

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	55
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38327wv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ltem	Page	Revision (See Ma	nual for	r Details	5)			
8.3.4 Pin States	211	Table and	notes ar	nended					
Table 8.7 Port 3 Pin		Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
States		P3 ₇ /AEVL P3 ₆ /AEVH P3 ₅ /TXD ₃₁ P3 ₄ /RXD ₃₁ P3 ₉ /SCK ₃₁	High- impedance	Retains previous state	Retains previous state	High- impedance ^{*1}	Retains previous state	Functional	Functional
		P3 ₂ /RESO ^{*2}	RESO output	-					
		P32*4	Pull-up MOS on	_					
		P32 ^{*3} P31/UD ^{*2} P31/UD/EXCL ^{*3*4} P30/PWM	High- impedance	_					
		3. Appl	lies to H8/38 lies to the m	27R Group ask ROM ve	and H8/382 ersion of the	• •	roup and H	18/38427 Gr	
8.12.1 The	236	Description	amend	ed					
Management of the Un-Use Terminal		If an unused pin is an output pin, handle it in one of the							;
			g ways:						
		 Set the output of the unused pin to high and pull it up to Vcc with an external resistor of approximately 100 kΩ. 							
		— Set	the outp	out of th	e unuse	d pin to l or of appi	ow and	pull it d	own to
C.2 Block Diagrams of Port 3	593	Figure title	amende	ed					<u> </u>
Figure C.2 (e-2) Port 3 Block Diagram (Pin P3 ₂ in the Mask ROM Version of the H8/38327 Group and H8/38427 Group)									
Figure C.2 (e-3) Port 3 Block Diagram (Pin P $_2$ in the F-ZTAT Version of the H8/38327 Group and H8/38427 Group)	594	Newly add	ed						

Rev. 6.00 Aug 04, 2006 page viii of xxxiv

Secti	on 5	Power-Down Modes	121
5.1		ew	
	5.1.1	System Control Registers	124
5.2	Sleep I	Mode	128
	5.2.1	Transition to Sleep Mode	128
	5.2.2	Clearing Sleep Mode	129
	5.2.3	Clock Frequency in Sleep (Medium-Speed) Mode	129
5.3	Standb	by Mode	129
	5.3.1	Transition to Standby Mode	129
	5.3.2	Clearing Standby Mode	130
	5.3.3	Oscillator Settling Time after Standby Mode is Cleared	131
	5.3.4	Standby Mode Transition and Pin States	131
	5.3.5	Notes on External Input Signal Changes before/after Standby Mode	132
5.4	Watch	Mode	134
	5.4.1	Transition to Watch Mode	134
	5.4.2	Clearing Watch Mode	134
	5.4.3	Oscillator Settling Time after Watch Mode is Cleared	134
	5.4.4	Notes on External Input Signal Changes before/after Watch Mode	135
5.5	Subsle	ep Mode	135
	5.5.1	Transition to Subsleep Mode	135
	5.5.2	Clearing Subsleep Mode	135
5.6	Subact	ive Mode	136
	5.6.1	Transition to Subactive Mode	136
	5.6.2	Clearing Subactive Mode	136
	5.6.3	Operating Frequency in Subactive Mode	136
5.7	Active	(Medium-Speed) Mode	137
	5.7.1	Transition to Active (Medium-Speed) Mode	137
	5.7.2	Clearing Active (Medium-Speed) Mode	137
	5.7.3	Operating Frequency in Active (Medium-Speed) Mode	137
5.8	Direct	Transfer	138
	5.8.1	Overview of Direct Transfer	138
	5.8.2	Direct Transition Times	139
	5.8.3	Notes on External Input Signal Changes before/after Direct Transition	
5.9	Modul	e Standby Mode	142
	5.9.1	Setting Module Standby Mode	142
	5.9.2	Clearing Module Standby Mode	142
	5.9.3	Usage Note	144
а . [.]	~		.
		ROM	
6.1	Overvi	ew	145

Rev. 6.00 Aug 04, 2006 page xiii of xxxiv

2.5.5 Bit Manipulations

Table 2.8 describes the bit-manipulation instructions. Figure 2.7 shows their object code formats.

Table 2.8Bit-Manipulation Instructions
--

Instruction	Size*	Function
BSET	В	$1 \rightarrow (\text{sbit-No.} \text{ of } \text{scale})$
		Sets a specified bit in a general register or memory to 1. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BCLR	В	$0 \rightarrow (\text{sbit-No.> of })$
		Clears a specified bit in a general register or memory to 0. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BNOT	В	~ (<bit-no.> of <ead>) \rightarrow (<bit-no.> of <ead>)</ead></bit-no.></ead></bit-no.>
		Inverts a specified bit in a general register or memory. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BTST	В	~ (<bit-no.> of <ead>) \rightarrow Z</ead></bit-no.>
		Tests a specified bit in a general register or memory and sets or clears the Z flag accordingly. The bit number is specified by 3-bit immediate data or the lower three bits of a general register.
BAND	В	$C \land (<\!bit-No.\!> of <\!EAd\!>) \rightarrow C$
		ANDs the C flag with a specified bit in a general register or memory, and stores the result in the C flag.
BIAND	В	$C \land [\text{~(of)}] \to C$
		ANDs the C flag with the inverse of a specified bit in a general register or memory, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.
BOR	В	$C \lor (of) \to C$
		ORs the C flag with a specified bit in a general register or memory, and stores the result in the C flag.
BIOR	В	$C \lor [\sim (<\!bit-No.\!> of <\!EAd\!>)] \to C$
		ORs the C flag with the inverse of a specified bit in a general register or memory, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.

Instruction	Size*	Function
BXOR	В	$C \oplus (<\!bit-\!No.\!> of <\!\mathsf{EAd\!\!>) \!\rightarrow C}$
		XORs the C flag with a specified bit in a general register or memory, and stores the result in the C flag.
BIXOR	В	$C \oplus \ [\text{-(of)]} \rightarrow C$
		XORs the C flag with the inverse of a specified bit in a general register or memory, and stores the result in the C flag.
		The bit number is specified by 3-bit immediate data.
BLD	В	(<bit-no.> of <ead>) \rightarrow C</ead></bit-no.>
		Copies a specified bit in a general register or memory to the C flag.
BILD	В	~ (<bit-no.> of <ead>) \rightarrow C</ead></bit-no.>
		Copies the inverse of a specified bit in a general register or memory to the C flag.
		The bit number is specified by 3-bit immediate data.
BST	В	$C \rightarrow (\text{sbit-No.> of } \text{})$
		Copies the C flag to a specified bit in a general register or memory.
BIST	В	~ C \rightarrow (<bit-no.> of <ead>)</ead></bit-no.>
		Copies the inverse of the C flag to a specified bit in a general register or memory.
		The bit number is specified by 3-bit immediate data.
Note: * Size B: Byte	e: Operand si e	ze

Certain precautions are required in bit manipulation. See section 2.9.2, Notes on Bit Manipulation, for details.

5. Port Mode Register 2 (PMR2)

Bit	7	6	5	4	3	2	1	0	_
	EXCL	—	—	_	_	_	_	_	
Initial value	0	1	0	1	1	0	0	0	-
Read/Write	R/W	R	R/W	R	R	R/W	R/W	R/W	

PMR2 is an 8-bit read/write register that controls external clock input to pin P31.

Upon reset, PMR2 is initialized to H'58. The information on this register applies to the H8/38327 Group and H8/38427 Group.

Bit 7: P3₁/UD/EXCL pin function switch (EXCL)

This bit selects whether pin $P3_1/UD/EXCL$ is used as $P3_1/UD$ or as EXCL. When the pin is used as EXCL an external clock should be input to it. See section 4, Clock Pulse Generators, for a connection example.

Bit 7	-	
EXCL	Description	
0	Functions as P3 ₁ /UD I/O pin	(initial value)
1	Functions as EXCL input pin	

Bit 6: Reserved bit

Bit 6 is a reserved bit. It is always read as 1 and cannot be modified.

Bit 5: Reserved bit

Bit 5 is a readable/writable reserved bit.

Bits 4 and 3: Reserved bits

Bits 4 and 3 are reserved bits. They are always read as 1 and cannot be modified.

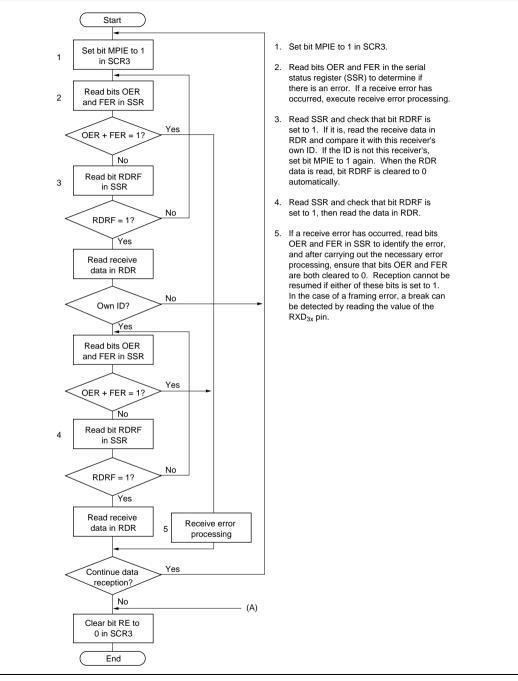
Bits 2 to 0: Reserved bits

Bits 2 to 0 are readable/writable reserved bits.

Bit 5: Parity enable (PE)

Bit 5 selects whether a parity bit is to be added during transmission and checked during reception in asynchronous mode. In synchronous mode parity bit addition and checking is not performed, irrespective of the bit 5 setting.

Bit 5		
PE	Description	
0	Parity bit addition and checking disabled ^{*2}	(initial value)
1	Parity bit addition and checking enabled ^{*1*2}	
Notes: 1.	. When PE is set to 1, even or odd parity, as designated by bit PM, is a data before it is sent, and the received parity bit is checked against th designated by bit PM.	
2.	. For the case where 5-bit data is selected, see table 10.11.	


Bit 4: Parity mode (PM)

Bit 4 selects whether even or odd parity is to be used for parity addition and checking. The PM bit setting is only valid in asynchronous mode when bit PE is set to 1, enabling parity bit addition and checking. The PM bit setting is invalid in synchronous mode, and in asynchronous mode if parity bit addition and checking is disabled.

Bit 4		
РМ	Description	
0	Even parity ^{*1} (initi	ial value)
1	Odd parity ^{*2}	
Notes: 7	 When even parity is selected, a parity bit is added in transmission so that the to number of 1 bits in the transmit data plus the parity bit is an even number; in re a check is carried out to confirm that the number of 1 bits in the receive data pl parity bit is an even number. 	eception,
2	2. When odd parity is selected, a parity bit is added in transmission so that the tot	tal

2. When odd parity is selected, a parity bit is added in transmission so that the total number of 1 bits in the transmit data plus the parity bit is an odd number; in reception, a check is carried out to confirm that the number of 1 bits in the receive data plus the parity bit is an odd number.

Figure 10.19 Example of Multiprocessor Data Reception Flowchart

Bit 7: Clock select (CKS)

Bit 7 sets the A/D conversion speed.

φ = 5 MHz
12.4 µs
_

Note: * For information on conversion time settings for which operation is guaranteed, see section 15, Electrical Characteristics.

Bit 6: External trigger select (TRGE)

Bit 6 enables or disables the start of A/D conversion by external trigger input.

Bit 6 TRGE		Description
0		Disables start of A/D conversion by external trigger (initial value)
1		Enables start of A/D conversion by rising or falling edge of external trigger at pin ADTRG*
Note:	*	The external trigger (ADTRG) edge is selected by bit IEG4 of IEGR. See 1. IRQ edge select register (IEGR) in section 3.3.2 for details.

Bits 5 and 4: Reserved bits

Bits 5 and 4 are reserved; they are always read as 1, and cannot be modified.

Bits 3 to 0: Channel select (CH3 to CH0)

Bits 3 to 0 select the analog input channel.

The channel selection should be made while bit ADSF is cleared to 0.

Bit 4: Expansion signal select (SGX)

Bit 4 selects whether the SEG₃₂/CL₁, SEG₃₁/CL₂, SEG₃₀/DO, and SEG₂₉/M pins are used as segment pins (SEG₃₂ to SEG₂₉) or as segment external expansion pins (CL₁, CL₂, DO, and M).

In the H8/38327 Group and H8/38427 Group this bit should be left at its initial value and not written to. Changing the value of this bit may prevent the SEG/COM signal from operating normally.

Bit 4 SGX		Description	
0		Pins SEG ₃₂ to SEG ₂₉ *	(initial value)
1		Pins CL ₁ , CL ₂ , DO, M	
Note:	*	These pins function as ports whe	en the setting of SGS3 to SGS0 is 0000 or 0001.

Bits 3 to 0: Segment driver select 3 to 0 (SGS3 to SGS0)

Bits 3 to 0 select the segment drivers to be used. The SGX = 0 setting is selected on the H8/38327 and H8/38427.

					i uni				
Bit 4 SGX	Bit 3 SGS3	Bit 2 SGS2	Bit 1 SGS1	Bit 0 SGS0	SEG ₃₂ to SEG ₂₅	SEG ₂₄ to SEG ₁₇	SEG ₁₆ to SEG ₉	SEG ₈ to SEG ₁	Notes
0	0	0	0	0	Port	Port	Port	Port	(initial value)
	0	0	0	1	Port	Port	Port	Port	
	0	0	1	*	SEG	Port	Port	Port	
	0	1	0	*	SEG	SEG	Port	Port	
	0	1	1	*	SEG	SEG	SEG	Port	
	1	*	*	*	SEG	SEG	SEG	SEG	
1	0	0	0	0	Port ^{*1}	Port	Port	Port	
	*	*	*	*	Setting pro	ohibited			
-									

Function of Pins SEG₃₂ to SEG₁

*: Don't care

Note: 1. SEG₃₂ to SEG₂₉ are external expansion pins.

Renesas

		Applicable		Values	5			Reference
Item	Symbol		Min	Тур	Мах	Unit	Test Condition	Figure
Oscillation stabilization time	t _{rc}	X ₁ , X ₂	_	_	2.0	S		
External clock high width	t _{CPH}	OSC ₁	25	_	_	ns	V_{CC} = 4.5 V to 5.5 V	Figure 15.1 *2
			40	_	_	_	V _{CC} = 2.7 V to 5.5 V	Figure 15.1
			100	_	_	_	V _{CC} = 1.8 V to 5.5 V	_
		X ₁	_	15.26 or 13.02	—	μs		-
External clock low width	t _{CPL}	OSC ₁	25	_	_	ns	$V_{\rm CC}$ = 4.5 V to 5.5 V	Figure 15.1 *2
			40		_	_	V _{CC} = 2.7 V to 5.5 V	Figure 15.1
			100	_	_	_	$V_{\rm CC}$ = 1.8 V to 5.5 V	-
		X ₁	_	15.26 or 13.02	_	μs		-
External clock rise time	t _{CPr}	OSC ₁	_	_	6	ns	$V_{\rm CC}$ = 4.5 V to 5.5 V	Figure 15.1 *2
			_		10	_	V _{CC} = 2.7 V to 5.5 V	Figure 15.1
			_		25	_	V _{CC} = 1.8 V to 5.5 V	-
		X ₁	_		55.0	ns		-
External clock fall time	t _{CPf}	OSC ₁	_	_	6	ns	$V_{\rm CC}$ = 4.5 V to 5.5 V	Figure 15.1 *2
			_	_	10	_	V _{CC} = 2.7 V to 5.5 V	Figure 15.1
			_	_	25	_	V _{CC} = 1.8 V to 5.5 V	_
		X ₁	_	_	55.0	ns		-
$Pin\ \overline{RES}\ low\ width$	t _{REL}	RES	10	_	_	t _{cyc}		Figure 15.2

15.5 H8/3827S Group Absolute Maximum Ratings

Table 15.15 lists the absolute maximum ratings.

Table 15.15 A	bsolute Maximum	Ratings
---------------	-----------------	---------

ltem		Symbol	Value	Unit	Notes
Power supply vo	Itage	V _{CC}	–0.3 to +4.3	V	*1
Analog power su	ipply voltage	AV _{CC}	–0.3 to +4.3	V	
Input voltage Ports other than Port B		V _{in}	–0.3 to V _{CC} +0.3	V	
	–0.3 to AV _{CC} +0.3	V			
Operating tempe	erature	T _{opr}	–20 to +75 (Regular specifications)	°C	
			-40 to +85 (wide-range specifications)	-	
			+75 (products shipped as chips) ^{*2}		
Storage tempera	iture	T _{stg}	–55 to +125	°C	

Notes: 1. Permanent damage may occur to the chip if maximum ratings are exceeded. Normal operation should be under the conditions specified in Electrical Characteristics. Exceeding these values can result in incorrect operation and reduced reliability.

2. Power may be applied when the temperature is between –20 and –75°C.

Renesas

				Value	S			
ltem	Symbol	Applicable Pins	Min	Тур	Мах	Unit	Test Condition	Notes
Sleep mode current consump- tion	I _{SLEEP}	V _{CC}	_	0.5	_	mA	V _{CC} = 2.7 V, f _{OSC} = 2 MHz	*1 *3 *4 Approx. max. value = 1.1 × Typ.
			_	0.8	_			*2 *3 *4
								Approx. max. value = 1.1 × Typ.
			_	0.7	_		V _{CC} = 5 V,	*1 *3 *4
							f _{OSC} = 2 MHz	Approx. max. value = 1.1 × Typ.
			—	1.2	—			*2 *3 *4
								Approx. max. value = 1.1 × Typ.
			_	1.1	_		V _{CC} = 5 V, f _{OSC} = 4 MHz	*1*3*4 Approx. max. value = 1.1 × Typ.
			_	1.6	_			*2 *3 *4
			_	1.9	5.0		V _{CC} = 5 V,	*1 *3 *4
			—	2.6	5.0		f _{OSC} = 10 MHz	*2 *3 *4
Subactive	leun	V _{CC}	_	12	_	μA	V _{CC} = 2.7 V,	*1 *3 *4
mode current	1308	•00		12		μ, τ	LCD on, 32-kHz crystal	Reference value
consump- tion			_	15	_		resonator used (φ _{SUB} = φ _W /8)	*2 *3 *4 Reference value
			_	18	50		V _{CC} = 2.7 V,	*1 *3 *4
			_	30	50	_	LCD on,	*2 *3 *4
							32-kHz crystal resonator used $(\phi_{SUB} = \phi_W/2)$	

15.8.3 AC Characteristics

Table 15.24 lists the control signal timing and table 15.25 lists the serial interface timing.

Table 15.24 Control Signal Timing

 $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, unless otherwise specified

		Applicable		Values	6			Reference	
Item	Symbol	Pins	Min Typ Max		Unit	Test Condition	Figure		
System clock	fosc	OSC ₁ ,	2.0	_	16.0	MHz		*3	
oscillation frequency		OSC ₂	2.0	_	16.0	_	V_{CC} = 4.5 to 5.5 V	*4	
nequency			2.0	_	10.0	_	V_{CC} = 2.7 to 5.5 V	-	
OSC clock (ϕ_{OSC}) cycle time	t _{osc}	OSC ₁ , OSC ₂	62.5	_	500 (1000)	ns		Figure 15.1 ^{*2 *3}	
			62.5	_	500 (1000)	_	$V_{\rm CC}$ = 4.5 to 5.5 V	Figure 15.1 ^{*2 *4}	
			100	_	500 (1000)	_	$V_{\rm CC}$ = 2.7 to 5.5 V	-	
System clock (t _{cyc}		2	_	128	tosc			
cycle time			_	_	128	μs	-		
Subclock oscillation frequency	f₩	X ₁ , X ₂ , EXCL	_	32.768 or 38.4	_	kHz			
Watch clock (ϕ_W) cycle time	tw	X ₁ , X ₂ , EXCL	_	30.5 or 26.0	_	μs		Figure 15.1	
Subclock (ϕ_{SUB}) cycle time	t _{subcyc}		2	—	4	tw		*1	
Instruction cycle time			2	—	—	t _{cyc} t _{subcyc}			
Oscillation stabilization time	t _{rc}	OSC ₁ , OSC ₂	—	20	45	μs	Ceramic resonator $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V})$	Figure 15.10	
			—	80	—	_	Ceramic resonator other than above	_	
			_	0.8	2	ms	Crystal resonator	-	
			_	—	50	_	Other than above		
	t _{rc}	X ₁ , X ₂		_	2.0	S			

		perand Size cx: 8/16					sing Ler				s)							
	Operand Size			c	@Rn	@(d:16, Rn)	@-Rn/@Rn+	@aa: 8/16	@(d:8, PC)) @aa	mplied	-				Cod		No. of States
Mnemonic	-	Operation	#	Rn	ø	ø	ø	ø	ø	0	5	I	н	Ν	Z	۷	С	
BTST #xx:3, Rd	В	$(\#xx:3 \text{ of } Rd8) \rightarrow Z$		2								-	-	_	\$	_	-	2
BTST #xx:3, @Rd	В	$(\overline{\texttt{#xx:3 of @Rd16}}) \rightarrow Z$			4							-	-	—	\$	_	-	6
BTST #xx:3, @aa:8	В	$(\#xx:3 \text{ of } @aa:8) \rightarrow Z$						4				_	—	_	\$	_	—	6
BTST Rn, Rd	В	(Rn8 of Rd8) \rightarrow Z		2								-	-	—	↕	_		2
BTST Rn, @Rd	В	$(\overline{\text{Rn8 of } @\text{Rd16}}) \rightarrow \text{Z}$			4							_	_	_	↕	_	_	6
BTST Rn, @aa:8	В	$(\overline{\text{Rn8}} \ \overline{\text{of}} \ \overline{\text{@aa:8}}) \rightarrow \text{Z}$						4				_	—	_	↕	_	_	6
BLD #xx:3, Rd	В	(#xx:3 of Rd8) \rightarrow C		2								-	—	—	—	_	\updownarrow	2
BLD #xx:3, @Rd	В	(#xx:3 of @Rd16) \rightarrow C			4							_	_	_	_	_	\updownarrow	6
BLD #xx:3, @aa:8	В	(#xx:3 of @aa:8) \rightarrow C						4				-	—	—	—	_	\updownarrow	6
BILD #xx:3, Rd	В	$(\overline{\#xx:3} \text{ of } \overline{Rd8}) \to C$		2								_	—	—	—	—	\updownarrow	2
BILD #xx:3, @Rd	В	$(\overline{\#xx:3} \text{ of } \overline{@Rd16}) \rightarrow C$			4							_	_	_	_	_	\updownarrow	6
BILD #xx:3, @aa:8	В	$(\overline{\#xx:3} \text{ of } \overline{@aa:8}) \rightarrow C$						4				_	_	_	—	_	\updownarrow	6
BST #xx:3, Rd	В	$C \rightarrow (\#xx:3 \text{ of } Rd8)$		2								_	—	—	—	—		2
BST #xx:3, @Rd	В	$C \rightarrow (\#xx:3 \text{ of } @Rd16)$			4							_	—	—	—	_	—	8
BST #xx:3, @aa:8	в	$C \rightarrow (\#xx:3 \text{ of } @aa:8)$						4				—	—	—	—	_		8
BIST #xx:3, Rd	В	$\overline{C} \rightarrow$ (#xx:3 of Rd8)		2								_	_	_	_	—		2
BIST #xx:3, @Rd	В	$\overline{C} \rightarrow$ (#xx:3 of @Rd16)			4							—	—	_	_	_		8
BIST #xx:3, @aa:8	В	$\overline{C} \rightarrow$ (#xx:3 of @aa:8)						4				_	_	_	_	_	—	8
BAND #xx:3, Rd	В	$C {\wedge} (\#xx{:}3 \text{ of } Rd8) \to C$		2								_	—	—	—	—	\updownarrow	2
BAND #xx:3, @Rd	В	$C {\wedge} (\#xx:3 \text{ of } @ Rd16) \to C$			4							_	—	_	_	_	\updownarrow	6
BAND #xx:3, @aa:8	В	$C {\scriptstyle \land} (\#xx:3 \text{ of } @aa:8) \rightarrow C$						4				—	—	—	—	_	\updownarrow	6
BIAND #xx:3, Rd	В	$C {\wedge} (\overline{\#xx:3} \ \overline{of} \ \overline{Rd8}) \to C$		2								_	—	—	—	—	\updownarrow	2
BIAND #xx:3, @Rd	В	$C {\wedge} (\overline{\#xx:3} \ \overline{of} \ \overline{@ Rd16}) \to C$			4							—	—	—	—	—	\updownarrow	6
BIAND #xx:3, @aa:8	В	$C {\wedge} (\overline{\#xx:3} \ \overline{of} \ \overline{@aa:8}) \to C$						4				—	—	—	_	—	\updownarrow	6
BOR #xx:3, Rd	В	$C{\scriptstyle\lor}(\text{\#xx:3 of Rd8})\rightarrow C$		2								_	_	_	_	—	\leftrightarrow	2
BOR #xx:3, @Rd	в	$C{\scriptstyle\lor}(\#xx{:}3\text{ of }@Rd16)\rightarrow C$			4							_	_	_	_	_	\updownarrow	6
BOR #xx:3, @aa:8	в	$C \lor (\#xx:3 \text{ of } @aa:8) \rightarrow C$						4				_	_	_	_	_	\updownarrow	6
BIOR #xx:3, Rd	в	$C{\scriptstyle\lor}(\overline{\#xx:3}\ \overline{of}\ \overline{Rd8})\rightarrow C$		2								_	_	_		—	\updownarrow	2
BIOR #xx:3, @Rd	в	$C {\scriptstyle \lor} (\overline{\#xx:3} \ \overline{of} \ \overline{@Rd16}) \rightarrow C$			4							—	_	_	_	—	\updownarrow	6

I/O ports

H'E3

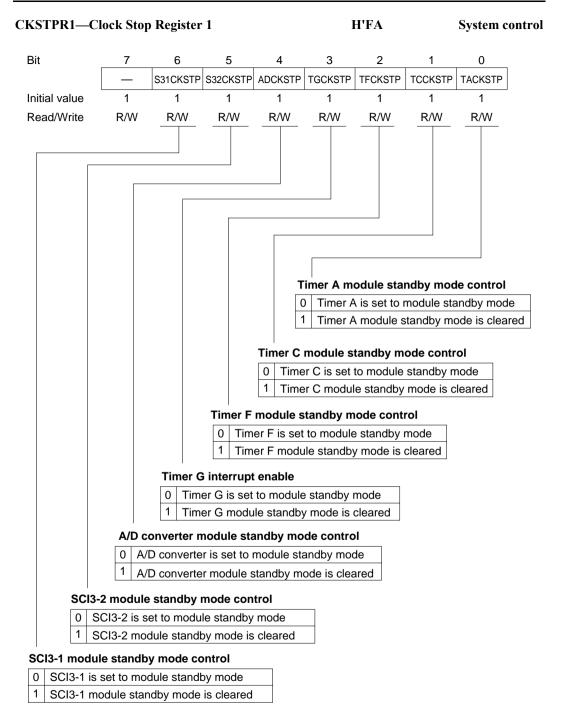
Bit	7	6	5	4	3	2	1	0
	PUCR67	PUCR6 ₆	PUCR65	PUCR6 ₄	PUCR63	PUCR6 ₂	PUCR6 ₁	PUCR60
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Port	6 input pu	III-up MO	S control			
		0 1	nput pull-u	p MOS is	off			
		1 I	nput pull-u	p MOS is	on			
		Note:	When the	e PCR6 sp	pecification	n is 0. (Inp	ut port spe	ecification)
PCR1—Port Control Register 1 H'E4 I/O								
Bit	7	6	5	4	3	2	1	0
	PCR17	PCR1 ₆	PCR1 ₅	PCR1 ₄	PCR1 ₃	PCR1 ₂	PCR1 ₁	PCR1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
				Б	ort 1 inpu	t/output c	alact	
						-	elect	
				1				
PCR3—Port Co	ontrol Reg	gister 3			H'H	26		I/O por
Bit	7	6	5	4	3	2	1	0
	PCR37	PCR3 ₆	PCR3 ₅	PCR3 ₄	PCR3 ₃	PCR3 ₂	PCR3 ₁	PCR30
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
				Р	ort 3 inpu	t/output s	elect	
				(•		
				1	I Output	pin		
					-	-		

PUCR6—Port Pull-Up Control Register 6

IWPR—Wakeup Interrupt Request Register

System control

7	6	5	4	3	2	1	0
IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0
0	0	0	0	0	0	0	0
R/(W)*							
	0	0 0	0 0 0				


Wakeup interrupt request register

0	[Clearing condition] When IWPFn = 1, it is cleared by writing 0
1	[Setting condition] When pin \overline{WKPn} is designated for wakeup input and a falling edge is input at that pin

(n = 7 to 0)

Note: * All bits can only be written with 0, for flag clearing.

Appendix C I/O Port Block Diagrams

C.1 Block Diagrams of Port 1

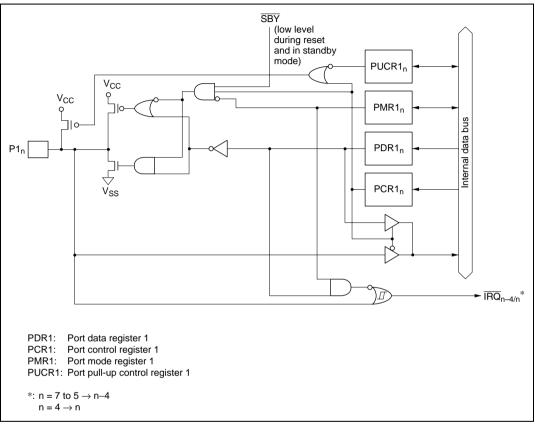


Figure C.1 (a) Port 1 Block Diagram (Pins P1₇ to P1₄)

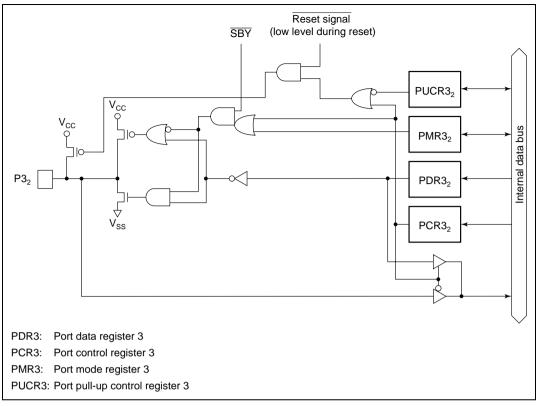


Figure C.2 (e-3) Port 3 Block Diagram (Pin P3₂ in the F-ZTAT Version of the H8/38327 Group and H8/38427 Group)

C.4 Block Diagram of Port 5

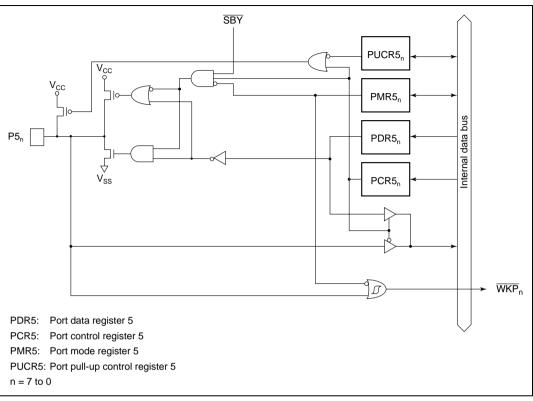


Figure C.4 Port 5 Block Diagram

