

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	95
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 53x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk61fn1m0caa12r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Terminology and guidelines

Field	Description	Values
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	• AA = 143 WLCSP
CC	Maximum CPU frequency (MHz)	• 12 = 120 MHz
Ν	Packaging type	• R = Tape and reel

2.4 Example

This is an example part number:

MK61FN1M0CAA12

3 Terminology and guidelines

3.1 Definitions

Key terms are defined in the following table:

Term	Definition						
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:						
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 						
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.						
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip						
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions						
Typical value	A specified value for a technical characteristic that:						
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions 						
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.						

reminology and guidelines

3.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3 JAM	1.2	V
	•			•

Operating requirement:

Operating requ	irement:		9	
Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V
	•		•	

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10 AM	70	130	μA

3.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	D°
V _{DD}	3.3 V supply voltage	3.3	V

5.2.2 LVD and POR operating requirements Table 2. LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V_{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
V _{lvw1h} V _{lvw2h} V _{lvw3h} V _{lvw4h}	Low-voltage warning thresholds — high range • Level 1 falling (LVWV=00) • Level 2 falling (LVWV=01) • Level 3 falling (LVWV=10) • Level 4 falling (LVWV=11)	2.62 2.72 2.82 2.92	2.70 2.80 2.90 3.00	2.78 2.88 2.98 3.08	V V V V	1
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±80		mV	
V_{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
V _{LVW1L} V _{LVW2L}	Low-voltage warning thresholds — low range • Level 1 falling (LVWV=00)	1.74 1.84	1.80 1.90	1.86 1.96	V V	1
V _{LVW3L} V _{LVW4L}	 Level 2 falling (LVWV=01) Level 3 falling (LVWV=10) Level 4 falling (LVWV=11) 	1.94 2.04	2.00 2.10	2.06 2.16	V V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	_	±60	_	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period factory trimmed	900	1000	1100	μs	

1. Rising thresholds are falling threshold + hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

5.2.3 Voltage and current operating behaviors

 Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength			_		
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	_	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$	V _{DD} – 0.5	—		V	

Table continues on the next page...

5.2.5 Power consumption operating behaviors

Table 6. Power consumption operating behaviors

	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	—	49.28	73.85	mA	
	• @ 3.0V	—	49.08	73.93	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3
	• @ 1.8V		74.43	99.97	mA	
	• @ 3.0V	—	74.28	100.41	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	34.67	58.5	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	—	18.03	41.91	mA	4
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ -40 to 25°C	—	1.25	1.62	mA	
	• @ 70°C	—	2.93	4.39	mA	
	• @ 85°C	—	7.08	10.74	mA	
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	—	1.03	4.48	mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	—	1.58	4.96	mA	5
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V	_	0.64	4.29	mA	5
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ -40 to 25°C	—	0.22	0.38	mA	
	• @ 70°C	—	0.78	1.33	mA	
	• @ 85°C	_	2.18	3.56	mA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					
	• @ –40 to 25°C	_	0.22	0.37	mA	
	• @ 70°C	_	0.78	1.33	mA	
	• @ 85°C	_	2.16	3.52	mA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	• @ -40 to 25°C		4.09	5.58	μA	
	• @ 70°C	_	20.98	28.93	μA	
	• @ 85°C		84.95	111.15	μA	

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
f _{FLASH}	Flash clock	—	0.5	MHz	
f _{LPTMR}	LPTMR clock	_	4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere

Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	_	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	14	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	8	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	14	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	8	ns	
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	24	ns	
t _{io50}	Port rise and fall time (high drive strength)				6
	Slew disabled				

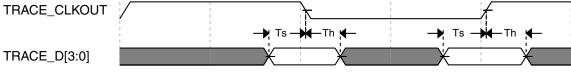


Figure 6. Trace data specifications

6.1.2 JTAG electricals

Table 13.	JTAG limited	voltage range	electricals
-----------	--------------	---------------	-------------

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1		ns
JЗ	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	—	ns
J4	TCLK rise and fall times	—	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	_	ns
J6	Boundary scan input data hold time after TCLK rise	2.4	_	ns
J7	TCLK low to boundary scan output data valid	_	25	ns
J8	TCLK low to boundary scan output high-Z	_	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	—	ns
J10	TMS, TDI input data hold time after TCLK rise	1	—	ns
J11	TCLK low to TDO data valid	—	17	ns
J12	TCLK low to TDO high-Z	—	17	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz

Table continues on the next page...

rempheral operating requirements and behaviors

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco}	DCO output frequency range	Low range (DRS=00)	20	20.97	25	MHz	2, 3
		$640 \times f_{\text{fll_ref}}$	40	44.04	50	N 41 1-	-
		Mid range (DRS=01) 1280 × f _{fll ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10)	60	62.91	75	MHz	_
		$1920 \times f_{fll_ref}$					
		High range (DRS=11)	80	83.89	100	MHz	
		2560 × f _{fll_ref}					
dco_t_DMX32	DCO output frequency	Low range (DRS=00) 732 × f _{fll ref}	—	23.99	_	MHz	4, 5
		Mid range (DRS=01)	_	47.97		MHz	-
		1464 × f _{fll_ref}					
		Mid-high range (DRS=10)	—	71.99	—	MHz	
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)	_	95.98	95.98 —	MHz	-
		2929 × f _{fll ref}					
J _{cyc_fll} Fl	FLL period jitter			180	_	ps	
	 f_{VCO} = 48 MI f_{VCO} = 98 MI 		—	150	_		
t _{fll_acquire}	FLL target frequen	cy acquisition time	_	_	1	ms	6
		PLL	.0,1	•			
f _{pll_ref}	PLL reference frec	uency range	8	_	16	MHz	
f_{vcoclk_2x}	VCO output freque	ency	180	—	360	MHz	
f _{vcoclk}	PLL output freque	псу	90	—	180	MHz	
f _{vcoclk_90}	PLL quadrature ou	tput frequency	90	—	180	MHz	
I _{pll}		rrent MHz (f _{osc_hi_1} = 32 MHz, f _{pll_ref} NV multiplier = 23)	_	2.8	-	mA	
I _{pli}		rrent MHz (f _{osc_hi_1} = 32 MHz, f _{pll_ref} NV multiplier = 45)	_	4.7	_	mA	7
I _{pll}	PLL1 operating current • VCO @ 184 MHz (f _{osc_hi_1} = 32 MHz, f _{pll_ref} = 8 MHz, VDIV multiplier = 23)		_	2.3	-	mA	7
I _{pll}	PLL1 operating cu • VCO @ 360 = 8 MHz, VD	rrent MHz (f _{osc_hi_1} = 32 MHz, f _{pll_ref} NV multiplier = 45)	_	3.6	-	mA	7
t _{pll_lock}	= 8 MHZ, VDIV multiplier = 45) Lock detector detection time		—	_	100×10^{-6} + 1075(1/ f _{pll_ref})	S	8

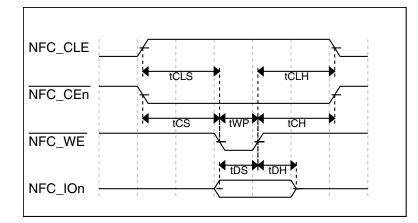
Table 15. MCG specifications (continued)

6.4.1.4 Reliability specifications Table 23. NVM re

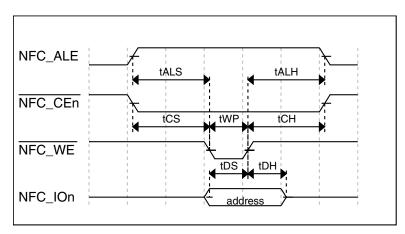
able 23.	NVM reliability	specifications
----------	-----------------	----------------

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes		
	Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years			
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years			
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2		

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.


2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_j \leq 125°C.

6.4.2 EzPort switching specifications


Table 24.	EzPort switching specification	ons
-----------	--------------------------------	-----

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	—	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2		ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	_	ns
EP7	EZP_CK low to EZP_Q output valid	_	16	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	_	ns
EP9	EZP_CS negation to EZP_Q tri-state	_	12	ns

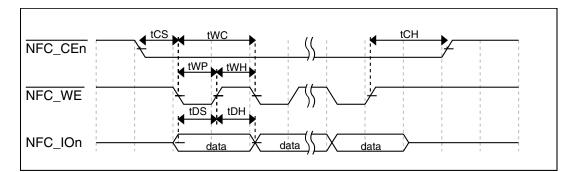


Figure 14. Write data latch cycle timing

Peripheral operating requirements and behaviors

Num	Description	Min.	Max.	Unit	Notes
FB2	Address, data, and control output valid	—	11.5	ns	1
FB3	Address, data, and control output hold	0.5	—	ns	1
FB4	Data and FB_TA input setup	8.5	—	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

Table 26. Flexbus limited voltage range switching specifications (continued)

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and FB_TA.

Table 27. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid	_	13.5	ns	1
FB3	Address, data, and control output hold	0	—	ns	1
FB4	Data and FB_TA input setup	13.7	—	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{FB_TA}$.

6.6 Analog

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 28 and Table 29 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 30 and Table 31.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71		3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V_{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 × VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	
		 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	
R _{AS}	Analog source	13-bit / 12-bit modes					3
	resistance (external)	f _{ADCK} < 4 MHz	—	—	5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion rate	≤ 13-bit modes					5

6.6.1.1 16-bit ADC operating conditions Table 28. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000		818.330	ksps	
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	ksps	5

Table 28. 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

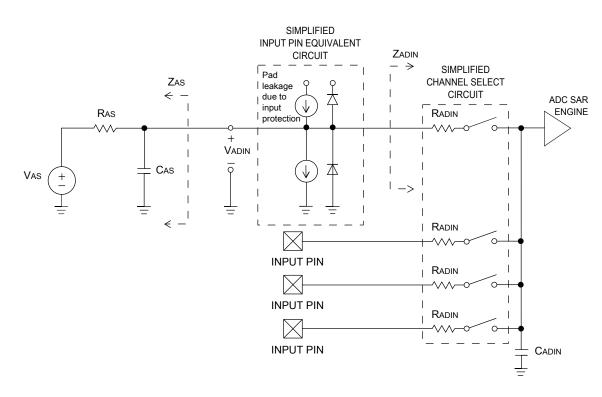


Figure 19. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics

Table 29. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	—	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample ti	mes			1
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 		±1.4	±2.1		
DNL	Differential non-	12-bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity	 <12-bit modes 	_	±0.2	-0.3 to 0.5		
INL	Integral non-linearity	12-bit modes		±1.0	-2.7 to	LSB ⁴	5
		 <12-bit modes 		±0.5	+1.9		
					–0.7 to +0.5		
E_{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}$
		<12-bit modes	_	-1.4	-1.8		
EQ	Quantization error	16-bit modes	_	-1 to 0	_	LSB ⁴	
		 ≤13-bit modes 		-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8	_	bits	5 5 V _{ADIN} = V _{DD}
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	hito	
		• Avg = 4	11.4	13.1		bits	
		-				bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 ×	ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32		-94	—		
		16-bit single-ended mode				dB	
		 Avg = 32 		-85	—		
0555		_					
	Spurious free dynamic range	16-bit differential mode	82	95	—	dB	7
		• Avg = 32				dB	
		16-bit single-ended mode	78	90			

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• Avg = 32					
E _{IL}	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 29. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

 The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.

4. 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)

- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Differential ENOB vs ADC Clock

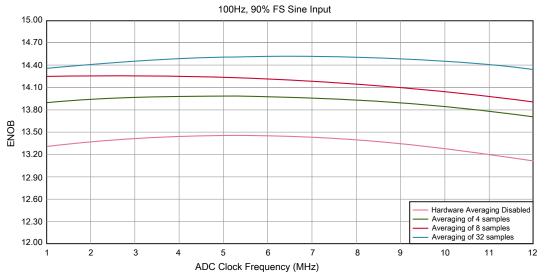
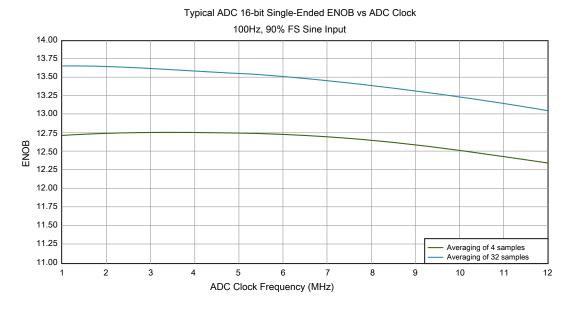



Figure 20. Typical ENOB vs. ADC_CLK for 16-bit differential mode

6.6.1.3 16-bit ADC with PGA operating conditions Table 30. 16-bit ADC with PGA operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
V _{REFPGA}	PGA ref voltage		VREF_OU T	VREF_OU T	VREF_OU T	V	2, 3
V _{ADIN}	Input voltage		V _{SSA}	_	V _{DDA}	V	
V _{CM}	Input Common Mode range		V _{SSA}	_	V _{DDA}	V	
R _{PGAD}	Differential input	Gain = 1, 2, 4, 8		128	_	kΩ	IN+ to IN- ⁴
	impedance	Gain = 16, 32	_	64	—		
		Gain = 64	_	32	—		
R _{AS}	Analog source resistance		_	100	—	Ω	5
Τ _S	ADC sampling time		1.25	_	—	μs	6
C _{rate}	ADC conversion rate	 ≤ 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 	18.484	_	450	Ksps	7
		16 bit modes	37.037	—	250	Ksps	8

Peripheral operating requirements and behaviors

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					

Table 30. 16-bit ADC with PGA operating conditions

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is $R_{PGAD}/2$
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4 16-bit ADC with PGA characteristics Table 31. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power - 420 (ADC_PGA[PGALPb]=0)		644	μA	2	
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\rm PGAD}} \left(\frac{(V_{\rm REFPGA} \times 0.583) - V_{\rm CM}}{({\rm Gain}+1)} \right)$			A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	-	1.54	_	μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V	_	0.57		μA	3 R _{AS} < 100Ω
G	Gain ⁴	• PGAG=0	0.95	1	1.05		R _{AS} < 100Ω
		• PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes	_	_	4	kHz	
	bandwidth	 < 16-bit modes 	_	_	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	84 -		dB	V _{DDA} = 3V ±100mV,	

Table continues on the next page ...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
							f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	_	-84	—	dB	V _{CM} =
	rejection ratio	• Gain=64	-	-85	—	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage	 Chopping disabled (ADC_PGA[PGACHPb] 	_	2.4	_	mV	Output offset = V _{OFS} *(Gain+1)
		 =1) Chopping enabled (ADC_PGA[PGACHPb] =0) 	_	0.2	_	mV	
T _{GSW}	Gain switching settling time		—	_	10	μs	5
dG/dT	Gain drift over full	• Gain=1	—	6	10	ppm/°C	
	temperature range	• Gain=64		31	42	ppm/°C	
dG/dV_{DDA}	Gain drift over supply voltage	 Gain=1 Gain=64 	_	0.07	0.21	%/V	V _{DDA} from 1.71 to 3.6V
			—	0.14	0.31	%/V	
EIL	Input leakage error	All modes		$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input signal swing		$\left(\frac{(\min(V_x V_{DDA} - V_x) - 0.2) \times 4}{Gain}\right)$ where V _X = V _{REFPGA} × 0.583			V	6
	Signal Swing						
SNR	Signal-to-noise	Gain=1	80	90	—	dB	16-bit
	ratio	• Gain=64	52	66		dB	differential mode, Average=32
THD	Total harmonic	• Gain=1	85	100	_	dB	16-bit
	distortion	• Gain=64	49	95	_	dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free	Gain=1	85	105	_	dB	16-bit
	dynamic range	• Gain=64	53	88	_	dB	differential mode, Average=32, f _{in} =100Hz
ENOB	Effective number	Gain=1, Average=4	11.6	13.4	—	bits	16-bit
	of bits	Gain=1, Average=8	8.0	13.6	_	bits	differential mode,f _{in} =100Hz
		Gain=64, Average=4	7.2	9.6	_	bits	
		Gain=64, Average=8	6.3	9.6	—	bits	
			12.8	14.5	_	bits	

Table 31. 16-bit ADC with PGA characteristics (continued)

Peripheral operating requirements and behaviors

device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released. 7. C_{b} = total capacitance of the one bus line in pF.

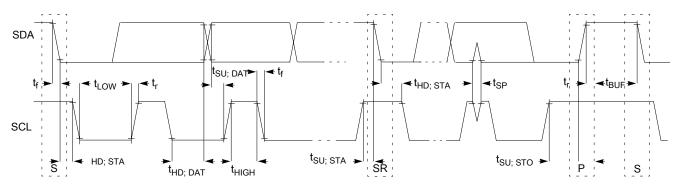


Figure 32. Timing definition for fast and standard mode devices on the I²C bus

6.8.9 UART switching specifications

See General switching specifications.

6.8.10 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

 Table 48. SDHC switching specifications over a limited operating voltage range

Num	Symbol	Description	Min.	Max.	Unit
		Operating voltage	2.7	3.6	V
		Card input clock			
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	_	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5	—	ns
SD8	t _{IH}	SDHC input hold time	0	—	ns

	$\mathbf{\nabla}$	7	
		7	
	\sim		

143 WLC SP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
M11	TAMPER0/ RTC_ WAKEUP_B	TAMPER0/ RTC_ WAKEUP_B	TAMPER0/ RTC_ WAKEUP_B								
M10	TAMPER1	TAMPER1	TAMPER1								
M9	TAMPER2	TAMPER2	TAMPER2								
M8	TAMPER3	TAMPER3	TAMPER3								
L10	XTAL32	XTAL32	XTAL32								
L9	EXTAL32	EXTAL32	EXTAL32								
L8	VBAT	VBAT	VBAT								
L7	PTE24	ADC0_SE17/ EXTAL1	ADC0_SE17/ EXTAL1	PTE24	CAN1_TX	UART4_TX	I2S1_TX_FS		EWM_OUT_b	I2S1_RXD1	
H7	PTE25	ADC0_SE18/ XTAL1	ADC0_SE18/ XTAL1	PTE25	CAN1_RX	UART4_RX	I2S1_TX_ BCLK		EWM_IN	I2S1_TXD1	
H6	PTE26	ADC3_SE5b	ADC3_SE5b	PTE26	ENET_1588_ CLKIN	UART4_CTS_ b	I2S1_TXD0		RTC_ CLKOUT	USB_CLKIN	
L6	PTE27	ADC3_SE4b	ADC3_SE4b	PTE27		UART4_RTS_ b	I2S1_MCLK				
K6	PTAO	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UART0_CTS_ b/ UART0_COL_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
J6	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
H5	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UART0_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
J5	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UART0_RTS_ b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
K5	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
L5	PTA5	DISABLED		PTA5	USB_CLKIN	FTM0_CH2	RMII0_RXER/ MII0_RXER	CMP2_OUT	I2S0_TX_ BCLK	JTAG_TRST_ b	
G5	VDD	VDD	VDD								
F5	VSS	VSS	VSS								
L4	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0	RMII0_RXD1/ MII0_RXD1		I2S0_TXD0	FTM1_QD_ PHA	
K4	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1	RMII0_RXD0/ MII0_RXD0		I2S0_TX_FS	FTM1_QD_ PHB	
J4	PTA14	CMP3_IN0	CMP3_IN0	PTA14	SPI0_PCS0	UART0_TX	RMII0_CRS_ DV/ MII0_RXDV		I2S0_RX_ BCLK	I2S0_TXD1	
L3	PTA15	CMP3_IN1	CMP3_IN1	PTA15	SPI0_SCK	UART0_RX	RMII0_TXEN/ MII0_TXEN		I2S0_RXD0		
K3	PTA16	CMP3_IN2	CMP3_IN2	PTA16	SPI0_SOUT	UART0_CTS_ b/ UART0_COL_ b	RMII0_TXD0/ MII0_TXD0		I2S0_RX_FS	I2S0_RXD1	

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
3	3/2012	Initial public release
4	10/2012	Replaced TBDs throughout.
5	10/2013	Changes for 4N96B mask set:
		 Min VDD operating requirement specification updated to support operation down to 1.71V.
		New specifications:
		Updated Vdd_ddr min specification.Added Vodpu specification.
		 Removed loz, loz_ddr, and loz_tamper Hi-Z leakage specifications. They have been replaced by new lina, lind, and Zind specifications. Fpll_ref_acc specification has been added.
		 I²C module was previously covered by the general switching specifications. To provide more detail on I²C operation a dedicated Inter-Integrated Circuit Interface (I²C) timing section has been added.
		Modified specifications:
		Vref_ddr max spec has been updated.
		Tpor spec has been split into two specifications based on VDD slew rate.
		 Trd1allx and Trd1alln max have been updated. 16-bit ADC Temp sensor slope and Temp sensor voltage (Vtemp25) have been modified. The typical values that were listed previously have been updated, and min and max specifications have been added.
		Corrections:
		 Some versions of the datasheets listed incorrect clock mode information in the "Diagram: Typical IDD_RUN operating behavior section." These errors have been corrected.
		• Fintf_ft specification was previously shown as a max value. It has been corrected to be shown as a typical value as originally intended.
		Corrected DDR write and read timing diagrams to show the correct location of the Tcmv specification.
		 SDHC peripheral 50MHz high speed mode options were left out of the last datasheet. These have been added to the SDHC specifications section.
6	09/2015	Updated the footnotes of Thermal Attributes table
		 Removed Power Sequencing section Added footnote to ambient temperature specification of Thermal Operating
		requirements
		 Removed "USB HS/LS/FS on-the-go controller with on-chip high speed transceiver" from features section
		 Updated Terminology and guidelines section
		Updated the footnotes and the values of Power consumption operating behaviors table
		 Added Notes in USB electrical specification section Updated I2C timing table

Table 58. Revision History