE 9-9: FSCM TIMING DIAGRAM

9.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to the HFINTOSC at 1 MHz clock frequency and sets the bit flag OSFIF of the PIR1 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE1 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC and NDIV bits of the OSCCON1 register.

9.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC and NDIV bits of the OSCCON1 register. When switching to the external oscillator, or external oscillator and PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

9.4.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. Therefore, the device will always be executing code while the OST is operating.

PIC16(L)F15324/44

REGISTER 9-7: OSCTUNE: HFINTOSC TUNING REGISTER

U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			HFTU	N<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'.
bit 5-0	HFTUN<5:0>: HFINTOSC Frequency Tuning bits 01 1111 = Maximum frequency 01 1110 =
	•••
	 00 0001 = 00 0000 = Center frequency. Oscillator module is running at the calibrated frequency (default value). 11 1111 =
	•••
	10 0001 = 10 0000 = Minimum frequency.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0				
RC2IE	TX2IE	RC1IE	TX1IE	_		BCL1IE	SSP1IE				
bit 7		•	•				bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7	RC2IE: USAF 1 = Enables 0 = Enables	RT Receive Inte the USART rec the USART rec	errupt Enable eive interrupt eive interrupt	bit							
bit 6 TX2IE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt											
bit 5	RC1IE: USAF 1 = Enables 0 = Enables	RT Receive Inte the USART rec the USART rec	errupt Enable eive interrupt eive interrupt	bit							
bit 4	TX1IE: USAR 1 = Enables 0 = Disables	RT Transmit Inte the USART tra the USART tra	errupt Enable nsmit interrup insmit interrup	bit t ot							
bit 3-2	Unimplemen	ted: Read as '	0'								
bit 1	BCL1IE: MSS 1 = MSSP bu 0 = MSSP bu	SP1 Bus Collisi us collision inte us collision inte	on Interrupt E rrupt enabled rrupt disabled	inable bit							
bit 0	SSP1IE: Synd 1 = Enables 0 = Disables	chronous Seria the MSSP inter the MSSP inte	l Port (MSSP rupt rrupt	1) Interrupt En	able bit						
Note: Bit	PEIE of the IN	TCON register	must be								

REGISTER 10-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by PIE1-PIE7.

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0
CLC4IF	CLC3IF	CLC2IF	CLC1IF		_	_	TMR1GIF
bit 7	·		·	·			bit 0
Legend:							
R = Readable I	as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set '0' = Bit is cleared HS = Hardware set							
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit				
	1 = A CLC40 0 = No CLC4	UI interrupt cc interrupt event	has occurred	curred (must l	be cleared in so	ftware)	
bit 6	CLC3IF: CLC	3 Interrupt Flag	g bit				
	1 = A CLC3O	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
	0 = No CLC3	interrupt event	has occurred				
bit 5	CLC2IF: CLC	2 Interrupt Flag	g bit				
	1 = A CLC2O 0 = No CLC2	UT interrupt cc interrupt event	ndition has oc has occurred	curred (must l	be cleared in so	ftware)	
bit 4	CLC1IF: CLC	1 Interrupt Flag	g bit				
	1 = A CLC10	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
	0 = No CLC1	interrupt event	has occurred				
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	TMR1GIF: Tir	ner1 Gate Inte	rrupt Flag bit				
	1 = The Time	r1 Gate has go r1 Gate has no	ne inactive (th	e acquisition i	s complete)		
		T Gate has no	t gone mactive	-			
Note: Inte	rrupt flag bits a	re set when an	interrupt				

REGISTER 10-15: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

Note:	Interrupt flag bits are set when an interrupt									
	condition occurs, regardless of the state of									
	its corresponding enable bit or the Global									
	Enable bit, GIE, of the INTCON register.									
	User software should ensure the									
	appropriate interrupt flag bits are clear									
	prior to enabling an interrupt.									

EXAMPLE 13-1: PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG ADDR HI : PROG ADDR LO
   data will be returned in the variables;
*
   PROG DATA HI, PROG DATA LO
    BANKSEL NVMADRL ; Select Bank for NVMCON registers
MOVLW PROG_ADDR_LO ;
MOVWF NVMADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
    MOVWF NVMADRH ; Store MSB of address
            NVMCON1,NVMREGS ; Do not select Configuration Space
    BCF
               NVMCON1,RD
    BSF
                                   ; Initiate read
               NVMDATL,W; Get LSB of wordPROG_DATA_LO; Store in user locationNVMDATH,W; Get MSB of wordPROG_DATA_HI; Store in user location
    MOVF
    MOVWF
    MOVF
    MOVWF
```

PIC16(L)F15324/44

REGISTER	16-2: PMD	1: PMD CONT	ROL REGIS	TER 1				
R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
NCO1MD			_	_	TMR2MD	TMR1MD	TMR0MD	
bit 7	·	·	•				bit 0	
Levende								
Legena:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets	
'1' = Bit is se	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion		
bit 7	NCO1MD: Disable Numerically Control Oscillator bit 1 = NCO1 module disabled 0 = NCO1 module enabled							
bit 6-3	Unimplemer	ted: Read as ')'					
bit 2	TMR2MD: Di 1 = Timer2 n 0 = Timer2 n	sable Timer TM nodule disabled nodule enabled	IR2 bit					
bit 1	TMR1MD: Di 1 = Timer1 n 0 = Timer1 n	sable Timer TM nodule disabled nodule enabled	IR1 bit					
bit 0	TMR0MD: Di 1 = Timer0 n 0 = Timer0 n	isable Timer TM nodule disabled nodule enabled	IR0 bit					

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
—		IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1 ⁽¹⁾	IOCAF0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared		HS - Bit is set in hardware				

REGISTER 17-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

bit 7-6 Unimplemented: read as '0'

bit 5-0 **IOCAF<5:0>:** Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

Note 1: If the debugger is enabled, these bits are not available for use.

18.3 Register Definitions: FVR Control

REGISTER 18-1:	FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFVR<1:0>	
bit 7							bit 0

Legend:								
R = Readabl	-egend: R = Readable bit W = u = Bit is unchanged x = 1' = Bit is set '0' = bit 7 FVREN: Fixed Vo 1 = Fixed Voltage 0 = Fixed Voltage 0 = Fixed Voltage 0 = Fixed Voltage bit 6 FVRRDY: Fixed V 1 = Fixed Voltage 0 = Fixed Voltage bit 5 TSEN: Temperature 0 = Fixed Voltage 0 = Temperature 0 = Temperature 0 = Comparator 10 = Comparator 10 = Comparator 01 = Comparator 0 = Comparator 01 = ADC EVR Bit 11 = ADC EVR Bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is und	changed	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is se	et	'0' = Bit is cleared	q = Value depends on condition					
bit 7	FVREN: F	ixed Voltage Reference Ena	ble bit					
	1 = Fixed	Voltage Reference is enable	ed					
1.11.0		Voltage Reference is disable						
DIT 6	FVRRDY:	Fixed Voltage Reference Re	ady Flag bit''					
	1 = Fixed 0 = Fixed	Voltage Reference output is	not ready or not enabled					
bit 5	TSEN: Ter	mperature Indicator Enable b	sit(3)					
bit o	1 = Temp	erature Indicator is enabled						
	0 = Temp	ature Indicator is disabled						
bit 4	TSRNG: T	emperature Indicator Range	Selection bit ⁽³⁾					
	1 = Temp	erature in High Range Vout	= 3VT					
	0 = Temp	erature in Low Range Vour	= 2VT					
bit 3-2	CDAFVR<	:1:0>: Comparator FVR Buff	er Gain Selection bits					
	11 = Com	parator FVR Buffer Gain is 4	(2.049)(2)					
	10 = Com	parator FVR Builer Gain is 2	x, (2.040V) ^{-,} x (1.024V)					
	00 = Com	parator FVR Buffer is off	, (1.021)					
bit 1-0	ADFVR<1	:0>: ADC FVR Buffer Gain S	Selection bit					
	11 = ADC	FVR Buffer Gain is 4x, (4.09	96V)(²⁾					
	10 = ADC	FVR Buffer Gain is 2x, (2.04	48V) ⁽²⁾					
	01 = ADC	FVR Buffer Gain is 1x, (1.02	24V)					
	00 = ADC	FVR Builer is oli						
Note 1: F	VRRDY is alw	/ays '1'.						
2 : F	ixed Voltage F	Reference output cannot exc	eed VDD.					
2. 0	on Continn 10) 0 "Tomporaturo Indiantor	Module" for additional information					

3: See Section 19.0 "Temperature Indicator Module" for additional information.

20.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 20-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

© 2017 Microchip Technology Inc.

DS40001889A-page 242

PIC16(L)F15324/44

© 2017 Microchip Technology Inc

Preliminary

PIC16(L)F15324/44

FIGURE 32-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0) **FIGURE 32-15:**

PIC16(L)F15324/44

- 33.1.2.8 Asynchronous Reception Setup:
- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RXxIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RXxIE interrupt enable bit was also set.
- 8. Read the RCxSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

ASYNCHRONOUS RECEPTION

33.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 33.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RXxIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RXxIE interrupt enable bit was also set.
- 9. Read the RCxSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RX/DT pin	Start bit / bit 0 / bit 1 / 5 / bit 7/8 / Stop bit / bit 0 / 5 / bit 7/8 / Stop bit / bit 0 / 5 / bit 7/8 / Stop bit / bit 0 / 5 / bit 7/8 / Stop
Rcv Shift Reg → Rcv Buffer Reg. RCIDL	Word 1 RCXREG Word 2 RCXREG
Read Rcv Buffer Reg. RCxREG	
RXxIF (Interrupt Flag)	
OERR bit CREN	
Note: This caus	timing diagram shows three words appearing on the RX input. The RCxREG (receive buffer) is read after the third word, sing the OERR (overrun) bit to be set.

FIGURE 33-5:

REGISTER 34-2: CLKRCLK: CLOCK REFERENCE CLOCK SELECTION REGISTER							
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			_		CLKRC	LK<3:0>	
bit 7	·			·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-4	Unimplemen	ted: Read as '	0'				
bit 3-0	CLKRCLK<3	:0>: CLKR Inp	ut bits				
	Clock Selection	on					
	1111 = Reser	rved					
	•						
	•						
	•						
	1011 = Reser	rved					
	$1010 = LC4_0$	out					
	$1001 = LC3_0$	out					
	$1000 - LC2_0$	out					
	$0111 = LCT_0$						
	0101 = Reser	r_out					
	0100 = MFIN	TOSC (31.25 k	(Hz)				
	0011 = MFIN	TOSC (500 kH	z)				
0010 = LFINTOSC							
0001 = HFINTOSC							
	0000 = Fosc						

TABLE 34-1:	SUMMARY OF REGISTERS	ASSOCIATED WITH	CLOCK REFERENCE OUTPUT
-------------	----------------------	-----------------	------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CLKRCON	CLKREN	_	_	CLKRD	C<1:0> CLKRDIV<2:0>				457
CLKRCLK	—	—	—	—	CLKRCLK<3:0>				458
CLCxSELy	—	—		LCxDyS<5:0>					368
RxyPPS	_	_	_	RxyPPS<4:0>					201

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.