
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	EBI/EMI, I ² C, QSPI, SDHC, SPI, UART/USART, USB
Peripherals	DMA, I ² S, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1M x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16b SAR; D/A 2x6b, 1x12b
Oscillator Type	External, Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	169-LFBGA
Supplier Device Package	169-MAPBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk27fn2m0avmi15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Security

- Hardware random-number generator
- Memory Mapped Crypto Acceleration Unit(MMCAU): DES, 3-DES, AES, SHA-1, SHA-256 and MD5 accelerator
- Cyclic Redundancy Check (CRC)

Target Applications

- Wearables
- Low-end graphic display system
- Cost-optimized multi-standard wireless smart home hubs
- Home Automation devices
- Consumer accessories

- Independent V_{BAT} (RTC): 1.71 V–3.6 V
- I/O Voltage range (V_{DD}): 1.71 V–3.6 V

Communication interfaces

- Two USB controllers:Crystal-less Full-/low-speed + transceiver Host and Device; High-/Full-/low-speed + PHY Host and Device
- Secure Digital Host Controller (SDHC)
- Two I2S modules, four I2C modules and five Low-Power UART modules
- Four SPI modules (SPI3 supports more than 40 Mbps)
- 32-ch Programmable module (FlexIO) to emulate various serial, parallel or custom interfaces

Ordering Information 1

Part Number	Embedded Memory		Package Type	Maximum number of
	Flash	SRAM		I\O's
MK27FN2M0AVMI15	2 MB	1 MB	169 MAPBGA	120

1. To confirm current availability of orderable part numbers, go to http://www.nxp.com and perform a part number search.

Device Revision Number

Device Mask Set Number	SIM_SDID[REVID]	JTAG ID Register[PRN]
3N96T	0011	0011

Related Resources

Туре	Description	Resource
Fact Sheet	The Fact Sheet gives overview of the product key features and its uses.	K2x Fact Sheet
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K27P169M150SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_K_3N96T ¹
Package drawing	Package dimensions are provided in package drawings.	MAPBGA 169-pin: 98ASA00628D ¹

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

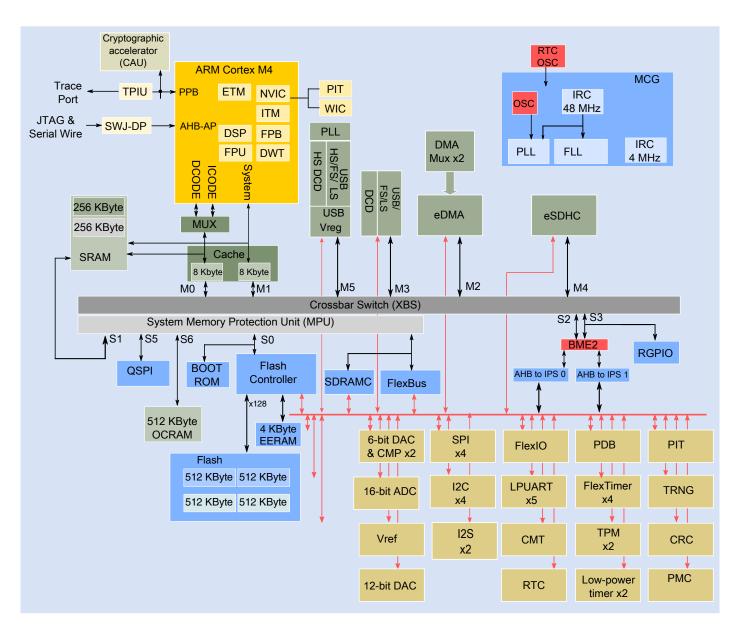


Figure 1. K27F Block Diagram

General

- All I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD} or V_{DDIO_E}. If V_{IN} is less than -0.3V, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(-0.3-V_{IN})/II_{ICIO}I. The actual resistor value should be an order of magnitude higher to tolerate transient voltages.
- 2. Open drain outputs must be pulled to VDD.

2.2.2 HVD, LVD and POR operating requirements Table 2. V_{DD} supply HVD, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{HVDH}	High Voltage Detect (High Trip Point)	_	3.72	—	V	
V _{HVDL}	High Voltage Detect (Low Trip Point)	—	3.46	—	V	
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
V _{LVW1H}	Low-voltage warning thresholds — high range	2.62	2.70	2.78	V	1
V _{LVW2H}	Level 1 falling (LVWV=00)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 2 falling (LVWV=01)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 3 falling (LVWV=10)Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range		60	_	mV	
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
V _{LVW1L}	Low-voltage warning thresholds — low range	1.74	1.80	1.86	V	1
V _{LVW2L}	Level 1 falling (LVWV=00)	1.84	1.90	1.96	v	
V _{LVW3L}	Level 2 falling (LVWV=01)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 3 falling (LVWV=10)	2.04	2.10	2.16	V	
	Level 4 falling (LVWV=11)	-				
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	40	-	mV	
V_{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising threshold is the sum of falling threshold and hysteresis voltage

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• @ 85°C	_	4.1	10.7		
	• @ 105°C	_	6.9	16.9		
I _{DD_PSTOP2}	Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus at 3.0 V				_	3
	• @ 25°C • @ 70°C	_	6.6	19.8	mA	
	• @ 85°C	_	12.4	33.1		
	• @ 105°C	_	15.9	41.5		
		_	19.0	46.6		
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all					6
55-11.11	peripheral clocks disabled • @ 25°C	_	0.9	2.7	mA	
	• @ 70°C	_	2.5	6.7		
	• @ 85°C	_	3.8	9.9		
	• @ 105°C	_	6.5	16.0		
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks enabled					6
	• @ 25°C	_	1.4	4.2	mA	
	• @ 70°C • @ 85°C	_	3.0	8.0		
	• @ 105°C	_	4.3	11.2		
		_	7.0	17.2		
IDD_STOP	Stop mode current at 3.0 V					
	• @ 25°C	_	1.0	2.8	mA	
	• @ 70°C	_	3.9	9.9		
	• @ 85°C	_	6.0	15.0		
	• @ 105°C	_	10.0	24.4		
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
•עע_ענץ	• @ 25°C	_	0.5	1.4	mA	
	• @ 70°C					
	• @ 85°C		2.4	5.8		
	• @ 105°C	_	3.7	8.7		
			6.3	14.1		
I _{DD_LLS3}	Low leakage stop mode current at 3.0 V					
	• @ 25°C	_	19.5	30.0	μA	

Table 6. Power consumption operating behaviors (through VDD) (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• @ 70°C	—	0.595	0.750		
	 @ 85°C @ 105°C 	_	0.989	1.30		
			2.2	2.8		
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers @ 1.8 V					9
	• @ 25°C	_	0.436	0.489	μA	
	• @ 70°C	—	0.724	0.897		
	• @ 85°C	_	1.1	1.4		
	• @ 105°C		2.0	2.6		

Table 6. Power consumption operating behaviors (through VDD) (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.
- 2. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode.
- 3. MCG configured for PEE mode.
- 4. 150 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode.
- 5. 25 MHz core and system clock, 25 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode using an 8MHz external reference clock. Code executing from flash.
- 7. MCG configured for BLPE mode using an 8MHz external reference clock.
- 8. By default, this mode has only 32 KB of SRAM enabled.
- 9. Includes 32 kHz oscillator current and RTC operation.

Below table list the current consumption adders for different SRAM configurations from the LLS2/VLLS2 (TYP) IDD values using a 32 KB SRAM retention referenced in Table 6.

Table 7. LLS2/VLLS2 additional Typical IDD current consumption Adders

	RAM array retained	@ 25°C	@ 85°C	@ 105°C	Unit
LLS2	RAM2: 32 KB	0.5	10.8	21.3	μA
	RAM3: 32 KB	0.5	11.0	21.5	μA
	RAM4: 32 KB	0.4	10.7	21.0	μA
	RAM5: 128 KB	1.4	28.1	57.6	μA
	RAM6: 64 KB	0.6	15.2	30.5	μA
	RAM7: 192 KB	2.1	41.1	85.1	μA
	RAM8: 256 KB	2.8	53.0	109.9	μA
	RAM9: 256 KB	2.3	53.5	110.9	μA
VLLS2	RAM2: 32 KB	0.5	9.1	19.7	μA
	RAM3: 32 KB	0.5	8.5	18.0	μA
	RAM4: 32 KB	0.5	8.1	16.8	μA

Symbol	Description	Temperature (°C)					Unit	
		-40	25	50	70	85	105	
	data at 115200 baud rate. Includes selected clock source power consumption.	66	66	66	66	66	66	
	MCGIRCLK (4 MHz internal reference clock)	214	234	246	254	260	268	
	OSCERCLK (4 MHz external crystal)							
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	366	366	366	366	366	366	μΑ

 Table 8. Low power mode peripheral adders — typical value (continued)

2.2.6 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions.

- 1. Go to nxp.com
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 9. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

2.3 Switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	_	ns	3
	External RESET_b input pulse width (digital glitch filter disabled)	100	-	ns	
	Port rise and fall time (high drive strength)				4, 5
	Slew enabled	_	34	ns	
	• $1.71 \le V_{DD} \le 2.7V$	_	16	ns	
	• $2.7 \le V_{DD} \le 3.6V$				
	Slew disabled	_	10	ns	
	• $1.71 \le V_{DD} \le 2.7 \text{ V}$	_	8	ns	
	• $2.7 \le V_{DD} \le 3.6 V$				
	Port rise and fall time (low drive strength)				6, 7
	Slew enabled	_	34	ns	
	• $1.71 \le V_{DD} \le 2.7 \text{ V}$	_	16	ns	
	• $2.7 \le V_{DD} \le 3.6 \text{ V}$				
	Slew disabled		7	ns	
	• 1.71 ≤ V _{DD} ≤ 2.7 V		5	ns	
	• $2.7 \le V_{DD} \le 3.6 \text{ V}$		0		
	Port rise and fall time (high drive strength)				5, 8
	Slew enabled	_	34	ns	
	• $1.71 \le V_{DDIO_E} \le 2.7 \text{ V}$		16	ns	
	• $2.7 \le V_{DDIO_E} \le 3.6 \text{ V}$				
	Slew disabled	_	7	ns	
	• $1.71 \le V_{DDIO_E} \le 2.7 \text{ V}$	_	5	ns	
	• $2.7 \le V_{DDIO_E} \le 3.6 \text{ V}$		5		
	Port rise and fall time (low drive strength)				7, 8
	Slew enabled	_	34	ns	
	• $1.71 \le V_{DDIO_E} \le 2.7 \text{ V}$	_	16	ns	
	• $2.7 \le V_{DDIO_E} \le 3.6 \text{ V}$				
	Slew disabled		7	ns	
	• $1.71 \le V_{DDIO_E} \le 2.7 \text{ V}$		5	ns	
	 2.7 ≤ V_{DDIO} E ≤ 3. 6V 		5		

Table 11. General switching specifications (continued)

1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run modes.

2. The greater synchronous and asynchronous timing must be met.

3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.

4. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7.

General

- 5. 75 pF load.
- 6. Ports A, B, C, and D.
- 7. 25 pF load.
- 8. Port E pins only.

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 12. Thermal operating requirements (for V-Temp range)

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is:

 $T_J = T_A + R\theta_{JA} \ x$ chip power dissipation

2.4.2 Thermal attributes

Table 13. Thermal attributes

Board type	Symbol	Description	169 MAPBGA	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	56.8	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	27.1	°C/W	1
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	41	°C/W	1
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	22.4	°C/W	1
—	R _{θJB}	Thermal resistance, junction to board	10.4	°C/W	2
—	R _{θJC}	Thermal resistance, junction to case	7.1	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.2	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)* with the single layer board horizontal. Board meets JESD51-9 specification.
- Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions – Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.

Symbol	Description	Min.	Max.	Unit
J4	TCLK rise and fall times	—	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	2.0	—	ns
J7	TCLK low to boundary scan output data valid	_	30.6	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1.0	—	ns
J11	TCLK low to TDO data valid	_	19.0	ns
J12	TCLK low to TDO high-Z		17.0	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8	—	ns

 Table 16. JTAG full voltage range electricals (continued)

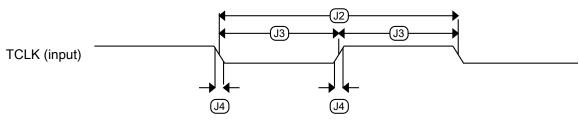
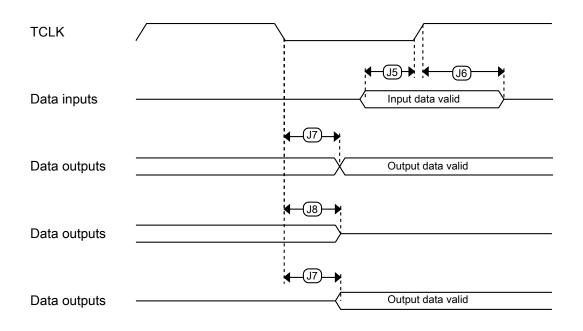



Figure 6. Test clock input timing

Figure 7. Boundary scan (JTAG) timing

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 24 MHz		1.5	—	mA	
	• 32 MHz					
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	7.5	_	μA	
	• 4 MHz		500	—	μA	
	• 8 MHz (RANGE=01)		650	_	μA	
	• 16 MHz		2.5	_	mA	
	• 24 MHz		3.25	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance					2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_			MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)				kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	—	V	

Table 19.	Oscillator	DC electrical s	pecifications ((continued)
-----------	------------	------------------------	-----------------	-------------

1. V_{DD} =3.3 V, Temperature =25 °C, Internal capacitance = 20 pf 2. See crystal or resonator manufacturer's recommendation

The following table lists the QuadSPI delay chain read/write settings. Refer the device reference manual for register and bit descriptions.

Mode			Notes		
	QuadSPI_MCR[DQ S_EN]	QuadSPI_SOCCR[SOCCFG]	QuadSPI_MCR[SC LKCFG]	QuadSPI_FLSHCR[TDH]	
SDR	Yes	3Fh	5	No	Delay of 63 buffer and 64 mux
DDR	Yes	3Fh	1	2	Delay of 63 buffer and 64 mux
Hyperflash	RDS driven from Flash	0h	No	2	Delay of 1 mux

Table 23. QuadSPI delay chain read/write settings

SDR mode

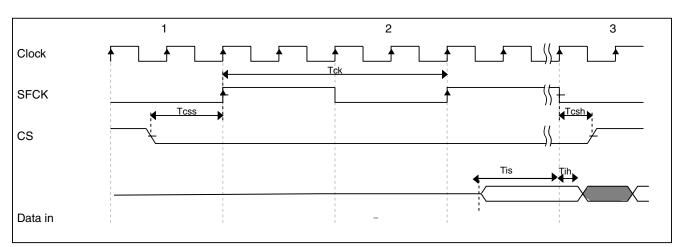


Figure 10. QuadSPI input timing (SDR mode) diagram

NOTE

- The below timing values are with default settings for sampling registers like QuadSPI_SMPR.
- A negative time indicates the actual capture edge inside the device is earlier than clock appearing at pad.
- The below timing are for a load of 15 pf (1.8 V) and 35 pf (3 V) or output pads

Peripheral operating requirements and behaviors

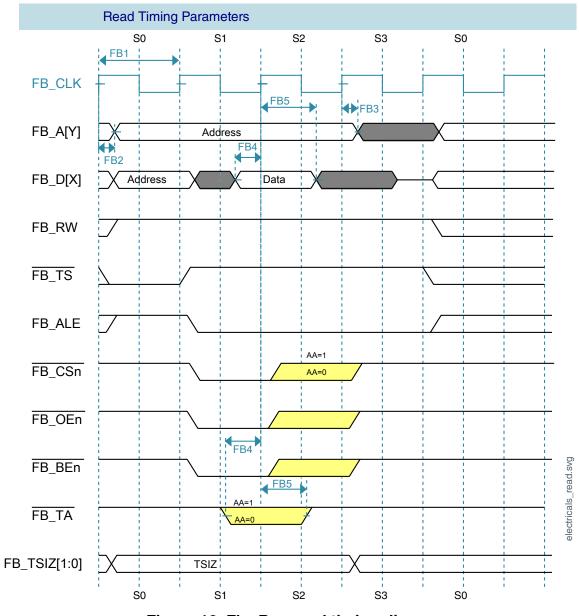


Figure 16. FlexBus read timing diagram

3. D7 and D8 are for write cycles only.

NUM	Characteristic ¹	Symbol	Min	Max	Unit
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	CLKOUT	MHz	
D0	Clock period	1/CLKOUT	—	ns	2
D1	CLKOUT high to SDRAM address valid	t _{CHDAV}	-	11.1	ns
D2	CLKOUT high to SDRAM control valid	t _{CHDCV}		11.1	ns
D3	CLKOUT high to SDRAM address invalid	t _{CHDAI}	1.0	-	ns
D4	CLKOUT high to SDRAM control invalid	t _{CHDCI}	1.0	-	ns
D5	SDRAM data valid to CLKOUT high	t _{DDVCH}	11.3	-	ns
D6	CLKOUT high to SDRAM data invalid	t _{CHDDI}	1.0	-	ns
D7 ³	CLKOUT high to SDRAM data valid	t _{CHDDVW}	-	11.1	ns
D8 ³	CLKOUT high to SDRAM data invalid	t _{CHDDIW}	1.0	-	ns

Table 37. SDRAM Timing (Limited voltage range)

1. All timing specifications are based on taking into account, a 25 pF load on the SDRAM output pins.

2. CLKOUT is same as FB_CLK, maximum frequency can be 75 MHz

3. D7 and D8 are for write cycles only.

Following figure shows an SDRAM write cycle.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 × VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	kS/s	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	—	461.467	kS/s	

3.4.1.1 16-bit ADC operating conditions Table 38. 16-bit ADC operating conditions

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

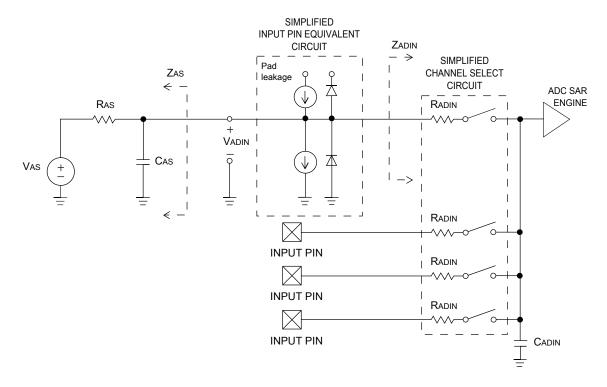


Figure 20. ADC input impedance equivalency diagram

3.4.1.2 16-bit ADC electrical characteristics

				DDA,		33A/	
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	—	±1.4	±2.1		
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to	LSB ⁴	5
	linearity	 <12-bit modes 	_	±0.2	+1.9 -0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	—	±1.0	–2.7 to +1.9	LSB ⁴	5

Table 39.	16-bit ADC	characteristics	(V _{REFH} =	V_{DDA} ,	V _{REFL} =	V _{SSA})
-----------	------------	-----------------	----------------------	-------------	---------------------	--------------------

3.4.2 CMP and 6-bit DAC electrical specifications Table 40. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71		3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5		_	V
V _{CMPOI}	Output low			0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²			40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)		7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

3.6.2 USB Full Speed Transceiver and High Speed PHY specifications

This section describes the USB0 port Full Speed/Low Speed transceiver and USB1 port USB-PHY High Speed Phy parameters. The high speed phy is capable of full and low speed as well.

The USB0 (FS/LS Transceiver) and USB1 ((USB HS/FS/LS) meet the electrical compliance requirements defined in the Universal Serial Bus Revision 2.0 Specification with the amendments below.

- USB ENGINEERING CHANGE NOTICE
 - Title: 5V Short Circuit Withstand Requirement Change
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
- USB ENGINEERING CHANGE NOTICE
 - Title: Pull-up/Pull-down resistors
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- USB ENGINEERING CHANGE NOTICE
 - Title: Suspend Current Limit Changes
 - Applies to: Universal Serial Bus Specification, Revision 2.0
- On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
 - Revision 2.0 version 1.1a July 27, 2012
- Battery Charging Specification (available from USB-IF)
 - Revision 1.2 (including errata and ECNs through March 15, 2012), March 15, 2012

USB1_VBUS pin is a detector function which is 5v tolerant and complies with the above specifications without needing any external voltage division components.

3.6.3 USB DCD electrical specifications

Table 46. USB DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC} , V _{DM_SRC}	USB_DP and USB_DM source voltages (up to 250 $\mu\text{A})$	0.5	—	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	—	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μA
I _{DM_SINK} , I _{DP_SINK}	USB_DM and USB_DP sink currents	50	100	150	μA

Symbol	Description	Min.	Тур.	Max.	Unit
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

Table 46.USB DCD electrical specifications
(continued)

3.6.4 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	30	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	—	ns	1
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{BUS} x 2) – 2	—	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	15.0	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	1.0	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15.8	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 47. Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Characteristic	Symbol	Standard Mode		Fast Mode		Unit
		Minimum	Maximum	Minimum	Maximum	
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	—	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	01	3.45 ²	0 ³	0.9 ¹	μs
Data set-up time	t _{SU} ; DAT	250 ⁴	—	100 ^{2, 5}	—	ns
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁶	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁵	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	—	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

Table 55.	I ² C timing	(continued)
-----------	-------------------------	-------------

- 1. The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
- 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 3. Input signal Slew = 10 ns and Output Load = 50 pF
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 6. C_b = total capacitance of the one bus line in pF.

Table 56.	I ² C 1	Mbps	timing
-----------	--------------------	------	--------

	-	-		
Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26		μs
LOW period of the SCL clock	t _{LOW}	0.5	—	μs
HIGH period of the SCL clock	t _{HIGH}	0.26	_	μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26	—	μs
Data hold time for I_2C bus devices	t _{HD} ; DAT	0	—	μs
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b , ²	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs

Rev. No.	Date	Substantial Changes
0	08/2017	Initial release

Table 66. Revision History