



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Discontinued at Digi-Key                                                                                |
|----------------------------|---------------------------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                                                         |
| Core Size                  | 32-Bit Single-Core                                                                                      |
| Speed                      | 120MHz                                                                                                  |
| Connectivity               | CANbus, EBI/EMI, Ethernet, I <sup>2</sup> C, Microwire, Memory Card, SPI, SSI, SSP, UART/USART, USB OTG |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, LCD, Motor Control PWM, POR, PWM, WDT                    |
| Number of I/O              | 165                                                                                                     |
| Program Memory Size        | 512KB (512K x 8)                                                                                        |
| Program Memory Type        | FLASH                                                                                                   |
| EEPROM Size                | 4K x 8                                                                                                  |
| RAM Size                   | 96K x 8                                                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2.4V ~ 3.6V                                                                                             |
| Data Converters            | A/D 8x12b; D/A 1x10b                                                                                    |
| Oscillator Type            | Internal                                                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                                       |
| Mounting Type              | Surface Mount                                                                                           |
| Package / Case             | 208-LQFP                                                                                                |
| Supplier Device Package    | 208-LQFP (28x28)                                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1788fbd208-551                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from any priority interrupt that can occur while the clocks are stopped in Deep-sleep, Power-down, and Deep power-down modes.
- Processor wake-up from Power-down mode via any interrupt able to operate during Power-down mode (includes external interrupts, RTC interrupt, PORT0/2 pin interrupt, and NMI).
- Brownout detect with separate threshold for interrupt and forced reset.
- ◆ On-chip Power-On Reset (POR).
- Clock generation:
  - Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock, CPU clock, USB clock, or the watchdog timer clock.
  - On-chip crystal oscillator with an operating range of 1 MHz to 25 MHz.
  - 12 MHz Internal RC oscillator (IRC) trimmed to 1% accuracy that can optionally be used as a system clock.
  - An on-chip PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the main oscillator or the internal RC oscillator.
  - A second, dedicated PLL may be used for USB interface in order to allow added flexibility for the Main PLL settings.
- Versatile pin function selection feature allows many possibilities for using on-chip peripheral functions.
- Unique device serial number for identification purposes.
- Single 3.3 V power supply (2.4 V to 3.6 V). Temperature range of -40 °C to 85 °C.
- Available as LQFP208, TFBGA208, TFBGA180, and LQFP144 package.

## 3. Applications

- Communications:
  - ◆ Point-of-sale terminals, web servers, multi-protocol bridges
- Industrial/Medical:
  - Automation controllers, application control, robotics control, HVAC, PLC, inverters, circuit breakers, medical scanning, security monitoring, motor drive, video intercom
- Consumer/Appliance:
  - Audio, MP3 decoders, alarm systems, displays, printers, scanners, small appliances, fitness equipment
- Automotive:
  - ◆ After-market, car alarms, GPS/fleet monitors

LPC178X 7X

## 32-bit ARM Cortex-M3 microcontroller

#### Table 3. Pin description ...continued

Not all functions are available on all parts. See <u>Table 2</u> (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and <u>Table 7</u> (EMC pins).

| Symbol | Pin LQFP208 | Ball TFBGA208 | Ball TFBGA180 | Pin LQFP144 |     | Reset state <u>[1]</u> | Type <sup>[2]</sup> | Description                                                                                                                                                                        |
|--------|-------------|---------------|---------------|-------------|-----|------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0[20] | 120         | M17           | K14           | 83          | [3] | l;                     | I/O                 | <b>P0[20]</b> — General purpose digital input/output pin.                                                                                                                          |
|        |             |               |               |             |     | PU                     | 0                   | <b>U1_DTR</b> — Data Terminal Ready output for UART1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART1.                                               |
|        |             |               |               |             |     |                        | I/O                 | <b>SD_CMD</b> — Command line for SD card interface.                                                                                                                                |
|        |             |               |               |             |     |                        | I/O                 | <b>I2C1_SCL</b> — I <sup>2</sup> C1 clock input/output (this pin does not use a specialized I2C pad).                                                                              |
| P0[21] | 118         | M16           | K11           | 82          | [3] | l;                     | I/O                 | P0[21] — General purpose digital input/output pin.                                                                                                                                 |
|        |             |               |               |             |     | PU                     | I                   | U1_RI — Ring Indicator input for UART1.                                                                                                                                            |
|        |             |               |               |             |     |                        | 0                   | <b>SD_PWR</b> — Power Supply Enable for external SD card power supply.                                                                                                             |
|        |             |               |               |             |     |                        | 0                   | U4_OE — RS-485/EIA-485 output enable signal for UART4.                                                                                                                             |
|        |             |               |               |             |     |                        | I                   | CAN_RD1 — CAN1 receiver input.                                                                                                                                                     |
|        |             |               |               |             |     |                        | I/O                 | <b>U4_SCLK</b> — USART 4 clock input or output in synchronous mode.                                                                                                                |
| P0[22] | 116         | N17           | L14           | 80          | [6] | l;                     | I/O                 | P0[22] — General purpose digital input/output pin.                                                                                                                                 |
|        |             |               |               |             |     | PU                     | 0                   | <b>U1_RTS</b> — Request to Send output for UART1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART1.                                                   |
|        |             |               |               |             |     |                        | I/O                 | <b>SD_DAT[0]</b> — Data line 0 for SD card interface.                                                                                                                              |
|        |             |               |               |             |     |                        | 0                   | <b>U4_TXD</b> — Transmitter output for USART4 (input/output in smart card mode).                                                                                                   |
|        |             |               |               |             |     |                        | 0                   | CAN_TD1 — CAN1 transmitter output.                                                                                                                                                 |
| P0[23] | 18          | H1            | F5            | 13          | [5] | l;                     | I/O                 | P0[23] — General purpose digital input/output pin.                                                                                                                                 |
|        |             |               |               |             |     | PU                     | I                   | <b>ADC0_IN[0]</b> — A/D converter 0, input 0. When configured as an ADC input, the digital function of the pin must be disabled.                                                   |
|        |             |               |               |             |     |                        | I/O                 | <b>I2S_RX_SCK</b> — Receive Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the <i>I</i> <sup>2</sup> S-bus specification.           |
|        |             |               |               |             |     |                        | I                   | T3_CAP0 — Capture input for Timer 3, channel 0.                                                                                                                                    |
| P0[24] | 16          | G2            | E1            | 11          | [5] | l;                     | I/O                 | P0[24] — General purpose digital input/output pin.                                                                                                                                 |
|        |             |               |               |             |     | PU                     | I                   | <b>ADC0_IN[1]</b> — A/D converter 0, input 1. When configured as an ADC input, the digital function of the pin must be disabled.                                                   |
|        |             |               |               |             |     |                        | I/O                 | <b>I2S_RX_WS</b> — Receive Word Select. It is driven by the master<br>and received by the slave. Corresponds to the signal WS in the<br><i>I</i> <sup>2</sup> S-bus specification. |
|        |             |               |               |             |     |                        | I                   | T3_CAP1 — Capture input for Timer 3, channel 1.                                                                                                                                    |

## 32-bit ARM Cortex-M3 microcontroller

#### Table 3. Pin description ...continued

Not all functions are available on all parts. See <u>Table 2</u> (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and <u>Table 7</u> (EMC pins).

| Symbol | Pin LQFP208 | Ball TFBGA208 | Ball TFBGA180 | Pin LQFP144 |     | Reset state <u>[1]</u> | Type <sup>[2]</sup>                                       | Description                                                                                                                   |
|--------|-------------|---------------|---------------|-------------|-----|------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| P1[8]  | 190         | C7            | B6            | 132         | [3] | l;                     | I/O                                                       | P1[8] — General purpose digital input/output pin.                                                                             |
|        |             |               |               |             |     | PU                     | I                                                         | <b>ENET_CRS (ENET_CRS_DV)</b> — Ethernet Carrier Sense (MII interface) or Ethernet Carrier Sense/Data Valid (RMII interface). |
|        |             |               |               |             |     |                        | -                                                         | R — Function reserved.                                                                                                        |
|        |             |               |               |             |     |                        | O T3_MAT1 — Match output for Timer 3, channel 1.          |                                                                                                                               |
|        |             |               |               |             |     |                        | I/O                                                       | SSP2_SSEL — Slave Select for SSP2.                                                                                            |
| P1[9]  | 188         | A6            | D7            | 131         | [3] | l;                     | I/O                                                       | P1[9] — General purpose digital input/output pin.                                                                             |
|        |             |               |               |             |     | PU                     | I                                                         | ENET_RXD0 — Ethernet receive data 0 (RMII/MII interface).                                                                     |
|        |             |               |               |             |     |                        | -                                                         | R — Function reserved.                                                                                                        |
|        |             |               |               |             |     |                        | 0                                                         | T3_MAT0 — Match output for Timer 3, channel 0.                                                                                |
| P1[10] | 186         | C8            | A7            | 129         | [3] | l;                     | I/O                                                       | P1[10] — General purpose digital input/output pin.                                                                            |
|        |             |               |               |             |     | PU                     | I                                                         | ENET_RXD1 — Ethernet receive data 1 (RMII/MII interface).                                                                     |
|        |             |               |               |             |     |                        | -                                                         | R — Function reserved.                                                                                                        |
|        |             |               |               |             |     |                        | I                                                         | T3_CAP0 — Capture input for Timer 3, channel 0.                                                                               |
| P1[11] | 163         | A14           | A12           | -           | [3] | l;                     | I/O                                                       | P1[11] — General purpose digital input/output pin.                                                                            |
|        |             |               |               |             |     | PU                     | I                                                         | ENET_RXD2 — Ethernet Receive Data 2 (MII interface).                                                                          |
|        |             |               |               |             |     |                        | I/O <b>SD_DAT[2]</b> — Data line 2 for SD card interface. |                                                                                                                               |
|        |             |               |               |             |     |                        | 0                                                         | <b>PWM0[6]</b> — Pulse Width Modulator 0, output 6.                                                                           |
| P1[12] | 157         | A16           | A14           | -           | [3] | l;                     | I/O                                                       | P1[12] — General purpose digital input/output pin.                                                                            |
|        |             |               |               |             |     | PU                     | I                                                         | ENET_RXD3 — Ethernet Receive Data (MII interface).                                                                            |
|        |             |               |               |             |     |                        | I/O                                                       | <b>SD_DAT[3]</b> — Data line 3 for SD card interface.                                                                         |
|        |             |               |               |             |     |                        | I                                                         | <b>PWM0_CAP0</b> — Capture input for PWM0, channel 0.                                                                         |
| P1[13] | 147         | D16           | D14           | -           | [3] | l;                     | I/O                                                       | P1[13] — General purpose digital input/output pin.                                                                            |
|        |             |               |               |             |     | PU                     | I                                                         | <b>ENET_RX_DV</b> — Ethernet Receive Data Valid (MII interface).                                                              |
| P1[14] | 184         | A7            | D8            | 128         | [3] | l;                     | I/O                                                       | P1[14] — General purpose digital input/output pin.                                                                            |
|        |             |               |               |             |     | PU                     | I                                                         | <b>ENET_RX_ER</b> — Ethernet receive error (RMII/MII interface).                                                              |
|        |             |               |               |             |     |                        | -                                                         | R — Function reserved.                                                                                                        |
|        |             |               |               |             |     |                        | I                                                         | T2_CAP0 — Capture input for Timer 2, channel 0.                                                                               |
| P1[15] | 182         | A8            | A8            | 126         | [3] | l;                     | I/O                                                       | P1[15] — General purpose digital input/output pin.                                                                            |
|        |             |               |               |             |     | PU                     | I                                                         | <b>ENET_RX_CLK (ENET_REF_CLK)</b> — Ethernet Receive Clock (MII interface) or Ethernet Reference Clock (RMII interface).      |
|        |             |               |               |             |     |                        | -                                                         | R — Function reserved.                                                                                                        |
|        |             |               |               |             |     |                        | I/O                                                       | I2C2_SDA — I <sup>2</sup> C2 data input/output (this pin does not use a specialized I2C pad).                                 |

## 32-bit ARM Cortex-M3 microcontroller

#### Table 3. Pin description ...continued

Not all functions are available on all parts. See <u>Table 2</u> (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and <u>Table 7</u> (EMC pins).

| Symbol | Pin LQFP208 | Ball TFBGA208 | Ball TFBGA180 | Pin LQFP144 |             | Reset state[1] | Type <sup>[2]</sup> | Description                                                                                                                                                                         |
|--------|-------------|---------------|---------------|-------------|-------------|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P2[9]  | 132         | H16           | H11           | 92          | [3]         | l;             | I/O                 | P2[9] — General purpose digital input/output pin.                                                                                                                                   |
|        |             |               |               |             |             | PU             | 0                   | <b>USB_CONNECT1</b> — USB1 SoftConnect control. Signal used to switch an external 1.5 k $\Omega$ resistor under the software control. Used with the SoftConnect USB feature.        |
|        |             |               |               |             |             |                | I                   | U2_RXD — Receiver input for UART2.                                                                                                                                                  |
|        |             |               |               |             |             |                | I                   | U4_RXD — Receiver input for USART4.                                                                                                                                                 |
|        |             |               |               |             |             |                | I/O                 | ENET_MDIO — Ethernet MIIM data input and output.                                                                                                                                    |
|        |             |               |               |             |             |                | -                   | R — Function reserved.                                                                                                                                                              |
|        |             |               |               |             |             |                | I                   | LCD_VD[3] — LCD data.                                                                                                                                                               |
|        |             |               |               |             |             |                | I                   | LCD_VD[7] — LCD data.                                                                                                                                                               |
| P2[10] | 110         | N15           | M13           | 76          | <u>[10]</u> | l;<br>PU       | I/O                 | <b>P2[10]</b> — General purpose digital input/output pin. This pin includes a 10 ns input.                                                                                          |
|        |             |               |               |             |             |                |                     | A LOW on this pin while RESET is LOW forces the on-chip boot loader to take over control of the part after a reset and go into ISP mode.                                            |
|        |             |               |               |             |             |                | I                   | EINT0 — External interrupt 0 input.                                                                                                                                                 |
|        |             |               |               |             |             |                | I                   | NMI — Non-maskable interrupt input.                                                                                                                                                 |
| P2[11] | 108         | T17           | M12           | 75          | <u>[10]</u> | l;<br>PU       | I/O                 | <b>P2[11]</b> — General purpose digital input/output pin. This pin includes a 10 ns input glitch filter.                                                                            |
|        |             |               |               |             |             |                | I                   | EINT1 — External interrupt 1 input.                                                                                                                                                 |
|        |             |               |               |             |             |                | I/O                 | <b>SD_DAT[1]</b> — Data line 1 for SD card interface.                                                                                                                               |
|        |             |               |               |             |             |                | I/O                 | <b>I2S_TX_SCK</b> — Transmit Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the <i>I</i> <sup>2</sup> S- <i>bus specification</i> .  |
|        |             |               |               |             |             |                | -                   | R — Function reserved.                                                                                                                                                              |
|        |             |               |               |             |             |                | -                   | R — Function reserved.                                                                                                                                                              |
|        |             |               |               |             |             |                | -                   | R — Function reserved.                                                                                                                                                              |
|        |             |               |               |             |             |                | 0                   | LCD_CLKIN — LCD clock.                                                                                                                                                              |
| P2[12] | 106         | N14           | N14           | 73          | [10]        | l;<br>PU       | I/O                 | <b>P2[12]</b> — General purpose digital input/output pin. This pin includes a 10 ns input glitch filter.                                                                            |
|        |             |               |               |             |             |                | I                   | EINT2 — External interrupt 2 input.                                                                                                                                                 |
|        |             |               |               |             |             |                | I/O                 | <b>SD_DAT[2]</b> — Data line 2 for SD card interface.                                                                                                                               |
|        |             |               |               |             |             |                | I/O                 | <b>I2S_TX_WS</b> — Transmit Word Select. It is driven by the master<br>and received by the slave. Corresponds to the signal WS in the<br><i>I</i> <sup>2</sup> S-bus specification. |
|        |             |               |               |             |             |                | 0                   | LCD_VD[4] — LCD data.                                                                                                                                                               |
|        |             |               |               |             |             |                | 0                   | LCD_VD[3] — LCD data.                                                                                                                                                               |
|        |             |               |               |             |             |                | 0                   | LCD_VD[8] — LCD data.                                                                                                                                                               |
|        |             |               |               |             |             |                | 0                   | LCD_VD[18] — LCD data.                                                                                                                                                              |

LPC178X\_7X

© NXP Semiconductors N.V. 2016. All rights reserved.

## 32-bit ARM Cortex-M3 microcontroller

#### Table 3. Pin description ...continued

Not all functions are available on all parts. See <u>Table 2</u> (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and <u>Table 7</u> (EMC pins).

| Symbol | Pin LQFP208 | Ball TFBGA208 | Ball TFBGA180 | Pin LQFP144 |     | Reset state <sup>[1]</sup> | Type <sup>[2]</sup> | Description                                        |
|--------|-------------|---------------|---------------|-------------|-----|----------------------------|---------------------|----------------------------------------------------|
| P4[1]  | 79          | U10           | M7            | 55          | [3] | l;<br>PLI                  | I/O                 | P4[1] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | 10                         | I/O                 | EMC_A[1] — External memory address line 1.         |
| P4[2]  | 83          | T11           | M8            | 58          | [3] | l;<br>PLI                  | I/O                 | P4[2] — General purpose digital input/output pin.  |
|        |             |               |               |             | 101 |                            | I/O                 | EMC_A[2] — External memory address line 2.         |
| P4[3]  | 97          | U16           | K9            | 68          | [3] | l;<br>DLI                  | I/O                 | P4[3] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | FU                         | I/O                 | EMC_A[3] — External memory address line 3.         |
| P4[4]  | 103         | R15           | P13           | 72          | [3] | l;                         | I/O                 | P4[4] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[4] — External memory address line 4.         |
| P4[5]  | 107         | R16           | H10           | 74          | [3] | l;                         | I/O                 | P4[5] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | PU                         | I/O                 | <b>EMC_A[5]</b> — External memory address line 5.  |
| P4[6]  | 113         | M14           | K10           | 78          | [3] | l;                         | I/O                 | P4[6] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[6] — External memory address line 6.         |
| P4[7]  | 121         | L16           | K12           | 84          | [3] | l;                         | I/O                 | P4[7] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[7] — External memory address line 7.         |
| P4[8]  | 127         | J17           | J11           | 88          | [3] | l;                         | I/O                 | P4[8] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[8] — External memory address line 8.         |
| P4[9]  | 131         | H17           | H12           | 91          | [3] | l;                         | I/O                 | P4[9] — General purpose digital input/output pin.  |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[9] — External memory address line 9.         |
| P4[10] | 135         | G17           | G12           | 94          | [3] | l;                         | I/O                 | P4[10] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[10] — External memory address line 10.       |
| P4[11] | 145         | F14           | F11           | 101         | [3] | l;                         | I/O                 | P4[11] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[11] — External memory address line 11.       |
| P4[12] | 149         | C16           | F10           | 104         | [3] | l;                         | I/O                 | P4[12] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[12] — External memory address line 12.       |
| P4[13] | 155         | B16           | B14           | 108         | [3] | l;                         | I/O                 | P4[13] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[13] — External memory address line 13.       |
| P4[14] | 159         | B15           | E8            | 110         | [3] | I;                         | I/O                 | P4[14] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[14] — External memory address line 14.       |
| P4[15] | 173         | A11           | C10           | 120         | [3] | I;                         | I/O                 | P4[15] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[15] — External memory address line 15.       |
| P4[16] | 101         | U17           | N12           | -           | [3] | I;                         | I/O                 | P4[16] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[16] — External memory address line 16.       |
| P4[17] | 104         | P14           | N13           | -           | [3] | I;                         | I/O                 | P4[17] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[17] — External memory address line 17.       |
| P4[18] | 105         | P15           | P14           | -           | [3] | I;                         | I/O                 | P4[18] — General purpose digital input/output pin. |
|        |             |               |               |             |     | PU                         | I/O                 | EMC_A[18] — External memory address line 18.       |

Product data sheet

LPC178X\_7X

© NXP Semiconductors N.V. 2016. All rights reserved.

## 32-bit ARM Cortex-M3 microcontroller

| Part          | Data bus pins | Address bus | Control pins                                     |                                                                                 |  |  |  |
|---------------|---------------|-------------|--------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
|               |               | pins        | SRAM                                             | SDRAM                                                                           |  |  |  |
| LPC1788FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1788FET208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1788FET180 | EMC_D[15:0]   | EMC_A[19:0] | EMC_BLS[1:0],<br>EMC_CS[1:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[1:0],<br>EMC_CLK[1:0], EMC_CKE[1:0],<br>EMC_DQM[1:0] |  |  |  |
| LPC1788FBD144 | EMC_D[7:0]    | EMC_A[15:0] | EMC_BLS[3:2],<br>EMC_CS[1:0],<br>EMC_OE, EMC_WE  | not available                                                                   |  |  |  |
| LPC1787FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS_[3:0],<br>EMC_OE, EMC_WE | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1786FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1785FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1778FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1778FET208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1778FET180 | EMC_D[15:0]   | EMC_A[19:0] | EMC_BLS[1:0],<br>EMC_CS[1:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[1:0],<br>EMC_CLK[1:0], EMC_CKE[1:0],<br>EMC_DQM[1:0] |  |  |  |
| LPC1778FBD144 | EMC_D[7:0]    | EMC_A[15:0] | EMC_CS[1:0],<br>EMC_OE, EMC_WE                   | not available                                                                   |  |  |  |
| LPC1777FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1776FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1776FET180 | EMC_D[15:0]   | EMC_A[19:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[1:0],<br>EMC_CLK[1:0], EMC_CKE[1:0],<br>EMC_DQM[1:0] |  |  |  |
| LPC1774FBD208 | EMC_D[31:0]   | EMC_A[25:0] | EMC_BLS[3:0],<br>EMC_CS[3:0],<br>EMC_OE, EMC_WE  | EMC_RAS, EMC_CAS, EMC_DYCS[3:0],<br>EMC_CLK[1:0], EMC_CKE[3:0],<br>EMC_DQM[3:0] |  |  |  |
| LPC1774FBD144 | EMC_D[7:0]    | EMC_A[15:0] | EMC_CS[1:0],<br>EMC_OE, EMC_WE                   | not available                                                                   |  |  |  |

#### Table 7. External memory controller pin configuration

LPC178X\_7X

The LPC178x/7x EMC is an ARM PrimeCell MultiPort Memory Controller peripheral offering support for asynchronous static memory devices such as RAM, ROM, and flash. In addition, it can be used as an interface with off-chip memory-mapped devices and peripherals. The EMC is an Advanced Microcontroller Bus Architecture (AMBA) compliant peripheral.

See <u>Table 6</u> for EMC memory access.

## 7.10.1 Features

- Dynamic memory interface support including single data rate SDRAM.
- Asynchronous static memory device support including RAM, ROM, and flash, with or without asynchronous page mode.
- Low transaction latency.
- Read and write buffers to reduce latency and to improve performance.
- 8/16/32 data and 16/20/26 address lines wide static memory support.
- 16 bit and 32 bit wide chip select SDRAM memory support.
- Static memory features include:
  - Asynchronous page mode read.
  - Programmable Wait States.
  - Bus turnaround delay.
  - Output enable and write enable delays.
  - Extended wait.
- Four chip selects for synchronous memory and four chip selects for static memory devices.
- Power-saving modes dynamically control EMC\_CKE and EMC\_CLK outputs to SDRAMs.
- Dynamic memory self-refresh mode controlled by software.
- Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB parts, with 4, 8, 16, or 32 data bits per device.
- Separate reset domains allow the for auto-refresh through a chip reset if desired.

Note: Synchronous static memory devices (synchronous burst mode) are not supported.

## 7.11 General purpose DMA controller

The GPDMA is an AMBA AHB compliant peripheral allowing selected peripherals to have DMA support.

The GPDMA enables peripheral-to-memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-memory transactions. The source and destination areas can each be either a memory region or a peripheral and can be accessed through the AHB master. The GPDMA controller allows data transfers between the various on-chip SRAM areas and supports the SD/MMC card interface, all SSPs, the I<sup>2</sup>S, all UARTs, the A/D Converter, and the D/A Converter peripherals. DMA can also be triggered by selected timer match conditions. Memory-to-memory transfers and transfers to or from GPIO are supported.

LPC178X 7X

© NXP Semiconductors N.V. 2016. All rights reserved.

- Physical interface:
  - Attachment of external PHY chip through standard MII or RMII interface.
  - PHY register access is available via the MIIM interface.

## 7.15 USB interface

**Remark:** The USB Device/Host/OTG controller is available on parts LPC1788/87/86/85 and LPC1778/77/76. The USB Device-only controller is available on parts LPC1774.

The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a host and one or more (up to 127) peripherals. The host controller allocates the USB bandwidth to attached devices through a token-based protocol. The bus supports hot plugging and dynamic configuration of the devices. All transactions are initiated by the host controller.

Details on typical USB interfacing solutions can be found in Section 14.1.

### 7.15.1 USB device controller

The device controller enables 12 Mbit/s data exchange with a USB host controller. It consists of a register interface, serial interface engine, endpoint buffer memory, and a DMA controller. The serial interface engine decodes the USB data stream and writes data to the appropriate endpoint buffer. The status of a completed USB transfer or error condition is indicated via status registers. An interrupt is also generated if enabled. When enabled, the DMA controller transfers data between the endpoint buffer and the USB RAM.

### 7.15.1.1 Features

- Fully compliant with USB 2.0 Specification (full speed).
- Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.
- Supports Control, Bulk, Interrupt and Isochronous endpoints.
- Scalable realization of endpoints at run time.
- Endpoint Maximum packet size selection (up to USB maximum specification) by software at run time.
- Supports SoftConnect and GoodLink features.
- While USB is in the Suspend mode, the LPC178x/7x can enter one of the reduced power modes and wake up on USB activity.
- Supports DMA transfers with all on-chip SRAM blocks on all non-control endpoints.
- Allows dynamic switching between CPU-controlled and DMA modes.
- Double buffer implementation for Bulk and Isochronous endpoints.

### 7.15.2 USB host controller

The host controller enables full- and low-speed data exchange with USB devices attached to the bus. It consists of register interface, serial interface engine and DMA controller. The register interface complies with the Open Host Controller Interface (OHCI) specification.

### 7.15.2.1 Features

• OHCI compliant.

The first option assumes that power consumption is not a concern and the design ties the  $V_{DD(3V3)}$  and  $V_{DD(REG)(3V3)}$  pins together. This approach requires only one 3.3 V power supply for both pads, the CPU, and peripherals. While this solution is simple, it does not support powering down the I/O pad ring "on the fly" while keeping the CPU and peripherals alive.

The second option uses two power supplies; a 3.3 V supply for the I/O pads ( $V_{DD(3V3)}$ ) and a dedicated 3.3 V supply for the CPU ( $V_{DD(REG)(3V3)}$ ). Having the on-chip voltage regulator powered independently from the I/O pad ring enables shutting down of the I/O pad power supply "on the fly" while the CPU and peripherals stay active.

The VBAT pin supplies power only to the RTC domain. The RTC operates at very low power, which can be supplied by an external battery. The device core power ( $V_{DD(REG)(3V3)}$ ) is used to operate the RTC whenever  $V_{DD(REG)(3V3)}$  is present. There is no power drain from the RTC battery when  $V_{DD(REG)(3V3)}$  is at nominal levels and  $V_{DD(REG)(3V3)} > V_{BAT}$ .



## CAUTION



If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

## 7.34.4 APB interface

The APB peripherals are split into two separate APB buses in order to distribute the bus bandwidth and thereby reducing stalls caused by contention between the CPU and the GPDMA controller.

### 7.34.5 AHB multilayer matrix

The LPC178x/7x use an AHB multilayer matrix. This matrix connects the instruction (I-code) and data (D-code) CPU buses of the ARM Cortex-M3 to the flash memory, the main (64 kB) SRAM, and the Boot ROM. The GPDMA can also access all of these memories. Additionally, the matrix connects the CPU system bus and all of the DMA controllers to the various peripheral functions.

## 7.34.6 External interrupt inputs

The LPC178x/7x include up to 30 edge sensitive interrupt inputs combined with one level sensitive external interrupt input as selectable pin function. The external interrupt input can optionally be used to wake up the processor from Power-down mode.

### 7.34.7 Memory mapping control

The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table to alternate locations in the memory map. This is controlled via the Vector Table Offset Register contained in the NVIC.

The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address space. The vector table must be located on a 128 word (512 byte) boundary because the NVIC on the LPC178x/7x is configured for 128 total interrupts.

## 7.35 Debug control

Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and trace functions are supported in addition to a standard JTAG debug and parallel trace functions. The ARM Cortex-M3 is configured to support up to eight breakpoints and four watch points.

## 32-bit ARM Cortex-M3 microcontroller

| $f_{amb} = -40 ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$ , unless otherwise specified. |                                            |                                                                                   |                  |                               |                                |                         |      |  |
|------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|------------------|-------------------------------|--------------------------------|-------------------------|------|--|
| Symbol                                                                                   | Parameter                                  | Conditions                                                                        |                  | Min                           | Typ <u>[1]</u>                 | Max                     | Unit |  |
| Standard port p                                                                          | ins, RESET                                 |                                                                                   |                  |                               |                                |                         |      |  |
| IL                                                                                       | LOW-level input current                    | V <sub>I</sub> = 0 V; on-chip pull-up<br>resistor disabled                        |                  | -                             | 0.5                            | 10                      | nA   |  |
| I <sub>IH</sub>                                                                          | HIGH-level input current                   | $V_I = V_{DD(3V3)}$ ; on-chip<br>pull-down resistor<br>disabled                   |                  | -                             | 0.5                            | 10                      | nA   |  |
| I <sub>OZ</sub>                                                                          | OFF-state output<br>current                | $V_O = 0 V$ ; $V_O = V_{DD(3V3)}$ ;<br>on-chip pull-up/down<br>resistors disabled |                  | -                             | 0.5                            | 10                      | nA   |  |
| VI                                                                                       | input voltage                              | pin configured to provide<br>a digital function                                   | [15][16]<br>[17] | 0                             | -                              | 5.0                     | V    |  |
| Vo                                                                                       | output voltage                             | output active                                                                     |                  | 0                             | -                              | V <sub>DD(3V3)</sub>    | V    |  |
| V <sub>IH</sub>                                                                          | HIGH-level input<br>voltage                |                                                                                   |                  | 0.7V <sub>DD(3V3)</sub>       | -                              | -                       | V    |  |
| V <sub>IL</sub>                                                                          | LOW-level input voltage                    |                                                                                   |                  | -                             | -                              | 0.3V <sub>DD(3V3)</sub> | V    |  |
| V <sub>hys</sub>                                                                         | hysteresis voltage                         |                                                                                   |                  | 0.4                           | -                              | -                       | V    |  |
| V <sub>OH</sub>                                                                          | HIGH-level output<br>voltage               | I <sub>OH</sub> = -4 mA                                                           |                  | V <sub>DD(3V3)</sub> –<br>0.4 | -                              | -                       | V    |  |
| V <sub>OL</sub>                                                                          | LOW-level output voltage                   | I <sub>OL</sub> = 4 mA                                                            |                  | -                             | -                              | 0.4                     | V    |  |
| I <sub>ОН</sub>                                                                          | HIGH-level output<br>current               | $V_{OH} = V_{DD(3V3)} - 0.4 V$                                                    |                  | -4                            | -                              | -                       | mA   |  |
| I <sub>OL</sub>                                                                          | LOW-level output<br>current                | V <sub>OL</sub> = 0.4 V                                                           |                  | 4                             | -                              | -                       | mA   |  |
| I <sub>OHS</sub>                                                                         | HIGH-level short-circuit<br>output current | V <sub>OH</sub> = 0 V                                                             | [18]             | -                             | -                              | -45                     | mA   |  |
| I <sub>OLS</sub>                                                                         | LOW-level short-circuit<br>output current  | $V_{OL} = V_{DD(3V3)}$                                                            | <u>[18]</u>      | -                             | -                              | 50                      | mA   |  |
| I <sub>pd</sub>                                                                          | pull-down current                          | $V_I = 5 V$                                                                       |                  | 10                            | 50                             | 150                     | μA   |  |
| I <sub>pu</sub>                                                                          | pull-up current                            | $V_{I} = 0 V$                                                                     |                  | –15                           | -50                            | -85                     | μA   |  |
|                                                                                          |                                            | $V_{DD(3V3)} < V_{I} < 5 V$                                                       |                  | 0                             | 0                              | 0                       | μA   |  |
| I <sup>2</sup> C-bus pins (PC                                                            | )[27] and P0[28])                          |                                                                                   |                  |                               |                                |                         |      |  |
| V <sub>IH</sub>                                                                          | HIGH-level input<br>voltage                |                                                                                   |                  | 0.7V <sub>DD(3V3)</sub>       | -                              | -                       | V    |  |
| V <sub>IL</sub>                                                                          | LOW-level input voltage                    |                                                                                   |                  | -                             | -                              | 0.3V <sub>DD(3V3)</sub> | V    |  |
| V <sub>hys</sub>                                                                         | hysteresis voltage                         |                                                                                   |                  | -                             | 0.05 ×<br>V <sub>DD(3V3)</sub> | -                       | V    |  |
| V <sub>OL</sub>                                                                          | LOW-level output voltage                   | I <sub>OLS</sub> = 3 mA                                                           |                  | -                             | -                              | 0.4                     | V    |  |
| ILI                                                                                      | input leakage current                      | $V_{I} = V_{DD(3V3)}$                                                             | [19]             | -                             | 2                              | 4                       | μA   |  |
|                                                                                          |                                            | V <sub>I</sub> = 5 V                                                              |                  | -                             | 10                             | 22                      | μΑ   |  |
| USB pins                                                                                 |                                            |                                                                                   |                  |                               |                                |                         |      |  |
| l <sub>oz</sub>                                                                          | OFF-state output<br>current                | 0 V < V <sub>I</sub> < 3.3 V                                                      | [20]             | -                             | -                              | ±10                     | μA   |  |
| V <sub>BUS</sub>                                                                         | bus supply voltage                         |                                                                                   | [20]             | -                             | -                              | 5.25                    | V    |  |

## Table 13. Static characteristics ... continued

Product data sheet

LPC178X\_7X

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2016. All rights reserved.

## 10.2 Peripheral power consumption

The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the PCONP register. All other blocks are disabled and no code is executed. Measured on a typical sample at  $T_{amb} = 25$  °C. The peripheral clock was set to PCLK = CCLK/4 with CCLK = 12 MHz, 48 MHz, and 120 MHz.

The combined current of several peripherals running at the same time can be less than the sum of each individual peripheral current measured separately.

| Peripheral                                | Conditions  | Typical su            | upply current in mA   |                        |  |
|-------------------------------------------|-------------|-----------------------|-----------------------|------------------------|--|
|                                           |             | 12 MHz <sup>[1]</sup> | 48 MHz <sup>[1]</sup> | 120 MHz <sup>[2]</sup> |  |
| Timer0                                    | -           | 0.01                  | 0.06                  | 0.15                   |  |
| Timer1                                    | -           | 0.02                  | 0.07                  | 0.16                   |  |
| Timer2                                    | -           | 0.02                  | 0.07                  | 0.17                   |  |
| Timer3                                    | -           | 0.01                  | 0.07                  | 0.16                   |  |
| Timer0 + Timer1 + Timer2 + Timer3         | -           | 0.07                  | 0.28                  | 0.67                   |  |
| UART0                                     | -           | 0.05                  | 0.19                  | 0.45                   |  |
| UART1                                     | -           | 0.06                  | 0.24                  | 0.56                   |  |
| UART2                                     | -           | 0.05                  | 0.2                   | 0.47                   |  |
| UART3                                     | -           | 0.06                  | 0.23                  | 0.56                   |  |
| USART4                                    | -           | 0.07                  | 0.27                  | 0.66                   |  |
| UART0 + UART1 + UART2 + UART3 +<br>USART4 | -           | 0.29                  | 1.13                  | 2.74                   |  |
| PWM0 + PWM1                               | -           | 0.08                  | 0.31                  | 0.75                   |  |
| Motor control PWM                         | -           | 0.04                  | 0.15                  | 0.36                   |  |
| I2C0                                      | -           | 0.01                  | 0.03                  | 0.08                   |  |
| I2C1                                      | -           | 0.01                  | 0.03                  | 0.1                    |  |
| I2C2                                      | -           | 0.01                  | 0.03                  | 0.08                   |  |
| 12C0 + 12C1 + 12C2                        | -           | 0.02                  | 0.1                   | 0.26                   |  |
| SSP0                                      | -           | 0.03                  | 0.1                   | 0.26                   |  |
| SSP1                                      | -           | 0.02                  | 0.11                  | 0.27                   |  |
| DAC                                       | -           | 0.3                   | 0.31                  | 0.33                   |  |
| ADC (12 MHz clock)                        | -           | 1.51                  | 1.61                  | 1.7                    |  |
| CAN1                                      | -           | 0.11                  | 0.44                  | 1.08                   |  |
| CAN2                                      | -           | 0.1                   | 0.4                   | 0.98                   |  |
| CAN1 + CAN2                               | -           | 0.15                  | 0.59                  | 1.44                   |  |
| DMA                                       | PCLK = CCLK | 1.1                   | 4.27                  | 10.27                  |  |
| QEI                                       | -           | 0.02                  | 0.11                  | 0.28                   |  |
| GPIO                                      | -           | 0.4                   | 1.72                  | 4.16                   |  |
| LCD                                       | -           | 0.99                  | 3.84                  | 9.25                   |  |
| 12S                                       | -           | 0.04                  | 0.18                  | 0.46                   |  |

**Table 14.** Power consumption for individual analog and digital blocks  $T_{amb} = 25 \ ^{\circ}C; V_{DD(REG)(3V3)} = V_{DD(3V3)} = V_{DDA} = 3.3 \ V; \ PCLK = CCLK/4.$ 

LPC178X\_7X

76 of 126

## 32-bit ARM Cortex-M3 microcontroller





**Table 20.** Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 01  $C_L = 10 \text{ pF}$ ,  $T_{amb} = -40 \text{ °C}$  to 85 °C,  $V_{DD(3V3)} = 3.0 \text{ V}$  to 3.6 V. Values guaranteed by design.  $t_{cmddly}$  is programmable delay value for EMC command outputs in command delayed mode;  $t_{fbdly}$  is programmable delay value for the feedback clock that controls input data sampling;  $t_{clk0dly}$  is programmable delay value for the EMC\_CLKOUT0 output;  $t_{clk1dly}$  is programmable delay value for the EMC\_CLKOUT1 output.

| Symbol               | Parameter                                             |     | Min                       | Тур                       | Max                       | Unit |
|----------------------|-------------------------------------------------------|-----|---------------------------|---------------------------|---------------------------|------|
| For RD = 1           | t <sub>clk0dly</sub> = 0 and t <sub>clk1dly = 0</sub> |     |                           |                           |                           |      |
| Common to            | o read and write cycles                               |     |                           |                           |                           |      |
| T <sub>cy(clk)</sub> | clock cycle time                                      | [1] | 12.5                      | -                         | -                         | ns   |
| t <sub>d(SV)</sub>   | chip select valid delay time                          |     | -                         | t <sub>cmddly</sub> + 4.1 | t <sub>cmddly</sub> + 6.0 | ns   |
| t <sub>h(S)</sub>    | chip select hold time                                 |     | t <sub>cmddly</sub> + 1.0 | t <sub>cmddly</sub> + 1.6 | -                         | ns   |
| t <sub>d(RASV)</sub> | row address strobe valid delay time                   |     | -                         | t <sub>cmddly</sub> + 4.1 | t <sub>cmddly</sub> + 6.0 | ns   |
| t <sub>h(RAS)</sub>  | row address strobe hold time                          |     | t <sub>cmddly</sub> + 1.1 | t <sub>cmddly</sub> + 1.7 | -                         | ns   |
| t <sub>d(CASV)</sub> | column address strobe valid delay time                |     | -                         | t <sub>cmddly</sub> + 4.1 | t <sub>cmddly</sub> + 6.1 | ns   |
| t <sub>h(CAS)</sub>  | column address strobe hold time                       |     | t <sub>cmddly</sub> + 1.2 | t <sub>cmddly</sub> + 1.8 | -                         | ns   |
| t <sub>d(WV)</sub>   | write valid delay time                                |     | -                         | t <sub>cmddly</sub> + 4.8 | t <sub>cmddly</sub> + 7.1 | ns   |
| t <sub>h(W)</sub>    | write hold time                                       |     | t <sub>cmddly</sub> + 1.6 | t <sub>cmddly</sub> + 2.3 | -                         | ns   |
| t <sub>d(AV)</sub>   | address valid delay time                              |     | -                         | t <sub>cmddly</sub> + 4.9 | t <sub>cmddly</sub> + 7.3 | ns   |
| t <sub>h(A)</sub>    | address hold time                                     |     | t <sub>cmddly</sub> + 1.0 | t <sub>cmddly</sub> + 1.6 | -                         | ns   |
| Read cycle           | parameters                                            |     |                           |                           |                           |      |
| t <sub>su(D)</sub>   | data input set-up time                                |     | 7.1 - t <sub>fbdly</sub>  | 4.8 - t <sub>fbdly</sub>  | -                         | ns   |
| t <sub>h(D)</sub>    | data input hold time                                  |     | -1.9 + t <sub>fbdly</sub> | $-2.5 + t_{fbdly}$        | -                         | ns   |
| Write cycle          | parameters                                            |     |                           |                           |                           |      |
| t <sub>d(QV)</sub>   | data output valid delay time                          |     | -                         | t <sub>cmddly</sub> + 4.9 | t <sub>cmddly</sub> + 7.3 | ns   |
| t <sub>h(Q)</sub>    | data output hold time                                 |     | t <sub>cmddly</sub> + 0.2 | t <sub>cmddly</sub> + 0.5 | -                         | ns   |

[1] Refers to SDRAM clock signal EMC\_CLKOUTn where n = 0 and 1.

Product data sheet

86 of 126

### 32-bit ARM Cortex-M3 microcontroller



## 11.10 SD/MMC

**Remark:** The SD/MMC card interface is available on parts LPC1788/87/86 and parts LPC1778/77/76.

#### Table 30. Dynamic characteristics: SD/MMC

 $C_L = 10 \text{ pF}, T_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } 85 \text{ }^{\circ}\text{C}, V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}. \text{ Values guaranteed by design.}$ 

| Symbol             | Parameter                       | Conditions                                | Min | Max | Unit |
|--------------------|---------------------------------|-------------------------------------------|-----|-----|------|
| f <sub>clk</sub>   | clock frequency                 | on pin SD_CLK; data transfer mode         | -   | 25  | MHz  |
|                    |                                 | on pin SD_CLK; identification mode        |     | 25  | MHz  |
| t <sub>su(D)</sub> | data input set-up time          | on pins SD_CMD, SD_DAT[3:0] as inputs     | 6   | -   | ns   |
| t <sub>h(D)</sub>  | data input hold time            | on pins SD_CMD, SD_DAT[3:0] as<br>inputs  | 6   | -   | ns   |
| t <sub>d(QV)</sub> | data output valid<br>delay time | on pins SD_CMD, SD_DAT[3:0] as<br>outputs | -   | 23  | ns   |
| t <sub>h(Q)</sub>  | data output hold time           | on pins SD_CMD, SD_DAT[3:0] as<br>outputs | 3.5 | -   | ns   |



LPC178X\_7X
Product data sheet

### 32-bit ARM Cortex-M3 microcontroller



## 14.2 Crystal oscillator XTAL input and component selection

The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a clock in slave mode, it is recommended that the input be coupled through a capacitor with  $C_i = 100 \text{ pF}$ . To limit the input voltage to the specified range, choose an additional capacitor to ground  $C_g$  which attenuates the input voltage by a factor  $C_i/(C_i + C_g)$ . In slave mode, a minimum of 200 mV(RMS) is needed.

LPC178X 7X

105 of 126

Table 34. Recommended values for  $C_{X1}/C_{X2}$  in oscillation mode (crystal and external components parameters): low frequency mode

| Fundamental oscillation frequency F <sub>OSC</sub> | Crystal load<br>capacitance C <sub>L</sub> | Maximum crystal<br>series resistance R <sub>S</sub> | External load<br>capacitors C <sub>X1</sub> /C <sub>X2</sub> |
|----------------------------------------------------|--------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| 5 MHz to 10 MHz                                    | 10 pF                                      | < 300 Ω                                             | 18 pF, 18 pF                                                 |
|                                                    | 20 pF                                      | < 200 Ω                                             | 39 pF, 39 pF                                                 |
|                                                    | 30 pF                                      | < 100 Ω                                             | 57 pF, 57 pF                                                 |
| 10 MHz to 15 MHz                                   | 10 pF                                      | < 160 Ω                                             | 18 pF, 18 pF                                                 |
|                                                    | 20 pF                                      | < 60 Ω                                              | 39 pF, 39 pF                                                 |
| 15 MHz to 20 MHz                                   | 10 pF                                      | < 80 Ω                                              | 18 pF, 18 pF                                                 |

Table 35.Recommended values for  $C_{X1}/C_{X2}$  in oscillation mode (crystal and external<br/>components parameters): high frequency mode

| Fundamental oscillation frequency F <sub>OSC</sub> | Crystal load<br>capacitance C <sub>L</sub> | Maximum crystal<br>series resistance R <sub>S</sub> | External load<br>capacitors C <sub>X1</sub> , C <sub>X2</sub> |
|----------------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| 15 MHz to 20 MHz                                   | 10 pF                                      | < 180 Ω                                             | 18 pF, 18 pF                                                  |
|                                                    | 20 pF                                      | < 100 Ω                                             | 39 pF, 39 pF                                                  |
| 20 MHz to 25 MHz                                   | 10 pF                                      | < 160 Ω                                             | 18 pF, 18 pF                                                  |
|                                                    | 20 pF                                      | < 80 Ω                                              | 39 pF, 39 pF                                                  |

## 14.3 XTAL Printed-Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors  $C_{x1}$ ,  $C_{x2}$ , and  $C_{x3}$  in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plane. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Smaller values of  $C_{x1}$  and  $C_{x2}$  should be chosen according to the increase in parasitics of the PCB layout.

## 14.4 Standard I/O pin configuration

Figure 38 shows the possible pin modes for standard I/O pins with analog input function:

- Digital output driver: Open-drain mode enabled/disabled.
- Digital input: Pull-up enabled/disabled.
- Digital input: Pull-down enabled/disabled.
- Digital input: Repeater mode enabled/disabled.
- Analog input.

The default configuration for standard I/O pins is input with pull-up enabled. The weak MOS devices provide a drive capability equivalent to pull-up and pull-down resistors.

#### 32-bit ARM Cortex-M3 microcontroller

## 15. Package outline



#### Fig 41. LQFP208 package

All information provided in this document is subject to legal disclaimers.

LPC178X 7X

### 32-bit ARM Cortex-M3 microcontroller



**NXP Semiconductors** 

LPC178X 7X

### 32-bit ARM Cortex-M3 microcontroller

| 8     | Limiting values                             | . 69 |
|-------|---------------------------------------------|------|
| 9     | Thermal characteristics                     | . 70 |
| 10    | Static characteristics                      | . 71 |
| 10.1  | Power consumption                           | . 74 |
| 10.2  | Peripheral power consumption                | . 76 |
| 10.3  | Electrical pin characteristics              | . 78 |
| 11    | Dynamic characteristics                     | . 80 |
| 11.1  | Flash memory                                | . 80 |
| 11.2  | External memory interface                   | . 81 |
| 11.3  | External clock                              | . 90 |
| 11.4  | Internal oscillators                        | . 90 |
| 11.5  | I/O pins                                    | . 90 |
| 11.6  |                                             | . 91 |
| 11.7  | I <sup>2</sup> C-bus                        | . 93 |
| 11.8  |                                             | . 94 |
| 11.9  |                                             | . 95 |
| 11.10 |                                             | . 90 |
| 12    | ADC electrical characteristics              | . 97 |
| 13    | DAC electrical characteristics              | 100  |
| 14    | Application information.                    | 101  |
| 14.1  | Suggested USB interface solutions           | 101  |
| 14.2  | Crystal oscillator XTAL input and component |      |
|       |                                             | 105  |
| 14.3  | X IAL Printed-Circuit Board (PCB) layout    | 407  |
| 111   | Standard I/O pip configuration              | 107  |
| 14.4  |                                             | 107  |
| 14.0  | Reset pin configuration for RTC operation   | 108  |
| 15    | Package outline                             | 110  |
| 16    | Soldering                                   | 114  |
| 17    | Abbreviations                               | 117  |
| 18    | References                                  | 118  |
| 19    | Revision history                            | 119  |
| 20    | Legal information                           | 123  |
| 20.1  | Data sheet status                           | 123  |
| 20.2  | Definitions                                 | 123  |
| 20.3  | Disclaimers                                 | 123  |
| 20.4  | Trademarks                                  | 124  |
| 21    | Contact information                         | 124  |
| 22    | Contents                                    | 125  |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 April 2016 Document identifier: LPC178X\_7X