

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	55
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38324hwv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Arrangement and Functions

1.3.1 Pin Arrangement

The pin arrangements of the H8/3827R Group, H8/3827S Group, H8/38327 Group, and H8/38427 Group are shown in figures 1.2 and 1.3 (figure 1.3 only applies to the H8/3827R Group). The bonding pad location diagram of the H8/3827R Group (mask ROM version) is shown in figure 1.4, and the bonding pad coordinates are given in table 1.2. The bonding pad location diagram of the H8/3827S Group (mask ROM version) is shown in figure 1.5, and the bonding pad coordinates are given in table 1.3. The bonding pad location diagram of the HCD64F38327 and HCD64F38427 is shown in figure 1.6, and the bonding pad coordinates are given in table 1.4. The bonding pad location diagram of the H8/3827 Group (mask ROM version) is shown in figure 1.6, and the bonding pad coordinates are given in table 1.4. The bonding pad location diagram of the H8/38327 Group (mask ROM version) and H8/38427 Group (mask ROM version) is shown in figure 1.7, and the bonding pad coordinates are given in table 1.5.

Figure 1.3 Pin Arrangement (FP-80B: Top View)

2.3.1 Data Formats in General Registers

Data of all the sizes above can be stored in general registers as shown in figure 2.3.

Data Type F	Register	· No.	Data Format														
		7							0								
1-bit data	RnH	7	6	5	4	3	2	1	0	[Don'i	t care)		
										1							
										7							0
1-bit data	RnL				Don'	t care				7	6	5	4	3	2	1	0
		7							0								
Byte data	RnH	MSB				· ·			LSB	[Don'i	t care)		
										7							0
Byte data	RnL				Don'	t care				MSB	1		1	1		1	LSB
		15															0
Word data	Rn	MSB	1	1	1					1	1		1	1		1	LSB
		7			4	3			0								
4-bit BCD data	RnH		Uppe	er digit	1		Lowe	r digit					Don'	t care)		
										7			4	3			0
4-bit BCD data	RnL				Don'	t care					Uppe	r digit			Lowe	er digit	
Legend:				_													
RnH: Upper byte RnL: Lower byte	of gene	ral reg ral reg	gister gister														
MSB: Most signifi	icant bit	-															
LSB: Least significant bit																	

Figure 2.3 Register Data Formats

Figure 2.16 (3) H8/3824R, H8/3824S, H8/38324, and H8/38424 Memory Map

Rev. 6.00 Aug 04, 2006 page 70 of 626 REJ09B0144-0600

Bits 1 and 0: Active (medium-speed) mode clock select (MA1, MA0)

Bits 1 and 0 choose $\phi_{OSC}/128$, $\phi_{OSC}/64$, $\phi_{OSC}/32$, or $\phi_{OSC}/16$ as the operating clock in active (medium-speed) mode and sleep (medium-speed) mode. MA1 and MA0 should be written in active (high-speed) mode or subactive mode.

Bit 1 MA1	Bit 0 MA0	Description	
0	0	φ _{OSC} /16	
0	1	φ _{OSC} /32	
1	0	ф _{ОSC} /64	
1	1	φ _{OSC} /128	(initial value)

2. System Control Register 2 (SYSCR2)

Bit	7	6	5	4	3	2	1	0
		_		NESEL	DTON	MSON	SA1	SA0
Initial value	1	1	1	1	0	0	0	0
Read/Write	_	_	_	R/W	R/W	R/W	R/W	R/W

SYSCR2 is an 8-bit read/write register for power-down mode control.

Bits 7 to 5: Reserved bits

These bits are reserved; they are always read as 1, and cannot be modified.

Bit 4: Noise elimination sampling frequency select (NESEL)

This bit selects the frequency at which the watch clock signal (ϕ_W) generated by the subclock pulse generator is sampled, in relation to the oscillator clock (ϕ_{OSC}) generated by the system clock pulse generator. When $\phi_{OSC} = 2$ to 16 MHz, clear NESEL to 0.

Bit 4 NESEL	Description	
0	Sampling rate is $\phi_{OSC}/16$	
1	Sampling rate is $\phi_{OSC}/4$	(initial value)

2. Time for Direct Transition from Active (Medium-Speed) Mode to Active (High-Speed) Mode

A direct transition from active (medium-speed) mode to active (high-speed) mode is performed by executing a SLEEP instruction in active (medium-speed) mode while bits SSBY and LSON are both cleared to 0 in SYSCR1, and bit MSON is cleared to 0 and bit DTON is set to 1 in SYSCR2. The time from execution of the SLEEP instruction to the end of interrupt exception handling (the direct transition time) is given by equation (2) below.

Direct transition time = { (Number of SLEEP instruction execution states) + (number of internal processing states) } × (tcyc before transition) + (number of interrupt exception handling execution states) × (tcyc after transition)

Example: Direct transition time = $(2 + 1) \times 16$ tosc + 14×2 tosc = 76tosc (when $\phi/8$ is selected as the CPU operating clock)

Notation:

tosc: OSC clock cycle time tcyc: System clock (φ) cycle time

3. Time for Direct Transition from Subactive Mode to Active (High-Speed) Mode

A direct transition from subactive mode to active (high-speed) mode is performed by executing a SLEEP instruction in subactive mode while bit SSBY is set to 1 and bit LSON is cleared to 0 in SYSCR1, bit MSON is cleared to 0 and bit DTON is set to 1 in SYSCR2, and bit TMA3 is set to 1 in TMA. The time from execution of the SLEEP instruction to the end of interrupt exception handling (the direct transition time) is given by equation (3) below.

Direct transition time =	{ (Number of SLEEP instruction execution states) + (n	umber of interna	al
	processing states) } × (tsubcyc before transition) + { (w	vait time set in	
	STS2 to STS0) + (number of interrupt exception handline)	ing execution	
	states) $\} \times (tcyc after transition)$		(3)

Example: Direct transition time = $(2 + 1) \times 8tw + (8192 + 14) \times 2tosc = 24tw + 16412tosc$ (when $\frac{\phi w}{8}$ is selected as the CPU operating clock, and wait time = 8192 states)

Notation:

tosc:	OSC clock cycle time	

tw: Watch clock cycle time

tcyc: System clock (ϕ) cycle time

tsubcyc: Subclock (ϕ_{SUB}) cycle time

Rev. 6.00 Aug 04, 2006 page 140 of 626 REJ09B0144-0600

FP-80A, TFP-80C	FP-80B	Pin	Pin	HN27C101 (32-pin
9	11	RES	Vpp	1
45	47	P60	EO0	13
46	48	P61	EO1	14
47	49	P62	EO2	15
48	50	P63	EO3	17
49	51	P64	EO4	18
50	52	P65	EO5	19
51	53	P66	EO6	20
52	54	P67	EO7	21
68	70	P87	EA0	12
67	69	P86	EA1	11
66	68	P85	EA2	10
65	67	P84	EA3	9
64	66	P83	EA4	8
63	65	P82	EA5	7
62	64	P81	EA6	6
61	63	P80	EA7	5
53	55	P70	EA8	27
72	74	P43	EA9	26
55	57	P72	EA10	23
56	58	P73	EA11	25
57	59	P74	EA12	4
58	60	P75	EA13	28
59	61	P76	EA14	29
14	16	P14	EA15	3
15	17	P15	EA16	2
60	62	P77	CE	22
54	56	P71		24
13	15	P13	PGM	31
32, 26	34, 28	Vcc, CVcc	Vcc	32
73	75	AVcc		
8	10	TEST		
3	5	X1		
80	2	PB ₆		
11	13	P11		
12	14	P12		
16	18	P16		
5, 27	7, 29	Vss	Vss	16
2	4	AVss		
78	80	PB4		
79	1	PB5		

Figure 6.2 Socket Adapter Pin Correspondence (with HN27C101)

Figure 6.4 High-Speed, High-Reliability Programming Flow Chart

3. Port Pull-Up Control Register 3 (PUCR3)

Bit	7	6	5	4	3	2	1	0
	PUCR37	PUCR3 ₆	PUCR35	PUCR3 ₄	PUCR33	PUCR3 ₂	PUCR31	PUCR30
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUCR3 controls whether the MOS pull-up of each of the port 3 pins $P3_7$ to $P3_0$ is on or off. When a PCR3 bit is cleared to 0, setting the corresponding PUCR3 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR3 is initialized to H'00.

4. Port Mode Register 3 (PMR3)

Bit	7	6	5	4	3	2	1	0
	AEVL	AEVH	WDCKS	NCS	IRQ0	RESO*	UD	PWM
Initial value	0	0	0	0	0	1	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * The RESO bit is not implemented in the H8/38327 Group and H8/38427 Group.

PMR3 is an 8-bit read/write register, controlling the selection of pin functions for port 3 pins.

Upon reset, PMR3 is initialized to H'04.

Bit 7: P3₇/AEVL pin function switch (AEVL)

This bit selects whether pin P37/AEVL is used as P37 or as AEVL.

Bit 7 AEVL	Description	
0	Functions as P37 I/O pin	(initial value)
1	Functions as AEVL input pin	

2. Timer Counter C (TCC)

Bit	7	6	5	4	3	2	1	0
	TCC7	TCC6	TCC5	TCC4	тсс3	TCC2	TCC1	TCC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

TCC is an 8-bit read-only up-counter, which is incremented by internal clock or external event input. The clock source for input to this counter is selected by bits TMC2 to TMC0 in timer mode register C (TMC). TCC values can be read by the CPU at any time.

When TCC overflows from H'FF to H'00 or to the value set in TLC, or underflows from H'00 to H'FF or to the value set in TLC, the IRRTC bit in IRR2 is set to 1.

TCC is allocated to the same address as TLC.

Upon reset, TCC is initialized to H'00.

3. Timer Load Register C (TLC)

Bit	7	6	5	4	3	2	1	0
	TLC7	TLC6	TLC5	TLC4	TLC3	TLC2	TLC1	TLC0
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

TLC is an 8-bit write-only register for setting the reload value of timer counter C (TCC).

When a reload value is set in TLC, the same value is loaded into timer counter C as well, and TCC starts counting up from that value. When TCC overflows or underflows during operation in auto-reload mode, the TLC value is loaded into TCC. Accordingly, overflow/underflow periods can be set within the range of 1 to 256 input clocks.

The same address is allocated to TLC as to TCC.

Upon reset, TLC is initialized to H'00.

Renesas

2. Block Diagram

Figure 9.3 shows a block diagram of timer F.

Figure 9.3 Block Diagram of Timer F

Bit 7: Counter overflow flag H (OVH)

Bit 7 is a status flag indicating that ECH has overflowed from H'FF to H'00. This flag is set when ECH overflows. It is cleared by software but cannot be set by software. OVH is cleared by reading it when set to 1, then writing 0.

When ECH and ECL are used as a 16-bit event counter with CH2 cleared to 0, OVH functions as a status flag indicating that the 16-bit event counter has overflowed from H'FFFF to H'0000.

Bit 7 OVH	Description	
0	ECH has not overflowed	(initial value)
	Clearing condition:	
	After reading OVH = 1, cleared by writing 0 to OVH	
1	ECH has overflowed	
	Setting condition:	
	Set when ECH overflows from H'FF to H'00	

Bit 6: Counter overflow flag L (OVL)

Bit 6 is a status flag indicating that ECL has overflowed from H'FF to H'00. This flag is set when ECL overflows. It is cleared by software but cannot be set by software. OVL is cleared by reading it when set to 1, then writing 0.

Bit 6		
OVL	Description	
0	ECL has not overflowed	(initial value)
	Clearing condition:	
	After reading OVL = 1, cleared by writing 0 to OVL	
1	ECL has overflowed	
	Setting condition:	
	Set when ECL overflows from H'FF to H'00 while CH2 is set to 1	

Bit 5: Reserved bit

Bit 5 is reserved; it can be read and written, and is initialized to 0 upon reset.

Figure 10.8 Example of Data Reception Flowchart (Asynchronous Mode) (cont)

Bit 4: Display data control (DISP)

Bit 4 specifies whether the LCD RAM contents are displayed or blank data is displayed regardless of the LCD RAM contents.

Bit 4 DISP	Description	
0	Blank data is displayed	(initial value)
1	LCD RAM data is display	

Bits 3 to 0: Frame frequency select 3 to 0 (CKS3 to CKS0)

Bits 3 to 0 select the operating clock and the frame frequency. In subactive mode, watch mode, and subsleep mode, the system clock (ϕ) is halted, and therefore display operations are not performed if one of the clocks from $\phi/2$ to $\phi/256$ is selected. If LCD display is required in these modes, ϕw , $\phi w/2$, or $\phi w/4$ must be selected as the operating clock.

Bit 3 Bit 2		Bit 1	Bit 0		Frame Frequency ^{*2}			
CKS3	CKS2	CKS1	CKS0	Operating Clock	φ = 2 MHz	φ = 250 kHz ^{*1}		
0	*	0	0	φw	128 Hz ^{*3} (initial va	llue)		
0	*	0	1	φw/2	64 Hz ^{*3}			
0	*	1	*	φw/4	32 Hz ^{*3}			
1	0	0	0	ф/2	_	244 Hz		
1	0	0	1	φ/4	977 Hz	122 Hz		
1	0	1	0	φ/8	488 Hz	61 Hz		
1	0	1	1	φ/16	244 Hz	30.5 Hz		
1	1	0	0	ф/32	122 Hz	—		
1	1	0	1	φ/64	61 Hz	—		
1	1	1	0	ф/128	30.5 Hz	—		
1	1	1	1	ф/256	—	—		

*: Don't care

Notes: 1. This is the frame frequency in active (medium-speed, ϕ osc/16) mode when ϕ = 2 MHz.

- 2. When 1/3 duty is selected, the frame frequency is 4/3 times the value shown.
- 3. This is the frame frequency when $\phi w = 32.768$ kHz.

Renesas

13.3.2 Relationship between LCD RAM and Display

The relationship between the LCD RAM and the display segments differs according to the duty cycle. LCD RAM maps for the different duty cycles when segment external expansion is not used are shown in figures 13.5 to 13.8, and LCD RAM maps when segment external expansion is used in figures 13.9 to 13.12.

After setting the registers required for display, data is written to the part corresponding to the duty using the same kind of instruction as for ordinary RAM, and display is started automatically when turned on. Word- or byte-access instructions can be used for RAM setting.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
H'F740	SEG ₂	SEG ₂	SEG ₂	SEG ₂	SEG1	SEG1	SEG1	SEG1
H'F74F	SEG ₃₂	SEG ₃₂	SEG ₃₂	SEG ₃₂	SEG31	SEG ₃₁	SEG ₃₁	SEG31
	¥	¥	¥	¥	+	+	¥	+
	COM ₄	COM ₃	COM ₂	COM ₁	COM ₄	COM ₃	COM ₂	COM ₁

Figure 13.5 LCD RAM Map when Not Using Segment External Expansion (1/4 Duty)

15.2.5 LCD Characteristics

Table 15.6 shows the LCD characteristics.

Table 15.6 LCD Characteristics

 $V_{CC} = 1.8 \text{ V}$ to 5.5 V, $AV_{CC} = 1.8 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*3}$ (including subactive mode) unless otherwise specified.

		Applicable	Test		Value	S		
ltem	Symbol	Pins	Conditions	Min	Тур	Max	Unit	Notes
Segment driver drop voltage	V _{DS}	SEG ₁ to SEG ₃₂	$I_D = 2 \ \mu A$ V ₁ = 2.7 to 5.5 V	_	_	0.6	V	*1
Common driver drop voltage	V _{DC}	COM ₁ to COM ₄	$I_D = 2 \ \mu A$ V ₁ = 2.7 to 5.5 V	—	—	0.3	V	*1
LCD power supply split-resistance	R _{LCD}		Between V_1 and $V_{\rm SS}$	0.5	3.0	9.0	MΩ	
Liquid crystal display voltage	V _{LCD}	V ₁		2.2	_	5.5	V	*2

Notes: 1. The voltage drop from power supply pins V_1 , V_2 , V_3 , and V_{SS} to each segment pin or common pin.

2. When the liquid crystal display voltage is supplied from an external power source, ensure that the following relationship is maintained: $V_1 \ge V_2 \ge V_3 \ge V_{SS}$.

3. The guaranteed temperature as an electrical characteristic for Die products is 75°C.

			Values					
Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Notes
Output low voltage	V _{OL}	P1 ₀ to P1 ₇ , P4 ₀ to P4 ₂	_	_	0.6	V	V_{CC} = 4.0 V to 5.5 V I _{OL} = 1.6 mA	
			_	_	0.5		I _{OL} = 0.4 mA	
		$\begin{array}{c} {\sf P5}_0 \text{ to } {\sf P5}_7, {\sf P6}_0 \\ {\sf to } {\sf P6}_7, {\sf P7}_0 \text{ to} \\ {\sf P7}_7, {\sf P8}_0 \text{ to } {\sf P8}_7, \\ {\sf PA}_0 \text{ to } {\sf PA}_3 \end{array}$	—	_	0.5	_	I _{OL} = 0.4 mA	
		P3 ₀ to P3 ₇	—	_	1.5		V_{CC} = 4.0 V to 5.5 V I _{OL} = 10 mA	
			—	_	0.6		V_{CC} = 4.0 V to 5.5 V I _{OL} = 1.6 mA	
			—	_	0.5		I _{OL} = 0.4 mA	
Input/output	I _{IL}	RES, P4 ₃		—	20.0	μA	$V_{IN} = 0.5 V$ to $V_{CC} - 0.5 V$	*2
leakage				—	1.0			*1
Current		$\begin{array}{c} OSC_1, X_1, \\ P1_0 \ to \ P1_7, \\ P3_0 \ to \ P3_7, \\ P4_0 \ to \ P4_2, \\ P5_0 \ to \ P5_7, \\ P6_0 \ to \ P6_7, \\ P7_0 \ to \ P7_7, \\ P8_0 \ to \ P8_7, \\ PA_0 \ to \ PA_3 \end{array}$	_	-	1.0	μA	$V_{IN} = 0.5 V to$ $V_{CC} - 0.5 V$	
		PB ₀ to PB ₇	—	—	1.0		$V_{IN} = 0.5 V$ to AV _{CC} - 0.5 V	
Pull-up MOS	-Ip	$\begin{array}{llllllllllllllllllllllllllllllllllll$	50.0	_	300.0	μA	V _{CC} = 5 V, V _{IN} = 0 V	
current			_	35.0	_		V _{CC} = 2.7 V, V _{IN} = 0 V	Reference value

Section 15 Electrical Characteristics

Note: * Only a write of 0 for flag clearing is possible.

SMR32—Serial Mode Register 32

1 Synchronous mode

C.5 Block Diagram of Port 6

Figure C.5 Port 6 Block Diagram