
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

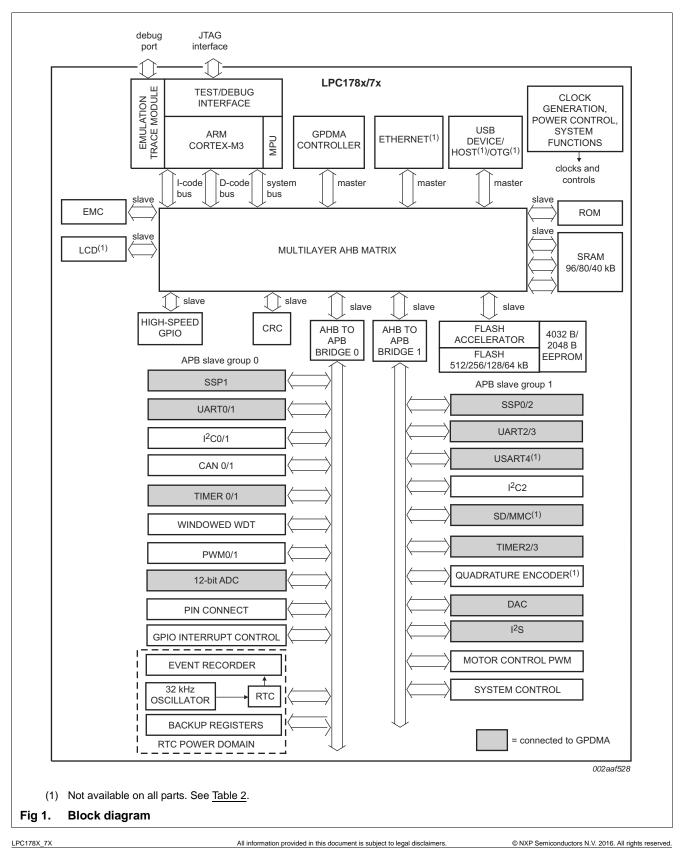
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, Microwire, Memory Card, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, Motor Control PWM, POR, PWM, WDT
Number of I/O	165
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 8x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1785fbd208k

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

- Three enhanced I²C-bus interfaces, one with a true open-drain output supporting the full I²C-bus specification and Fast-mode Plus with data rates of 1 Mbit/s, two with standard port pins. Enhancements include multiple address recognition and monitor mode.
- ♦ I²S-bus (Inter-IC Sound) interface for digital audio input or output. It can be used with the GPDMA.
- ◆ CAN controller with two channels.
- Digital peripherals:
 - ◆ SD/MMC memory card interface.
 - Up to 165 General Purpose I/O (GPIO) pins depending on the packaging with configurable pull-up/down resistors, open-drain mode, and repeater mode. All GPIOs are located on an AHB bus for fast access and support Cortex-M3 bit-banding. GPIOs can be accessed by the General Purpose DMA Controller. Any pin of ports 0 and 2 can be used to generate an interrupt.
 - Two external interrupt inputs configurable as edge/level sensitive. All pins on port 0 and port 2 can be used as edge sensitive interrupt sources.
 - Four general purpose timers/counters with a total of eight capture inputs and ten compare outputs. Each timer block has an external count input. Specific timer events can be selected to generate DMA requests.
 - ◆ Quadrature encoder interface that can monitor one external quadrature encoder.
 - ◆ Two standard PWM/timer blocks with external count input option.
 - ◆ One motor control PWM with support for three-phase motor control.
 - Real-Time Clock (RTC) with a separate power domain. The RTC is clocked by a dedicated RTC oscillator. The RTC block includes 20 bytes of battery-powered backup registers, allowing system status to be stored when the rest of the chip is powered off. Battery power can be supplied from a standard 3 V lithium button cell. The RTC will continue working when the battery voltage drops to as low as 2.1 V. An RTC interrupt can wake up the CPU from any reduced power mode.
 - Event Recorder that can capture the clock value when an event occurs on any of three inputs. The event identification and the time it occurred are stored in registers. The Event Recorder is located in the RTC power domain and can therefore operate as long as there is RTC power.
 - Windowed Watchdog Timer (WWDT). Windowed operation, dedicated internal oscillator, watchdog warning interrupt, and safety features.
 - CRC Engine block can calculate a CRC on supplied data using one of three standard polynomials. The CRC engine can be used in conjunction with the DMA controller to generate a CRC without CPU involvement in the data transfer.
- Analog peripherals:
 - ◆ 12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins, conversion rates up to 400 kHz, and multiple result registers. The 12-bit ADC can be used with the GPDMA controller.
 - 10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and GPDMA support.
- Power control:
 - Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.

32-bit ARM Cortex-M3 microcontroller

5. Block diagram

32-bit ARM Cortex-M3 microcontroller

Table 3. Pin description ...continued

Not all functions are available on all parts. See <u>Table 2</u> (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and <u>Table 7</u> (EMC pins).

Symbol	Pin LQFP208	Ball TFBGA208	Ball TFBGA180	Pin LQFP144		Reset state ^[1]	Type ^[2]	Description
P2[23]	64	U5	-	-	[3]	l;	I/O	P2[23] — General purpose digital input/output pin.
						PU	0	EMC_DYCS3 — SDRAM chip select 3.
							I/O	SSP0_SSEL — Slave Select for SSP0.
							I	T3_CAP1 — Capture input for Timer 3, channel 1.
P2[24]	53	P5	P1	-	[3]	I;	I/O	P2[24] — General purpose digital input/output pin.
						PU	0	EMC_CKE0 — SDRAM clock enable 0.
P2[25]	54	R4	P2	-	[3]	I;	I/O	P2[25] — General purpose digital input/output pin.
						PU	0	EMC_CKE1 — SDRAM clock enable 1.
P2[26]	57	T4	-	-	[3]	I;	I/O	P2[26] — General purpose digital input/output pin.
						PU	0	EMC_CKE2 — SDRAM clock enable 2.
							I/O	SSP0_MISO — Master In Slave Out for SSP0.
							0	T3_MAT0 — Match output for Timer 3, channel 0.
P2[27]	47	P3	-	-	[3]	I;	I/O	P2[27] — General purpose digital input/output pin.
						PU	0	EMC_CKE3 — SDRAM clock enable 3.
							I/O	SSP0_MOSI — Master Out Slave In for SSP0.
							0	T3_MAT1 — Match output for Timer 3, channel 1.
P2[28]	49	P4	M2	-	[3]	I;	I/O	P2[28] — General purpose digital input/output pin.
						PU	0	EMC_DQM0 — Data mask 0 used with SDRAM and static devices.
P2[29]	43	N3	L1	-	[3]	I;	I/O	P2[29] — General purpose digital input/output pin.
						PU	0	EMC_DQM1 — Data mask 1 used with SDRAM and static devices.
P2[30]	31	L4	-	-	[3]	I;	I/O	P2[30] — General purpose digital input/output pin.
						PU	0	EMC_DQM2 — Data mask 2 used with SDRAM and static devices.
							I/O	I2C2_SDA — I ² C2 data input/output (this pin does not use a specialized I2C pad).
							0	T3_MAT2 — Match output for Timer 3, channel 2.
P2[31]	39	N2	-	-	[3]	I;	I/O	P2[31] — General purpose digital input/output pin.
						PU	0	EMC_DQM3 — Data mask 3 used with SDRAM and static devices.
							I/O	I2C2_SCL — I ² C2 clock input/output (this pin does not use a specialized I2C pad).
							0	T3_MAT3 — Match output for Timer 3, channel 3.
P3[0] to P3[31]							I/O	Port 3: Port 3 is a 32-bit I/O port with individual direction controls for each bit. The operation of port 3 pins depends upon the pin function selected via the pin connect block.

32-bit ARM Cortex-M3 microcontroller

Table 5. Pin allocation table TFBGA180

Not all functions are available on all parts. See <u>Table 2</u> and <u>Table 7</u> (EMC pins).

Ball	Symbol	Ball	Symbol	Ball	Symbol	Ball	Symbol
Row	J						
1	RESET	2	RTCX1	3	RTCX2	4	P0[12]
5	P0[13]	6	-	7	-	8	-
9	-	10	P0[19]	11	P4[8]	12	P0[17]
13	P0[18]	14	V _{DD(3V3)}		-		-
Row	ĸ		1				
1	VBAT	2	P1[31]	3	P1[30]	4	XTAL2
5	P0[29]	6	P1[20]	7	P3[26]	8	V _{DD(3V3)}
9	P4[3]	10	P4[6]	11	P0[21]	12	P4[7]
13	P4[26]	14	P0[20]		-		-
Row	Ĺ						
1	P2[29]	2	XTAL1	3	P0[27]	4	V _{DD(3V3)}
5	P1[18]	6	P4[0]	7	P1[25]	8	V _{SSREG}
9	V _{SS}	10	P0[10]	11	V _{DD(3V3)}	12	P5[2]
13	V _{SS}	14	P0[22]		-		-
Row	M						
1	P0[28]	2	P2[28]	3	P3[25]	4	P3[23]
5	P0[14]	6	P1[22]	7	P4[1]	8	P4[2]
9	P1[27]	10	P0[0]	11	P2[13]	12	P2[11]
13	P2[10]	14	P4[19]		-		-
Row	N						
1	P0[31]	2	USB_D-2	3	P3[24]	4	P0[30]
5	P2[19]	6	P1[21]	7	P1[23]	8	P2[21]
9	V _{DD(REG)(3V3)}	10	P1[29]	11	P0[1]	12	P4[16]
13	P4[17]	14	P2[12]		-		-
Row	P						
1	P2[24]	2	P2[25]	3	P2[18]	4	V _{SS}
5	P1[19]	6	P2[20]	7	P1[24]	8	P1[26]
9	P2[16]	10	P1[28]	11	P2[17]	12	P0[11]
13	P4[4]	14	P4[18]		-		-

7. Functional description

7.1 Architectural overview

The ARM Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and the D-code bus. The I-code and D-code core buses are faster than the system bus and are used similarly to Tightly Coupled Memory (TCM) interfaces: one bus dedicated for instruction fetch (I-code) and one bus for data access (D-code). The use of two core buses allows for simultaneous operations if concurrent operations target different devices.

LPC178X 7X

32-bit ARM Cortex-M3 microcontroller

Part	Data bus pins	Address bus	Control pins			
		pins	SRAM	SDRAM		
LPC1788FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1788FET208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1788FET180	EMC_D[15:0]	EMC_A[19:0]	EMC_BLS[1:0], EMC_CS[1:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[1:0], EMC_CLK[1:0], EMC_CKE[1:0], EMC_DQM[1:0]		
LPC1788FBD144	EMC_D[7:0]	EMC_A[15:0]	EMC_BLS[3:2], EMC_CS[1:0], EMC_OE, EMC_WE	not available		
LPC1787FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS_[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1786FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1785FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1778FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1778FET208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1778FET180	EMC_D[15:0]	EMC_A[19:0]	EMC_BLS[1:0], EMC_CS[1:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[1:0], EMC_CLK[1:0], EMC_CKE[1:0], EMC_DQM[1:0]		
LPC1778FBD144	EMC_D[7:0]	EMC_A[15:0]	EMC_CS[1:0], EMC_OE, EMC_WE	not available		
LPC1777FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1776FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1776FET180	EMC_D[15:0]	EMC_A[19:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[1:0], EMC_CLK[1:0], EMC_CKE[1:0], EMC_DQM[1:0]		
LPC1774FBD208	EMC_D[31:0]	EMC_A[25:0]	EMC_BLS[3:0], EMC_CS[3:0], EMC_OE, EMC_WE	EMC_RAS, EMC_CAS, EMC_DYCS[3:0], EMC_CLK[1:0], EMC_CKE[3:0], EMC_DQM[3:0]		
LPC1774FBD144	EMC_D[7:0]	EMC_A[15:0]	EMC_CS[1:0], EMC_OE, EMC_WE	not available		

Table 7. External memory controller pin configuration

LPC178X_7X

The LPC178x/7x EMC is an ARM PrimeCell MultiPort Memory Controller peripheral offering support for asynchronous static memory devices such as RAM, ROM, and flash. In addition, it can be used as an interface with off-chip memory-mapped devices and peripherals. The EMC is an Advanced Microcontroller Bus Architecture (AMBA) compliant peripheral.

See <u>Table 6</u> for EMC memory access.

7.10.1 Features

- Dynamic memory interface support including single data rate SDRAM.
- Asynchronous static memory device support including RAM, ROM, and flash, with or without asynchronous page mode.
- Low transaction latency.
- Read and write buffers to reduce latency and to improve performance.
- 8/16/32 data and 16/20/26 address lines wide static memory support.
- 16 bit and 32 bit wide chip select SDRAM memory support.
- Static memory features include:
 - Asynchronous page mode read.
 - Programmable Wait States.
 - Bus turnaround delay.
 - Output enable and write enable delays.
 - Extended wait.
- Four chip selects for synchronous memory and four chip selects for static memory devices.
- Power-saving modes dynamically control EMC_CKE and EMC_CLK outputs to SDRAMs.
- Dynamic memory self-refresh mode controlled by software.
- Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB parts, with 4, 8, 16, or 32 data bits per device.
- Separate reset domains allow the for auto-refresh through a chip reset if desired.

Note: Synchronous static memory devices (synchronous burst mode) are not supported.

7.11 General purpose DMA controller

The GPDMA is an AMBA AHB compliant peripheral allowing selected peripherals to have DMA support.

The GPDMA enables peripheral-to-memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-memory transactions. The source and destination areas can each be either a memory region or a peripheral and can be accessed through the AHB master. The GPDMA controller allows data transfers between the various on-chip SRAM areas and supports the SD/MMC card interface, all SSPs, the I²S, all UARTs, the A/D Converter, and the D/A Converter peripherals. DMA can also be triggered by selected timer match conditions. Memory-to-memory transfers and transfers to or from GPIO are supported.

LPC178X 7X

© NXP Semiconductors N.V. 2016. All rights reserved.

during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data.

7.21.1 Features

- Maximum SSP speed of 33 Mbit/s (master) or 10 Mbit/s (slave).
- Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses.
- Synchronous serial communication.
- Master or slave operation.
- 8-frame FIFOs for both transmit and receive.
- 4-bit to 16-bit frame.
- DMA transfers supported by GPDMA.

7.22 I²C-bus serial I/O controllers

The LPC178x/7x contain three I^2C -bus controllers.

The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line (SCL) and a Serial Data Line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C is a multi-master bus and can be controlled by more than one bus master connected to it.

7.22.1 Features

- All I²C-bus controllers can use standard GPIO pins with bit rates of up to 400 kbit/s (Fast I²C-bus). The I²C0-bus interface uses special open-drain pins with bit rates of up to 400 kbit/s.
- The I²C-bus interface supports Fast-mode Plus with bit rates up to 1 Mbit/s for I2C0 using pins P5[2] and P5[3].
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- Both I²C-bus controllers support multiple address recognition and a bus monitor mode.

LPC178X 7X

7.34 System control

7.34.1 Reset

Reset has four sources on the LPC178x/7x: the RESET pin, the Watchdog reset, Power-On Reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating voltage attains a usable level, starts the Wake-up timer (see description in <u>Section 7.33.3</u>), causing reset to remain asserted until the external Reset is de-asserted, the oscillator is running, a fixed number of clocks have passed, and the flash controller has completed its initialization.

When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

7.34.2 Brownout detection

The LPC178x/7x include 2-stage monitoring of the voltage on the $V_{DD(REG)(3V3)}$ pins. If this voltage falls below 2.2 V (typical), the BOD asserts an interrupt signal to the Vectored Interrupt Controller. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register.

The second stage of low-voltage detection asserts a reset to inactivate the LPC178x/7x when the voltage on the $V_{DD(REG)(3V3)}$ pins falls below 1.85 V (typical). This reset prevents alteration of the flash as operation of the various elements of the chip would otherwise become unreliable due to low voltage. The BOD circuit maintains this reset down below 1 V, at which point the power-on reset circuitry maintains the overall reset.

Both the 2.2 V and 1.85 V thresholds include some hysteresis. In normal operation, this hysteresis allows the 2.2 V detection to reliably interrupt, or a regularly executed event loop to sense the condition.

7.34.3 Code security (Code Read Protection - CRP)

This feature of the LPC178x/7x allows user to enable different levels of security in the system so that access to the on-chip flash and use of the JTAG and ISP can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP.

There are three levels of the Code Read Protection.

CRP1 disables access to chip via the JTAG and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased.

CRP2 disables access to chip via the JTAG and only allows full flash erase and update using a reduced set of the ISP commands.

Running an application with level CRP3 selected fully disables any access to chip via the JTAG pins and the ISP. This mode effectively disables ISP override using P2[10] pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via UART0.

LPC178X 7X

32-bit ARM Cortex-M3 microcontroller

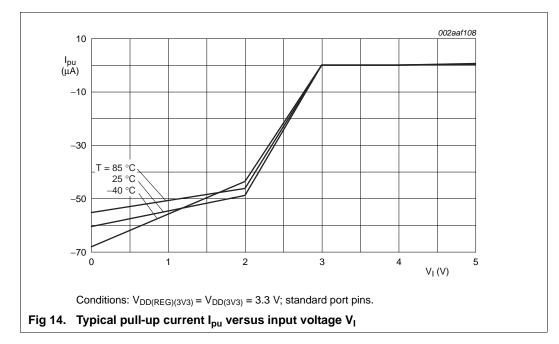
Symbol	Parameter	Conditions		Min	Typ <u>[1]</u>	Max	Unit
V _{DI}	differential input sensitivity voltage	(D+) - (D-)	[20]	0.2	-	-	V
V _{CM}	differential common mode voltage range	includes V _{DI} range	[20]	0.8	-	2.5	V
V _{th(rs)se}	single-ended receiver switching threshold voltage		[20]	0.8	-	2.0	V
V _{OL}	LOW-level output voltage for low-/full-speed	R_L of 1.5 k Ω to 3.6 V	[20]	-	-	0.18	V
V _{OH}	HIGH-level output voltage (driven) for low-/full-speed	R_L of 15 k Ω to GND	[20]	2.8	-	3.5	V
C _{trans}	transceiver capacitance	pin to GND	[20]	-	-	20	pF
Oscillator pi	ns (see <u>Section 14.2</u>)		I		k		
V _{i(XTAL1)}	input voltage on pin XTAL1			-0.5	1.8	1.95	V
V _{o(XTAL2)}	output voltage on pin XTAL2			-0.5	1.8	1.95	V
V _{i(RTCX1)}	input voltage on pin RTCX1			-0.5	-	3.6	V
V _{o(RTCX2)}	output voltage on pin RTCX2			-0.5	-	3.6	V

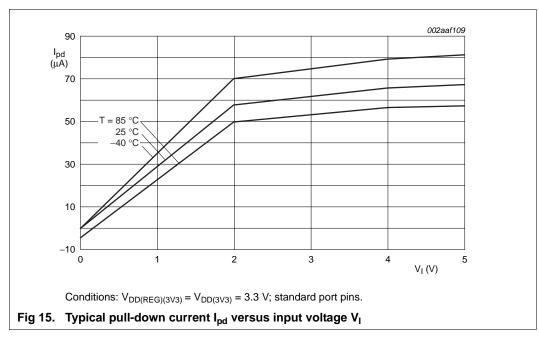
Table 13. Static characteristics ... continued $T_{amb} = -40$ °C to +85 °C, unless otherwise specified.

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

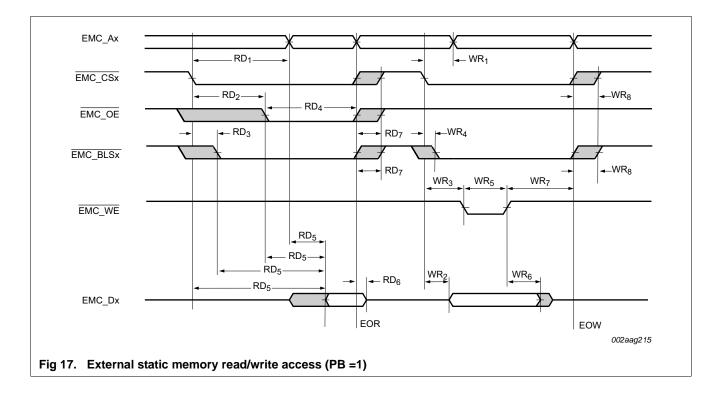
[2] For USB operation 3.0 V \leq V_{DD(3V3)} \leq 3.6 V. Guaranteed by design.

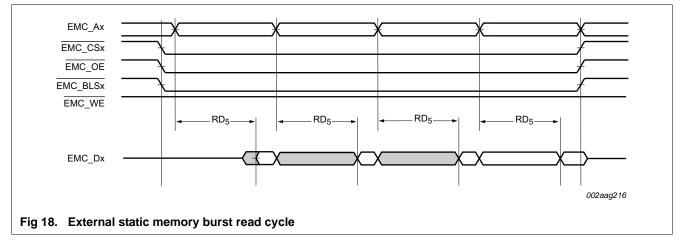
[3] V_{DDA} and VREFP should be tied to $V_{DD(3V3)}$ if the ADC and DAC are not used.

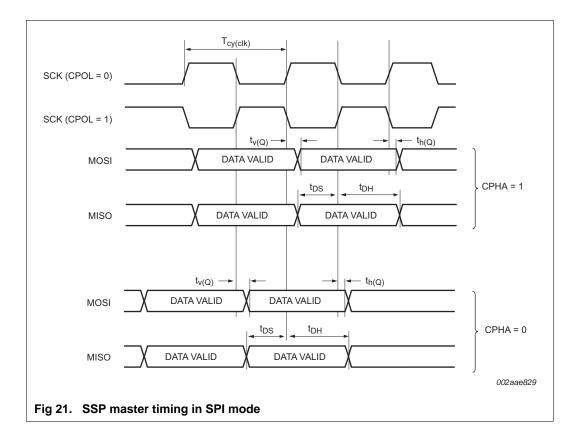

[4] The RTC typically fails when V_{i(VBAT)} drops below 1.6 V.

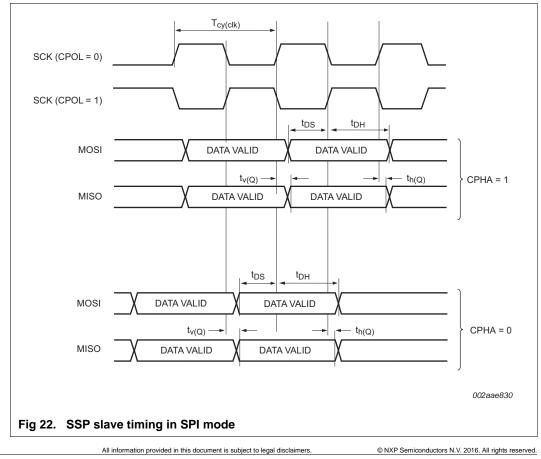

- [5] $V_{DD(REG)(3V3)} = 3.3 \text{ V}$; $T_{amb} = 25 \text{ °C}$ for all power consumption measurements.
- [6] Boost control bits in the PBOOST register set to 0x0 (see LPC178x/7x User manual UM10470).
- [7] Boost control bits in the PBOOST register set to 0x3 (see LPC178x/7x User manual UM10470).
- [8] IRC running at 12 MHz; main oscillator and PLL disabled; PCLK = CCLK/4.
- [9] BOD disabled.
- [10] On pin VBAT; $V_{DD(REG)(3V3)} = V_{DD(3V3)} = V_{DDA} = 0$; $T_{amb} = 25 \text{ °C}$.
- [11] On pin VBAT; $V_{DD(REG)(3V3)} = V_{DD(3V3)} = V_{DDA} = 3.3 \text{ V}$; $T_{amb} = 25 \text{ °C}$.
- [12] All internal pull-ups disabled. All pins configured as output and driven LOW. V_{DD(3V3)} = 3.3 V; T_{amb} = 25 °C.
- [13] $V_{DDA} = 3.3 \text{ V}; T_{amb} = 25 \text{ °C}.$
- [14] $V_{i(VREFP)} = 3.3 \text{ V}; T_{amb} = 25 \text{ °C}.$
- [15] Including voltage on outputs in 3-state mode.
- [16] V_{DD(3V3)} supply voltages must be present.
- [17] 3-state outputs go into 3-state mode in Deep power-down mode.
- [18] Allowed as long as the current limit does not exceed the maximum current allowed by the device.
- [19] To V_{SS}.

LPC178X 7X

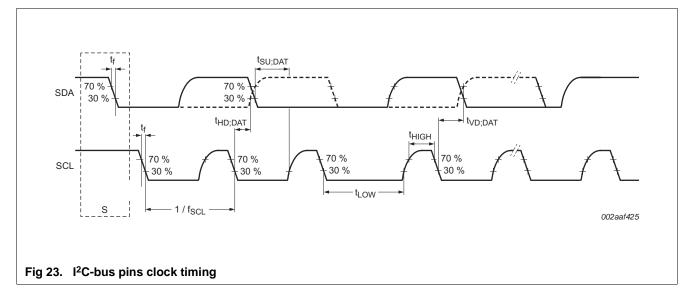

 $\label{eq:20} \mbox{[20]} \ \ 3.0 \ \mbox{V} \le \mbox{V}_{DD(3V3)} \le 3.6 \ \mbox{V}.$


32-bit ARM Cortex-M3 microcontroller





32-bit ARM Cortex-M3 microcontroller

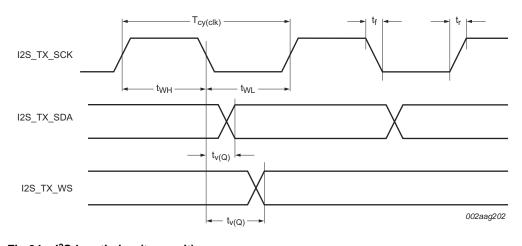


LPC178X_7X

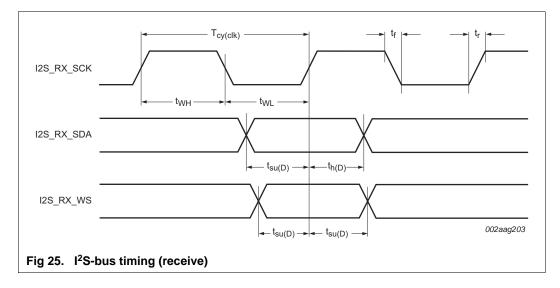
32-bit ARM Cortex-M3 microcontroller

11.8 I²S-bus interface

Table 28. Dynamic characteristics: I²S-bus interface pins


 $C_L = 10 \text{ pF}, T_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } 85 \text{ }^{\circ}\text{C}, V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}. \text{ Values guaranteed by design.}$

Symbol	Parameter	Conditions		Min	Max	Unit	
common to input and output							
t _r	rise time		[1]	-	6.7	ns	
t _f	fall time		[1]	-	8.0	ns	
t _{WH}	pulse width HIGH	on pins I2S_TX_SCK and I2S_RX_SCK	<u>[1]</u>	25	-	-	
t _{WL}	pulse width LOW	on pins I2S_TX_SCK and I2S_RX_SCK	[1]	-	25	ns	
output							
t _{v(Q)}	data output valid time	on pin I2S_TX_SDA;	[1]	-	6	ns	
input							
t _{su(D)}	data input set-up time	on pin I2S_RX_SDA	<u>[1]</u>	5	-	ns	
t _{h(D)}	data input hold time	on pin I2S_RX_SDA	[1]	2	-	ns	


[1] CCLK = 100 MHz; peripheral clock to the l^2 S-bus interface PCLK = CCLK / 4. l^2 S clock cycle time $T_{cy(clk)} = 1600$ ns, corresponds to the SCK signal in the l^2 S-bus specification.

94 of 126

32-bit ARM Cortex-M3 microcontroller

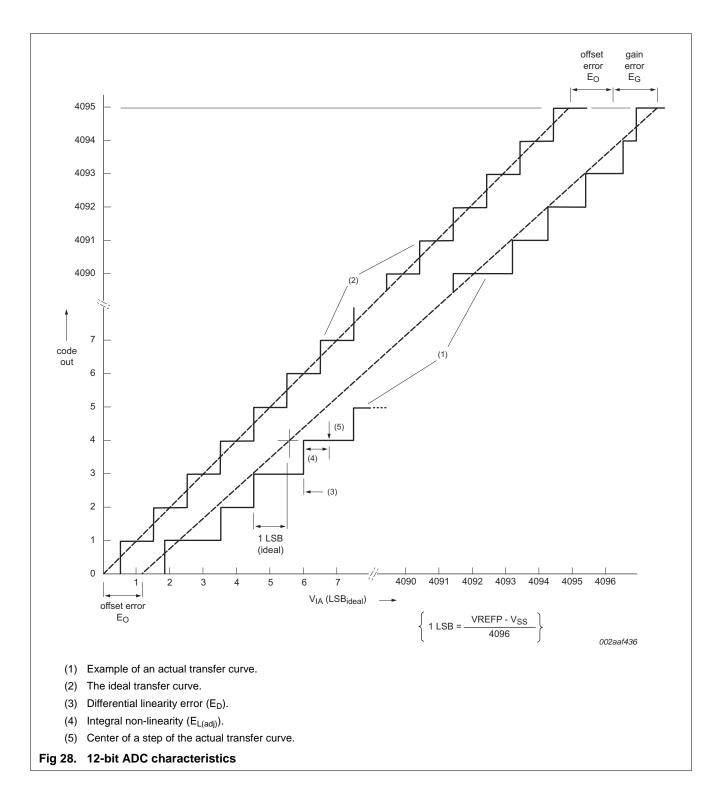
Fig 24. I²S-bus timing (transmit)

11.9 LCD

Remark: The LCD controller is available on parts LPC1788/87/86/85.

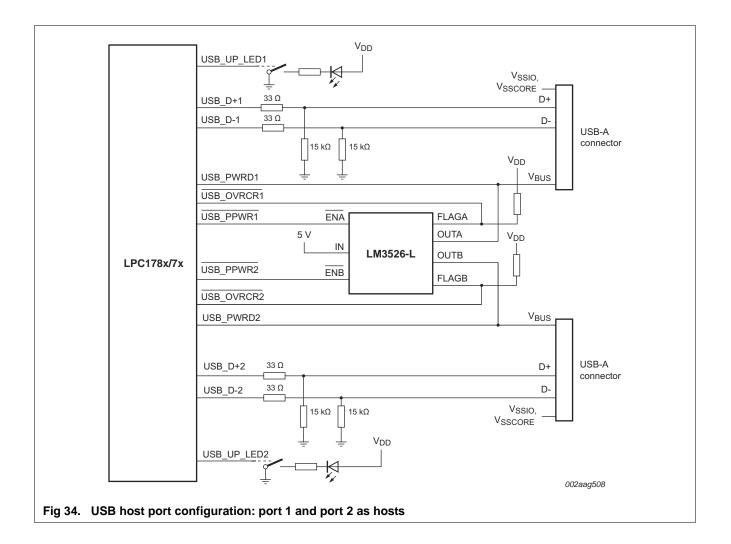
Table 29. Dynamic characteristics: LCD

 $C_L = 10 \text{ pF}, T_{amb} = -40 \text{ °C to } 85 \text{ °C}, V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}.$ Values guaranteed by design.


Symbol	Parameter	Conditions	Min	Max	Unit
f _{clk}	clock frequency	on pin LCD_DCLK	-	50	MHz
t _{d(QV)}	data output valid delay time		-	9	ns
t _{h(Q)}	data output hold time		-0.5	-	ns

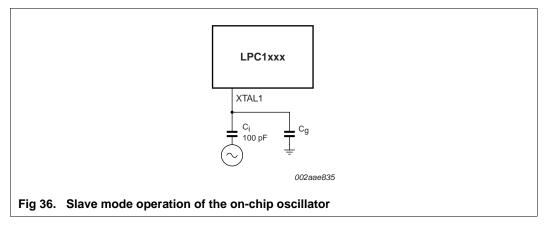
LPC178X_7X

NXP Semiconductors


LPC178x/7x

32-bit ARM Cortex-M3 microcontroller

LPC178X_7X


32-bit ARM Cortex-M3 microcontroller

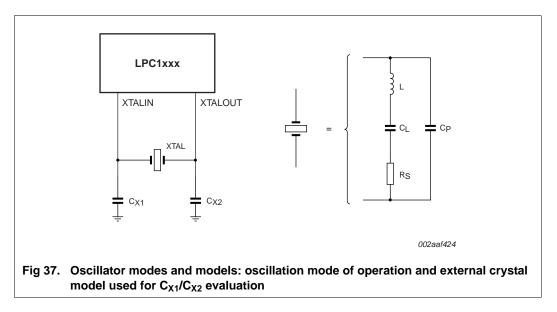
LPC178X_7X

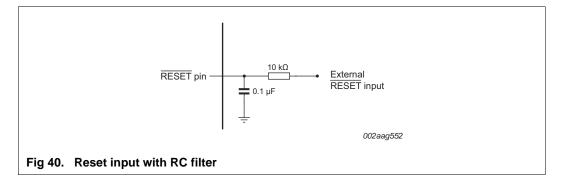
104 of 126

32-bit ARM Cortex-M3 microcontroller

In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF (<u>Figure 36</u>), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin in this configuration can be left unconnected.

External components and models used in oscillation mode are shown in Figure 37 and in Table 34 and Table 35. Since the feedback resistance is integrated on chip, only a crystal and the capacitances C_{X1} and C_{X2} need to be connected externally in case of fundamental mode oscillation (the fundamental frequency is represented by L, C_L and R_S). Capacitance C_P in Figure 37 represents the parallel package capacitance and should not be larger than 7 pF. Parameters F_{OSC} , C_L , R_S and C_P are supplied by the crystal manufacturer.




Table 34. Recommended values for C_{χ_1}/C_{χ_2} in oscillation mode (crystal and external components parameters): low frequency mode

Fundamental oscillation frequency F _{OSC}		Maximum crystal series resistance R _S	External load capacitors C _{X1} /C _{X2}
1 MHz to 5 MHz	10 pF	< 300 Ω	18 pF, 18 pF
	20 pF	< 300 Ω	39 pF, 39 pF
	30 pF	< 300 Ω	57 pF, 57 pF

© NXP Semiconductors N.V. 2016. All rights reserved.

32-bit ARM Cortex-M3 microcontroller

To eliminate the loss of time counts in the RTC due to voltage swing or ramp rate of the RESET signal, connect an RC filter between the RESET pin and the external reset input.

32-bit ARM Cortex-M3 microcontroller

17. Abbreviations

Table 36. Abb	able 36. Abbreviations				
Acronym	Description				
ADC	Analog-to-Digital Converter				
AHB	Advanced High-performance Bus				
AMBA	Advanced Microcontroller Bus Architecture				
APB	Advanced Peripheral Bus				
BOD	BrownOut Detection				
CAN	Controller Area Network				
DAC	Digital-to-Analog Converter				
DMA	Direct Memory Access				
EOP	End Of Packet				
ETM	Embedded Trace Macrocell				
GPIO	General Purpose Input/Output				
GPS	Global Positioning System				
HVAC	Heating, Venting, and Air Conditioning				
IRC	Internal RC				
IrDA	Infrared Data Association				
JTAG	Joint Test Action Group				
MAC	Media Access Control				
MIIM	Media Independent Interface Management				
OHCI	Open Host Controller Interface				
OTG	On-The-Go				
PHY	Physical Layer				
PLC	Programmable Logic Controller				
PLL	Phase-Locked Loop				
PWM	Pulse Width Modulator				
RMII	Reduced Media Independent Interface				
SE0	Single Ended Zero				
SPI	Serial Peripheral Interface				
SSI	Serial Synchronous Interface				
SSP	Synchronous Serial Port				
ТСМ	Tightly Coupled Memory				
TTL	Transistor-Transistor Logic				
UART	Universal Asynchronous Receiver/Transmitter				
USB	Universal Serial Bus				

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2016. All rights reserved.

LPC178X 7X