

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	55
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38324wwv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 8.13	Port 5 Pin States	218
Table 8.14	Port 6 Registers	220
Table 8.15	Port 6 Pin Functions	221
Table 8.16	Port 6 Pin States	222
Table 8.17	Port 7 Registers	223
Table 8.18	Port 7 Pin Functions	225
Table 8.19	Port 7 Pin States	225
Table 8.20	Port 8 Registers	226
Table 8.21	Port 8 Pin Functions	228
Table 8.22	Port 8 Pin States	229
Table 8.23	Port A Registers	230
Table 8.24	Port A Pin Functions	231
Table 8.25	Port A Pin States	232
Table 8.26	Port B Register	233
Table 8.27	Register Configuration	234

Section 9 Timers

Table 9.1	Timer Functions	237
Table 9.2	Pin Configuration	239
Table 9.3	Timer A Registers	240
Table 9.4	Timer A Operation States	246
Table 9.5	Pin Configuration	248
Table 9.6	Timer C Registers	249
Table 9.7	Timer C Operation States	254
Table 9.8	Pin Configuration	258
Table 9.9	Timer F Registers	258
Table 9.10	Timer F Operation Modes	271
Table 9.11	Pin Configuration	278
Table 9.12	Timer G Registers	278
Table 9.13	Timer G Operation Modes	290
Table 9.14	Internal Clock Switching and TCG Operation	291
Table 9.15	Input Capture Input Signal Input Edges Due to Input Capture Input Pin	
	Switching, and Conditions for Their Occurrence	293
Table 9.16	Input Capture Input Signal Input Edges Due to Noise Canceler Function	
	Switching, and Conditions for Their Occurrence	294
Table 9.17	Watchdog Timer Registers	297
Table 9.18	Watchdog Timer Operation States	302
Table 9.19	Pin Configuration	304
Table 9.20	Asynchronous Event Counter Registers	305
Table 9.21	Asynchronous Event Counter Operation Modes	311

Rev. 6.00 Aug 04, 2006 page xxxi of xxxiv

1.2 Internal Block Diagram

Figure 1.1(1) shows a block diagram of the H8/3827R Group and H8/3827S Group.

Figure 1.1(2) shows a block diagram of the H8/38327 Group and H8/38427 Group.

Figure 1.1(1) Block Diagram (H8/3827R Group and H8/3827S Group)

Rev. 6.00 Aug 04, 2006 page 6 of 626 REJ09B0144-0600

Figure 2.15 State Transitions

2.7.2 Program Execution State

In the program execution state the CPU executes program instructions in sequence.

There are three modes in this state, two active modes (high speed and medium speed) and one subactive mode. Operation is synchronized with the system clock in active mode (high speed and medium speed), and with the subclock in subactive mode. See section 5, Power-Down Modes for details on these modes.

2.7.3 Program Halt State

In the program halt state there are five modes: two sleep modes (high speed and medium speed), standby mode, watch mode, and subsleep mode. See section 5, Power-Down Modes for details on these modes.

2.7.4 Exception-Handling State

The exception-handling state is a transient state occurring when exception handling is started by a reset or interrupt and the CPU changes its normal processing flow. In exception handling caused by an interrupt, SP (R7) is referenced and the PC and CCR values are saved on the stack.

For details on interrupt handling, see section 3.3, Interrupts.

Renesas

2. Interrupts IRQ₄ to IRQ₀

Interrupts IRQ_4 to IRQ_0 are requested by input signals to pins $\overline{IRQ_4}$ to $\overline{IRQ_0}$. These interrupts are detected by either rising edge sensing or falling edge sensing, depending on the settings of bits IEG4 to IEG0 in IEGR.

When these pins are designated as pins \overline{IRQ}_4 to \overline{IRQ}_0 in port mode register 3 and 1 and the designated edge is input, the corresponding bit in IRR1 is set to 1, requesting an interrupt. Recognition of these interrupt requests can be disabled individually by clearing bits IEN4 to IEN0 to 0 in IENR1. These interrupts can all be masked by setting the I bit to 1 in CCR.

When IRQ_4 to IRQ_0 interrupt exception handling is initiated, the I bit is set to 1 in CCR. Vector numbers 8 to 4 are assigned to interrupts IRQ_4 to IRQ_0 . The order of priority is from IRQ_0 (high) to IRQ_4 (low). Table 3.2 gives details.

3.3.4 Internal Interrupts

There are 23 internal interrupts that can be requested by the on-chip peripheral modules. When a peripheral module requests an interrupt, the corresponding bit in IRR1 or IRR2 is set to 1. Recognition of individual interrupt requests can be disabled by clearing the corresponding bit in IENR1 or IENR2. All these interrupts can be masked by setting the I bit to 1 in CCR. When internal interrupt handling is initiated, the I bit is set to 1 in CCR. Vector numbers from 20 to 11 are assigned to these interrupts. Table 3.2 shows the order of priority of interrupts from on-chip peripheral modules.

5.4.4 Notes on External Input Signal Changes before/after Watch Mode

See section 5.3.5, Notes on External Input Signal Changes before/after Standby Mode.

5.5 Subsleep Mode

5.5.1 Transition to Subsleep Mode

The system goes from subactive mode to subsleep mode when a SLEEP instruction is executed while the SSBY bit in SYSCR1 is cleared to 0, LSON bit in SYSCR1 is set to 1, and TMA3 bit in TMA is set to 1. In subsleep mode, operation of on-chip peripheral modules other than the A/D converter WDT and PWM is halted. As long as a minimum required voltage is applied, the contents of CPU registers, the on-chip RAM and some registers of the on-chip peripheral modules are retained. I/O ports keep the same states as before the transition.

5.5.2 Clearing Subsleep Mode

Subsleep mode is cleared by an interrupt (timer A, timer C, timer F, timer G, asynchronous counter, SCI3-2, SCI3-1, IRQ_4 to IRQ_0 , WKP_7 to WKP_0) or by a low input at the \overline{RES} pin.

• Clearing by interrupt

When an interrupt is requested, subsleep mode is cleared and interrupt exception handling starts. Subsleep mode is not cleared if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

Interrupt signal and system clock are mutually asynchronous. Synchronization error time in a maximum is $2/\phi_{SUB}$ (s).

• Clearing by RES input

Clearing by $\overline{\text{RES}}$ pin is the same as for standby mode; see 2. Clearing by $\overline{\text{RES}}$ pin in section 5.3.2, Clearing Standby Mode.

Renesas

6.7 On-Board Programming Modes

There are two modes for programming/erasing of the flash memory; boot mode, which enables onboard programming/erasing, and programmer mode, in which programming/erasing is performed with a PROM programmer. On-board programming/erasing can also be performed in user program mode. At reset-start in reset mode, this LSI changes to a mode depending on the TEST pin settings, P32 pin settings, and input level of each port, as shown in table 6.8. The input level of each pin must be defined four states before the reset ends.

When changing to boot mode, the boot program built into this LSI is initiated. The boot program transfers the programming control program from the externally-connected host to on-chip RAM via SCI32. After erasing the entire flash memory, the programming control program is executed. This can be used for programming initial values in the on-board state or for a forcible return when programming/erasing can no longer be done in user program mode. In user program mode, individual blocks can be erased and programmed by branching to the user program/erase control program prepared by the user.

TEST	P32	P86	PB0	PB1	PB2	LSI State after Reset End
0	1	Х	Х	Х	Х	User Mode
0	0	1	Х	Х	Х	Boot Mode
1	Х	Х	0	0	0	Programmer Mode

Table 6.8	Setting	Programming	Modes
-----------	---------	-------------	-------

X: Don't care

6.7.1 Boot Mode

Table 6.9 shows the boot mode operations between reset end and branching to the programming control program. The device uses SCI32 in the boot mode.

- 1. When boot mode is used, the flash memory programming control program must be prepared in the host beforehand. Prepare a programming control program in accordance with the description in section 6.8, Flash Memory Programming/Erasing.
- 2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit data, 1 stop bit, and no parity. The inversion function of TXD and RXD pins by the SPCR register is set to "Not to be inverted," so do not put the circuit for inverting a value between the host and this LSI.
- 3. When the boot program is initiated, the chip measures the low-level period of asynchronous SCI communication data (H'00) transmitted continuously from the host. The chip then

8.2.3 Pin Functions

Table 8.3 shows the port 1 pin functions.

Table 8.3Port 1 Pin Functions

Pin	Pin Functions and	d Selection Me	thod					
P1 ₇ /IRQ ₃ /TMIF	The pin function depends on bit IRQ3 in PMR1, bits CKSL2 to CKSL0 in TCRF, and bit PCR1 $_7$ in PCR1.							
	IRQ ₃	0		1				
	PCR17	0	1	*	:			
	CKSL2 to CKSL0	:	*	Not 0**	0**			
	Pin function	P17 input pin	P17 output pin	IRQ₃ input pin	IRQ₃/TMIF input pin			
	Note: When this pin is used as the TMIF input pin, clear bit IEN3 to 0 in IENR1 to disable the IRQ ₃ interrupt.							
P1 ₆ /IRQ ₂	The pin function depends on bits IRQ2 in PMR1 and bit PCR1 ₆ in PCR1.							
	IRQ2	()	1				
	PCR1 ₆	0	1	*	:			
	Pin function	P16 input pin	P16 output pin	IRQ ₂ input pin				
P1₅/ĪRQ₁ TMIC	The pin function de bit PCR1₅ in PCR1	epends on bit IR	Q1 in PMR1, bi	s TMC2 to TMC	0 in TMC, and			
	IRQ1	()	1				
	PCR1₅	0	1	*	:			
	TMC2 to TMC0		*	Not 111	111			
	Pin function	P1₅ input pin	P1₅ output pin	IRQ₁ input pin	IRQ ₁ /TMIC input pin			
	Note: When this p to disable th	in is used as the e IRQ₁ interrupt	TMIC input pin	, clear bit IEN1 t	o 0 in IENR1			

8.9.3 Pin Functions

Table 8.24 shows the port A pin functions.

Table 8.24Port A Pin Functions

Pin	Pin Functions and	Selection Method						
PA ₃ /COM ₄	The pin function dep	The pin function depends on bit PCRA ₃ in PCRA and bits SGS3 to SGS0.						
	SEGS3 to SEGS0	0000	0000	Not 0000				
	PCRA ₃	0	1	*				
	Pin function	PA_3 input pin	PA ₃ output pin	COM ₄ output pin				
PA ₂ /COM ₃	The pin function dep	ends on bit PCRA ₂ i	n PCRA and bits SG	SS3 to SGS0.				
	SEGS3 to SEGS0	0000	0000	Not 0000				
	PCRA ₂	0	1	*				
	Pin function	PA ₂ input pin	PA ₂ output pin	COM ₃ output pin				
PA ₁ /COM ₂	The pin function depends on bit PCRA ₁ in PCRA and bits SGS3 to SGS0.							
	SEGS3 to SEGS0	0000	0000	Not 0000				
	PCRA ₁	0	1	*				
	Pin function	PA ₁ input pin	PA ₁ output pin	COM ₂ output pin				
PA ₀ /COM ₁	The pin function dep	ends on bit PCRA ₀ i	n PCRA and bits SG	SS3 to SGS0.				
	SEGS3 to SEGS0	00	00	Not 0000				
	PCRA ₀	0	1	*				
	Pin function	PA ₀ input pin	PA ₀ output pin	COM ₁ output pin				

*: Don't care

Figure 10.19 Example of Multiprocessor Data Reception Flowchart

Bit 7: A/D start flag (ADSF)

Bit 7 controls and indicates the start and end of A/D conversion.

Bit 7 ADSF	Description	
0	Read: Indicates the completion of A/D conversion	(initial value)
	Write: Stops A/D conversion	
1	Read: Indicates A/D conversion in progress	
	Write: Starts A/D conversion	

Bits 6 to 0: Reserved bits

Bits 6 to 0 are reserved; they are always read as 1, and cannot be modified.

12.2.4 Clock Stop Register 1 (CKSTPR1)

Bit	7	6	5	4	3	2	1	0
	—	S31CKSTP	S32CKSTP	ADCKSTP	TGCKSTP	TFCKSTP	TCCKSTP	TACKSTP
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral modules. Only the bit relating to the A/D converter is described here. For details of the other bits, see the sections on the relevant modules.

Bit 4: A/D converter module standby mode control (ADCKSTP)

Bit 4 controls setting and clearing of module standby mode for the A/D converter.

ADCKSTP	Description	
0	A/D converter is set to module standby mode	
1	A/D converter module standby mode is cleared	(initial value)

15.5 H8/3827S Group Absolute Maximum Ratings

Table 15.15 lists the absolute maximum ratings.

Table 15.15 Absolute Maximum R	Ratings
--------------------------------	---------

Item		Symbol	Value	Unit	Notes
Power supply vo	Itage	Vcc	-0.3 to +4.3	V	*1
Analog power su	pply voltage	AV _{CC}	-0.3 to +4.3	V	
Input voltage	Ports other than Port B	Vin	–0.3 to V _{CC} +0.3	V	
	Port B	AV _{in}	–0.3 to AV _{CC} +0.3	V	
Operating temperature		T _{opr}	–20 to +75 (Regular specifications)	°C	
			-40 to +85 (wide-range specifications)	_	
			+75 (products shipped as chips) ^{*2}	-	
Storage tempera	ture	T _{stg}	–55 to +125	°C	

Notes: 1. Permanent damage may occur to the chip if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceeding these values can result in incorrect operation and reduced reliability.

2. Power may be applied when the temperature is between –20 and –75°C.

Values			es					
Item	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Notes
Input capacitance	C _{IN}	All input pins except power supply	_	_	15.0	pF	f = 1MHz, $V_{IN} = 0 V,$ $T_a = 25^{\circ}C$	
Active mode current dissipation	I _{OPE1}	V _{CC}	_	0.4	*3	mA	Active (high-speed) mode V_{CC} = 1.8 V, f_{OSC} = 2 MHz	*1 *2
			_	1.4	*3		Active (high-speed) mode V_{CC} = 3 V, f_{OSC} = 4 MHz	-
			_	3.5	5.5		Active (high-speed) mode V_{CC} = 3 V, f_{OSC} = 10 MHz	-
	I _{OPE2}	V _{CC}	-	0.1	*3		Active (medium-speed) mode V_{CC} = 1.8 V, f_{OSC} = 2 MHz $\phi_{OSC}/128$	-
			_	0.3	*3		Active (medium-speed) mode V_{CC} = 3 V, f_{OSC} = 4 MHz $\phi_{OSC}/128$	-
			_	0.7	1.6		Active (medium-speed) mode V_{CC} = 3 V, f_{OSC} = 10 MHz $\phi_{OSC}/128$	-
Sleep mode current	I _{SLEEP}	V _{CC}	_	0.2	*3	mA	V _{CC} = 1.8 V, f _{OSC} = 2 MHz	*1 *2
dissipation			_	0.6	*3		V_{CC} = 3 V, f_{OSC} = 4 MHz	-
			_	1.4	2.9		V _{CC} = 3 V, f _{OSC} = 10 MHz	-

Section 15 Electrical Characteristics

			Values					
Item	Symbol	Applicable Pins	Min	Тур	Мах	Unit	Test Condition	Notes
Active mode current consump- tion	lope2	V _{CC}	_	0.4	_	mA	Active (medium- speed) mode $V_{CC} = 2.7 V$, $f_{OSC} = 2 MHz$, $\phi_{OSC}/128$ Active (medium- speed) mode $V_{CC} = 5 V$, $f_{OSC} = 2 MHz$, $\phi_{OSC}/128$	*1 *3 *4 Approx. max. value = $1.1 \times$ Typ.
			_	0.7	_			*2 *3 *4 Approx. max. value = $1.1 \times$ Typ.
			_	0.5	_			*1*3*4 Approx. max. value = 1.1 × Typ.
			_	1.0	_			*2 *3 *4 Approx. max. value = $1.1 \times$ Typ.
			_	0.8	—		Active (medium- speed) mode $V_{CC} = 5 V$, $f_{OSC} = 4 MHz$, $\phi_{OSC}/128$	*1*3*4 Approx. max. value = $1.1 \times$ Typ.
	- 1.2 - 1.2 - 1.7	_			*2 *3 *4			
			_	1.2	3.0		Active (medium- speed) mode $V_{CC} = 5 V$, $f_{OSC} = 10 \text{ MHz}$, $\phi_{OSC}/128$	*1 *3 *4
			_	1.7	3.0			*2 *3 *4

Appendix B Internal I/O Registers

B.1 Addresses

Upper Address: H'F0

Lower	Register	Bit Names								
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Name
H'20	FLMCR1	—	SWE	ESU	PSU	EV	PV	Е	Р	ROM
H'21	FLMCR2	FLER	_	_		_	_	_	_	_
H'22	FLPWCR	PDWND	_	_	_	_	_	_	_	_
H'23	EBR	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	_
H'24										_
H'25										_
H'26										_
H'27										_
H'28										_
H'29										_
H'2A										_
H'2B	FENR	FLSHE	_	_	—	_	—	_	_	-
H'2C										_
H'2D										_
H'2E										_
H'2F										-

ADSR—A/D Start Register						H'C7 A/D conv				
Bit	7		6	5	4	3	2	1	0	
	ADSF	= _	-	_	—	—	—	_		
Initial value	0		1	1	1	1	1	1	1	
Read/Write	R/W	-	_	—	—	—	—	—	—	
	A/D									
	Read	Indica	Indicates completion of A/D conversion							
		Write	Stops	A/D conv	/ersion					
	1	Read	Indica	ates A/D c	onversion	in progre	SS			
Write Starts A/D convers										

PMR1—Port Mode Register 1

H'C8

I/O port

- 0 Functions as P1₇ I/O pin
- 1 Functions as IRQ₃/TMIF input pin

Figure C.2 (g) Port 3 Block Diagram (Pin P3₀)

Appendix D Port States in the Different Processing States

Table D.1	Port States	Overview

Port	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P1 ₇ to P1 ₀	High impedance	Retained	Retained	High impedance ^{*1}	Retained	Functions	Functions
P3 ₇ to P3 ₀	High impedance ^{*2}	Retained	Retained	High impedance ^{*1}	Retained	Functions	Functions
P4 ₃ to P4 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
P5 ₇ to P5 ₀	High impedance	Retained	Retained	High impedance ^{*1}	Retained	Functions	Functions
P6 ₇ to P6 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
P7 ₇ to P7 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
P8 ₇ to P8 ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
PA ₃ to PA ₀	High impedance	Retained	Retained	High impedance	Retained	Functions	Functions
PB ₇ to PB ₀	High impedance	High impedance	High impedance	High impedance	High impedance	High impedance	High impedance

Notes: 1. High level output when MOS pull-up is in on state.

 Reset output from P3₂ pin only (H8/3827R Group and H8/3827S Group). On-chip pull-up MOS turns on for pin P3₂ only (F-ZTAT Version of the H8/38327 Group and H8/38427 Group).