

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	55
Program Memory Size	60KB (60K × 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/hd6473827rwv

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Figure 1.6 Bonding Pad Location Diagram of HCD64F38327 and HCD64F38427 (Top View)

		Coordinates*						
Pad No.	Pad Name	Χ (μm)	Υ (μm)					
31	V0	-67	-1577					
32	Vcc	109	-1577					
33	PA ₃ /COM4	237	-1577					
34	PA ₂ /COM3	361	-1577					
35	PA ₁ /COM2	486	-1577					
36	PA ₀ /COM1	611	-1577					
37	P50/WKP0/SEG1	767	-1577					
38	P51/WKP1/SEG2	892	-1577					
39	P5 ₂ /WKP ₂ /SEG ₃	1017	-1577					
40	P5 ₃ /WKP ₃ /SEG ₄	1141	-1577					
41	P5 ₄ /WKP ₄ /SEG ₅	1605	-1224					
42	P5 ₅ /WKP ₅ /SEG ₆	1605	-1100					
43	P56/WKP6/SEG7	1605	-975					
44	P57/WKP7/SEG8	1605	-850					
45	P60/SEG9	1605	-723					
46	P61/SEG10	1605	-598					
47	P6 ₂ /SEG ₁₁	1605	-473					
48	P63/SEG12	1605	-349					
49	P6 ₄ /SEG ₁₃	1605	-195					
50	P65/SEG14	1605	-70					
51	P6 ₆ /SEG ₁₅	1605	55					
52	P67/SEG16	1605	179					
53	P70/SEG17	1605	336					
54	P7 ₁ /SEG ₁₈	1605	460					
55	P7 ₂ /SEG ₁₉	1605	585					
56	P73/SEG20	1605	710					
57	P7 ₄ /SEG ₂₁	1605	835					
58	P75/SEG22	1605	959					
59	P76/SEG23	1605	1084					
60	P77/SEG24	1605	1209					
61	P80/SEG25	1130	1577					

1.3.2 Pin Functions

Table 1.6 outlines the pin functions of this LSI.

Table 1.6Pin Functions

		Pir	No.					
Туре	Symbol	FP-80A TFP-80C FP-80B		 I/O	Name and Functions			
Power source pins	V _{CC} CV _{CC}	32 26	34 28	Input	Power supply: All V_{CC} pins should be connected to the system power supply. See section 14, Power Supply Circuit, for a CV_{CC} pin (V_{CC} pin in the H8/3827S Group).			
	V _{SS}	5 27	7 29	Input	Ground: All V_{SS} pins should be connected to the system power supply (0 V).			
	AV _{cc}	73	75	Input	Analog power supply: This is the power supply pin for the A/D converter. When the A/D converter is not used, connect this pin to the system power supply.			
	AV _{SS}	2	4	Input	Analog ground: This is the A/D converter ground pin. It should be connected to the system power supply (0V).			
	V ₀	31	33	Output	LCD power supply: These are the			
	V ₁ V ₂ V ₃	30 29 28	32 31 30	Input	power supply pins for the LCD controller/driver. They incorporate a power supply split-resistance, and are normally used with V ₀ and V ₁ shorted.			

2.3.1 Data Formats in General Registers

Data of all the sizes above can be stored in general registers as shown in figure 2.3.

Data Type F	Register	· No.		Data				ata F	Format								
		7							0								
1-bit data	RnH	7	6	5	4	3	2	1	0	[Don'i	t care)		
										7							0
1-bit data	RnL				Don'	t care				7	6	5	4	3	2	1	0
		7							0								
Byte data	RnH	MSB				· ·			LSB	[Don'i	t care)		
										7							0
Byte data	RnL				Don'	t care				MSB	1		1	1		1	LSB
		15															0
Word data	Rn	MSB	1	1	1					1	1		1	1		1	LSB
		7			4	3			0								
4-bit BCD data	RnH		Uppe	er digit	1		Lowe	r digit					Don'	t care)		
										7			4	3			0
4-bit BCD data	RnL				Don'	t care					Uppe	r digit			Lowe	er digit	
Legend:				_													
RnH: Upper byte RnL: Lower byte	of gene	ral reg ral reg	gister gister														
MSB: Most signifi	icant bit	-															
LSB: Least signit	ficant bit	t															

Figure 2.3 Register Data Formats

Section 3 Exception Handling

3.1 Overview

Exception handling is performed in this LSI when a reset or interrupt occurs. Table 3.1 shows the priorities of these two types of exception handling.

Table 3.1 Exception Handling Types and Priorities

Priority	Exception Source	Time of Start of Exception Handling
High	Reset	Exception handling starts as soon as the reset state is cleared
Low	Interrupt	When an interrupt is requested, exception handling starts after execution of the present instruction or the exception handling in progress is completed

3.2 Reset

3.2.1 Overview

A reset is the highest-priority exception. The internal state of the CPU and the registers of the onchip peripheral modules are initialized.

3.2.2 Reset Sequence

As soon as the $\overline{\text{RES}}$ pin goes low, all processing is stopped and the chip enters the reset state.

To make sure the chip is reset properly, observe the following precautions.

- At power on: Hold the RES pin low until the clock pulse generator output stabilizes.
- Resetting during operation: Hold the $\overline{\text{RES}}$ pin low for at least 10 system clock cycles.

Reset exception handling takes place as follows.

- The CPU internal state and the registers of on-chip peripheral modules are initialized, with the I bit of the condition code register (CCR) set to 1.
- The PC is loaded from the reset exception handling vector address (H'0000 to H'0001), after which the program starts executing from the address indicated in PC.

3. Port Pull-Up Control Register 1 (PUCR1)

Bit	7	6	5	4	3	2	1	0
	PUCR17	PUCR1 ₆	PUCR15	PUCR14	PUCR13	PUCR12	PUCR11	PUCR10
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUCR1 controls whether the MOS pull-up of each of the port 1 pins $P1_7$ to $P1_0$ is on or off. When a PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR1 is initialized to H'00.

4. Port Mode Register 1 (PMR1)

Bit	7	6	5	4	3	2	1	0
	IRQ3	IRQ2	IRQ1	IRQ4	TMIG	TMOFH	TMOFL	TMOW
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PMR1 is an 8-bit read/write register, controlling the selection of pin functions for port 1 pins.

Upon reset, PMR1 is initialized to H'00.

Bit 7: P1₇/IRQ₃/TMIF pin function switch (IRQ3)

This bit selects whether pin $P1_7/\overline{IRQ_3}/TMIF$ is used as $P1_7$ or as $\overline{IRQ_3}/TMIF$.

Bit 7 IRQ3	Description	
0	Functions as P1 ₇ I/O pin	(initial value)
1	Functions as IRQ ₃ /TMIF input pin	
Noto:	Rising or falling edge sensing can be designated for IRO, TMIE	For details on TMIE

Note: Rising or falling edge sensing can be designated for IRQ₃, TMIF. For details on TMIF settings, see 3. Timer Control Register F (TCRF) in section 9.4.2.

8.5.2 Register Configuration and Description

Table 8.11 shows the port 5 register configuration.

Table 8.11 Port 5 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 5	PDR5	R/W	H'00	H'FFD8
Port control register 5	PCR5	W	H'00	H'FFE8
Port pull-up control register 5	PUCR5	R/W	H'00	H'FFE2
Port mode register 5	PMR5	R/W	H'00	H'FFCC

1. Port Data Register 5 (PDR5)

Bit	7	6	5	4	3	2	1	0
	P57	P5 ₆	P5 ₅	P54	P53	P5 ₂	P5 ₁	P5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PDR5 is an 8-bit register that stores data for port 5 pins $P5_7$ to $P5_0$. If port 5 is read while PCR5 bits are set to 1, the values stored in PDR5 are read, regardless of the actual pin states. If port 5 is read while PCR5 bits are cleared to 0, the pin states are read.

Upon reset, PDR5 is initialized to H'00.

2. Port Control Register 5 (PCR5)

Bit	7	6	5	4	3	2	1	0
	PCR57	PCR5 ₆	PCR55	PCR5 ₄	PCR53	PCR5 ₂	PCR51	PCR50
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR5 is an 8-bit register for controlling whether each of the port 5 pins $P5_7$ to $P5_0$ functions as an input pin or output pin. Setting a PCR5 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. PCR5 and PDR5 settings are valid when the corresponding pins are designated for general-purpose input/output by PMR5 and bits SGS3 to SGS0 in LPCR.

Upon reset, PCR5 is initialized to H'00.

Bits 6 and 5: Counter up/down control (TMC6, TMC5)

Selects whether TCC up/down control is performed by hardware using UD pin input, or whether TCC functions as an up-counter or a down-counter.

Bit 6 TMC6	Bit 5 TMC5	Description	
0	0	TCC is an up-counter	(initial value)
0	1	TCC is a down-counter	
1	*	Hardware control by UD pin input UD pin input high: Down-counter UD pin input low: Up-counter	
			* D 11

*: Don't care

Bits 4 and 3: Reserved bits

Bits 4 and 3 are reserved; they are always read as 1 and cannot be modified.

Bits 2 to 0: Clock select (TMC2 to TMC0)

Bits 2 to 0 select the clock input to TCC. For external event counting, either the rising or falling edge can be selected.

Bit 2 TMC2	Bit 1 TMC1	Bit 0 TMC0	Description	
0	0	0	Internal clock:	(initial value)
0	0	1	Internal clock: ø/2048	
0	1	0	Internal clock: ø/512	
0	1	1	Internal clock: ø/64	
1	0	0	Internal clock: ø/16	
1	0	1	Internal clock: ø/4	
1	1	0	Internal clock: øw/4	
1	1	1	External event (TMIC): rising or falling edg	e*

Note: * The edge of the external event signal is selected by bit IEG1 in the IRQ edge select register (IEGR). See 1. IRQ edge select register (IEGR) in 3.3.2 for details. IRQ1 must be set to 1 in port mode register 1 (PMR1) before setting 111 in bits TMC2 to TMC0.

9.5.3 Noise Canceler

The noise canceler consists of a digital low-pass filter that eliminates high-frequency component noise from the pulses input from the input capture input pin. The noise canceler is set by NCS* in PMR3.

Figure 9.9 shows a block diagram of the noise canceler.

Figure 9.9 Noise Canceler Block Diagram

The noise canceler consists of five latch circuits connected in series and a match detector circuit. When the noise cancellation function is not used (NCS = 0), the system clock is selected as the sampling clock. When the noise cancellation function is used (NCS = 1), the sampling clock is the internal clock selected by CKS1 and CKS0 in TMG, the input capture input is sampled on the rising edge of this clock, and the data is judged to be correct when all the latch outputs match. If all the outputs do not match, the previous value is retained. After a reset, the noise canceler output is initialized when the falling edge of the input capture input signal has been sampled five times. Therefore, after making a setting for use of the noise cancellation function, a pulse with at least five times the width of the sampling clock is a dependable input capture signal. Even if noise cancellation is not used, an input capture input signal pulse width of at least 2ϕ or $2\phi_{SUB}$ is necessary to ensure that input capture operations are performed properly

Note: * An input capture signal may be generated when the NCS bit is modified.

Bit 7 TIE	Description	
0	Transmit data empty interrupt request (TXI) disabled	(initial value)
1	Transmit data empty interrupt request (TXI) enabled	

Bit 6: Receive interrupt enable (RIE)

Bit 6 selects enabling or disabling of the receive data full interrupt request (RXI) and the receive error interrupt request (ERI) when receive data is transferred from the receive shift register (RSR) to the receive data register (RDR), and bit RDRF in the serial status register (SSR) is set to 1. There are three kinds of receive error: overrun, framing, and parity.

RXI can be released by clearing bit RDRF or the FER, PER, or OER error flag to 0, or by clearing bit RIE to 0.

Bit 6 RIE	Description
0	Receive data full interrupt request (RXI) and receive error interrupt (initial value) request (ERI) disabled
1	Receive data full interrupt request (RXI) and receive error interrupt request (ERI) enabled

Bit 5: Transmit enable (TE)

Bit 5 selects enabling or disabling of the start of transmit operation.

Bit 5

TE	Description	
0	Transmit operation disabled ^{*1} (TXD pin is I/O port)	(initial value)
1	Transmit operation enabled ^{*2} (TXD pin is transmit data pin)	

Notes: 1. Bit TDRE in SSR is fixed at 1.

 When transmit data is written to TDR in this state, bit TDR in SSR is cleared to 0 and serial data transmission is started. Be sure to carry out serial mode register (SMR) settings, and setting of bit SPC31 or SPC32 in SPCR, to decide the transmission format before setting bit TE to 1.

Figure 12.4 Flow Chart of Procedure for Using A/D Converter (Polling by Software)

12.6 Application Notes

12.6.1 Application Notes

- Data in ADRRH and ADRRL should be read only when the A/D start flag (ADSF) in the A/D start register (ADSR) is cleared to 0.
- Changing the digital input signal at an adjacent pin during A/D conversion may adversely affect conversion accuracy.
- When A/D conversion is started after clearing module standby mode, wait for 10ϕ clock cycles before starting.
- In active mode or sleep mode, analog power supply current (AI_{STOP1}) flows into the ladder resistance even when the A/D converter is not operating. Therefore, if the A/D converter is not used, it is recommended that AV_{CC} be connected to the system power supply and the ADCKSTP(A/D converter module standby mode control) bit be cleared to 0 in clock stop register 1 (CKSTPR1).

12.6.2 Permissible Signal Source Impedance

This LSI's analog input is designed such that conversion precision is guaranteed for an input signal for which the signal source impedance is 10 k Ω or less. This specification is provided to enable the A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time; if the sensor output impedance exceeds 10 k Ω , charging may be insufficient and it may not be possible to guarantee A/D conversion precision. However, a large capacitance provided externally, the input load will essentially comprise only the internal input resistance of 10 k Ω , and the signal source impedance is ignored. However, as a low-pass filter effect is obtained in this case, it may not be possible to follow an analog signal with a large differential coefficient (e.g., 5 mV/µs or greater) (see figure 12.6). When converting a high-speed analog signal, a low-impedance buffer should be inserted.

Bit 4: Expansion signal select (SGX)

Bit 4 selects whether the SEG₃₂/CL₁, SEG₃₁/CL₂, SEG₃₀/DO, and SEG₂₉/M pins are used as segment pins (SEG₃₂ to SEG₂₉) or as segment external expansion pins (CL₁, CL₂, DO, and M).

In the H8/38327 Group and H8/38427 Group this bit should be left at its initial value and not written to. Changing the value of this bit may prevent the SEG/COM signal from operating normally.

Bit 4 SGX		Description	
0		Pins SEG ₃₂ to SEG ₂₉ *	(initial value)
1		Pins CL ₁ , CL ₂ , DO, M	
Note:	*	These pins function as ports	when the setting of SGS3 to SGS0 is 0000 or 0001.

Bits 3 to 0: Segment driver select 3 to 0 (SGS3 to SGS0)

Bits 3 to 0 select the segment drivers to be used. The SGX = 0 setting is selected on the H8/38327 and H8/38427.

							• •	•	
Bit 4 SGX	Bit 3 SGS3	Bit 2 SGS2	Bit 1 SGS1	Bit 0 SGS0	SEG ₃₂ to SEG ₂₅	SEG ₂₄ to SEG ₁₇	SEG ₁₆ to SEG ₉	SEG ₈ to SEG ₁	Notes
0	0	0	0	0	Port	Port	Port	Port	(initial value)
	0	0	0	1	Port	Port	Port	Port	
	0	0	1	*	SEG	Port	Port	Port	_
	0	1	0	*	SEG	SEG	Port	Port	_
	0	1	1	*	SEG	SEG	SEG	Port	_
	1	*	*	*	SEG	SEG	SEG	SEG	_
1	0	0	0	0	Port ^{*1}	Port	Port	Port	
	*	*	*	*	Setting pro	phibited			

Function of Pins SEG₃₂ to SEG₁

*: Don't care

Note: 1. SEG₃₂ to SEG₂₉ are external expansion pins.

15.2.2 DC Characteristics

Table 15.2 lists the DC characteristics.

Table 15.2 DC Characteristics

 $V_{CC} = 1.8 \text{ V}$ to 5.5 V, $AV_{CC} = 1.8 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*4}$ (including subactive mode) unless otherwise indicated.

		Applicable Pins		Valu	es			Notes
Item	Symbol		Min	Тур	Мах	Unit	Test Condition	
Input high voltage	V _{IH}	RES,	0.8 V _{CC}	_	Vcc + 0.3	V	V_{CC} = 4.0 V to 5.5 V	
		$\label{eq:WKP_0} \begin{array}{l} \text{WKP}_0 \text{ to } \text{WKP}_7, \\ \hline \text{IRQ}_0 \text{ to } \overline{\text{IRQ}}_4, \\ \text{AEVL, AEVH,} \\ \hline \text{TMIC, TMIF,} \\ \hline \text{TMIG, TMIF,} \\ \hline \text{SCK}_{31}, \text{SCK}_{32}, \\ \hline \text{ADTRG} \end{array}$	0.9 V _{CC}	_	V _{CC} + 0.3	_	Except the above	-
		RXD ₃₁ , RXD ₃₂ ,	$0.7 V_{CC}$	—	V _{CC} + 0.3	V	V_{CC} = 4.0 V to 5.5 V	-
		UD	0.8 V _{CC}	—	V _{CC} + 0.3		Except the above	
		OSC ₁	0.8 V _{CC}	—	V _{CC} + 0.3	V	V_{CC} = 4.0 V to 5.5 V	-
			0.9 V _{CC}	_	V _{CC} + 0.3	-	Except the above	-
		X ₁	0.9 V _{CC}	_	V _{CC} + 0.3	V	$V_{\rm CC}$ = 1.8 V to 5.5 V	-
		P1 ₀ to P1 ₇ ,	$0.7 \mathrm{V_{CC}}$	_	V _{CC} + 0.3	V	V_{CC} = 4.0 V to 5.5 V	-
		P3 ₀ to P3 ₇ , P4 ₀ to P4 ₃ , P5 ₀ to P5 ₇ , P6 ₀ to P6 ₇ , P7 ₀ to P7 ₇ , P8 ₀ to P8 ₇ , PA ₀ to PA ₃	0.8 V _{CC}	_	V _{CC} + 0.3	_	Except the above	-
		PB ₀ to PB ₇	$0.7 \mathrm{V_{CC}}$	—	AV _{CC} + 0.3	-	$V_{\rm CC}$ = 4.0 V to 5.5 V	-
			0.8 V _{CC}	—	AV _{CC} + 0.3	-	Except the above	-

Note: Connect the TEST pin to V_{SS}.

15.4.4 A/D Converter Characteristics

Table 15.12 shows the A/D converter characteristics of the H8/3827R.

Table 15.12 A/D Converter Characteristics

 $V_{CC} = 1.8$ V to 5.5 V, $V_{SS} = AV_{SS} = 0.0$ V, $T_a = -40^{\circ}$ C to $+85^{\circ}$ C unless otherwise indicated.

		Applicable	Values		_			
Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Notes
Analog power supply voltage	AV_{CC}	AV _{CC}	1.8	_	5.5	V		*1
Analog input voltage	AV _{IN}	AN ₀ to AN ₇	- 0.3	—	AV _{CC} + 0.3	V		
Analog power	AI_{OPE}	AV_{CC}	—	—	1.5	mA	AV_{CC} = 5 V	
supply current	AI _{STOP1}	AV _{CC}	—	600	_	μA		*2
								Reference value
	AI _{STOP2}	AV _{CC}	—	—	5	μA		*3
Analog input capacitance	C _{AIN}	AN ₀ to AN ₇	—	_	15.0	pF		
Allowable signal source impedance	R _{AIN}		_	_	10.0	kΩ		
Resolution (data length)			_	—	10	bit		
Nonlinearity error			—	_	±2.5	LSB	AV _{CC} = 2.7 V to 5.5 V V _{CC} = 2.7 V to 5.5 V	*4
			_	—	±5.5	_	AV _{CC} = 2.0 V to 5.5 V V _{CC} = 2.0 V to 5.5 V	_
			_	_	±7.5		Except the above	*5
Quantization error			—	_	±0.5	LSB		

Table 15.14 AC Characteristics for External Segment Expansion

 V_{CC} = 1.8 V to 5.5 V, V_{SS} = 0.0 V, T_a = -40°C to +85°C (including subactive mode) unless otherwise specified.

		Applicable	Test	\ \	/alues	i		Reference	
Item	Symbol	Pins	Conditions	Min	Тур	Мах	Unit	Figure	
Clock high width	t _{сwн}	CL ₁ , CL ₂	*	800		_	ns	Figure 15.7	
Clock low width	t _{CWL}	CL ₂	*	800			ns	Figure 15.7	
Clock setup time	t _{CSU}	CL ₁ , CL ₂	*	500			ns	Figure 15.7	
Data setup time	t _{su}	DO	*	300			ns	Figure 15.7	
Data hold time	t _{DH}	DO	*	300		_	ns	Figure 15.7	
M delay time	t _{DM}	М	*	-1000		1000	ns	Figure 15.7	
Clock rise and fall times	t _{CT}	CL ₁ , CL ₂		_	_	170	ns	Figure 15.7	

Note: * Value when the frame frequency is set to between 30.5 Hz and 488 Hz.

15.6 H8/3827S Group Electrical Characteristics

15.6.1 Power Supply Voltage and Operating Range

The power supply voltage and operating range are indicated by the shaded region in the figures.

1. Power Supply Voltage and Oscillator Frequency Range

Note: fosc is the oscillator frequency. When external clocks are used, fosc=1MHz is the minimum.

2. Power Supply Voltage and Operating Frequency Range

Note: Figures in parentheses are the minimum operating frequency of a case external clocks are used. When using an oscillator, the minimum operating frequency is \u03c6=15.625kHz.

3. Analog Power Supply Voltage and A/D Converter Operating Range

Note: The information on this register applies to the H8/38327 Group and H8/38427 Group.

