

Welcome to E-XFL.COM

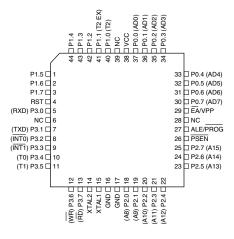
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	WDT
Number of I/O	32
Program Memory Size	20KB (20K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c55wd-24ju


Email: info@E-XFL.COM

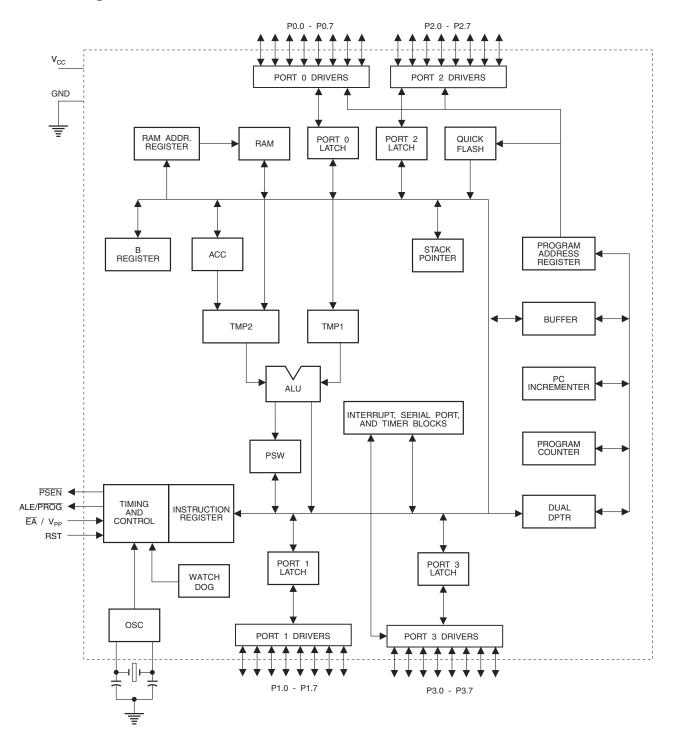
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Pin Configurations

2.1 44A – 44-lead TQFP

2.2 44J – 44-lead PLCC

	6 D P1.4	5 🗆 P1.3	4 🗆 P1.2	3 D P1.1 (T2 EX)	2 🗖 P1.0 (T2)	0 1 D NC	44 🗆 VCC	43 🗖 P0.0 (AD0)	42 🗖 P0.1 (AD1)	41 🗖 P0.2 (AD2)	240 D P0.3 (AD3)	
P1.5	/					0					35	P0.4 (AD4)
P1.6	8										38	
P1.7 🗆	9										37	
RST 🗆	10										36	_ ` '
(RXD) P3.0 🗆	11										35	EA/VPP
NC 🗆	12										34	рис
(TXD) P3.1 🗆	13										33	ALE/PROG
(INT0) P3.2	14										32	
(INT1) P3.3 🗆	15										31	🗆 P2.7 (A15)
(T0) P3.4 🗆	16										30) 🗖 P2.6 (A14)
(T1) P3.5 🗆	¹⁷ ∞	19	20	5	23	23	24	25	26	27	₈₂ 29	P2.5 (A13)
					Ū					Ш		_
	3.6	3.7	XTAL2	XTAL1	GND	S	2.0	P2.1	P2.2	P2.3	P2.4	
	<u>WR</u>) P3.6	(RD) P3.7	Ę	Ę	G		(A8) P2.0	9 F			2) F	
	<u>W</u>	ШШ Ш					Š	(A9)	(A10)	(A11)	(A12)	


2.3 40P6 – 40-lead PDIP

	\bigcirc		
(T2) P1.0 🗆	1	40	□ vcc
(T2EX) P1.1	2	39	DP0.0 (AD0)
P1.2 🗆	3	38	DP0.1 (AD1)
P1.3 🗆	4	37	DP0.2 (AD2)
P1.4 🗆	5	36	D P0.3 (AD3)
P1.5 🗆	6	35	D P0.4 (AD4)
P1.6 🗆	7	34	D P0.5 (AD5)
P1.7 🗆	8	33	D P0.6 (AD6)
RST 🗆	9	32	D P0.7 (AD7)
(RXD) P3.0 🗆	10	31	EA/VPP
(TXD) P3.1 🗆	11	30	ALE/PROG
(INT0) P3.2	12	29	D PSEN
(INT1) P3.3 🗆	13	28	🗆 P2.7 (A15)
(T0) P3.4 🗆	14	27	🗆 P2.6 (A14)
(T1) P3.5 🗆	15	26	🗆 P2.5 (A13)
(WR) P3.6 🗆	16	25	🗆 P2.4 (A12)
(RD) P3.7 🗆	17	24	🗆 P2.3 (A11)
XTAL2 🗆	18	23	🗆 P2.2 (A10)
XTAL1 🗆	19	22	🗆 P2.1 (A9)
GND 🗆	20	21	🗆 P2.0 (A8)

² **AT89C55WD**

AT89C55WD

3. Block Diagram

4. Pin Description

4.1	VCC	
		Supply voltage.
4.2	GND	
		Ground.
4.3	Port 0	
		Port 0 is an 8-bit open drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.
		Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.
		Port 0 also receives the code bytes during Flash programming and outputs the code bytes dur- ing program verification. External pull-ups are required during program verification.
4.4	Port 1	
		Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I_{IL}) because of the internal pull-ups.
		In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input

(P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table.

Port 1 also receives the low-order address bytes during Flash programming and verification.

Port Pin	Alternate Functions
P1.0	T2 (external count input to Timer/Counter 2), clock-out
P1.1	T2EX (Timer/Counter 2 capture/reload trigger and direction control)

4.5 Port 2

Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I_{IL}) because of the internal pull-ups.

Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.

Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

4.10 **EA**/VPP

External Access Enable. \overline{EA} must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, \overline{EA} will be internally latched on reset.

 $\overline{\text{EA}}$ should be strapped to V_{CC} for internal program executions.

This pin also receives the 12V programming enable voltage (V_{PP}) during Flash programming.

4.11 XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

4.12 XTAL2

Output from the inverting oscillator amplifier.

5. Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 5-1.

Table 5-1.	AT89C55WD SFR Map and Reset Values	;

			1						
0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000								0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0CFH
0C0H									0C7H
0B8H	IP XX000000								0BFH
0B0H	P3 11111111								0B7H
0A8H	IE 0X000000								0AFH
0A0H	P2 11111111		AUXR1 XXXXXXX0				WDTRST XXXXXXXX		0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111								97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXX00XX0		8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000		PCON 0XXX0000	87H

6

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Timer 2 Registers: Control and status bits are contained in registers T2CON (shown in Table 5-2) and T2MOD (shown in Table 5-2) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and reset under software control and is not affected by reset.

ole 5-2.	T2CON—	Timer/Coun	ter 2 Control	Register						
T2CON	T2CON Address = 0C8H Reset Value = 0000 0000B									
Bit Add	ressable									
Dit	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2		
Bit	7	6	5	4	3	2	1	0		

Table 5-2.	T2CON—Timer/Counter 2 Control Register

Symbol	Function
TF2	Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1 or TCLK = 1.
EXF2	Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK	Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK	Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2	Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2	Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2	Timer or counter select for Timer 2. $C/\overline{T2} = 0$ for timer function. $C/\overline{T2} = 1$ for external event counter (falling edge triggered).
CP/RL2	Capture/Reload select. $CP/\overline{RL2} = 1$ causes captures to occur on negative transitions at T2EX if EXEN2 = 1. $CP/\overline{RL2} = 0$ causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.

Figure 12-1. Timer in Capture Mode

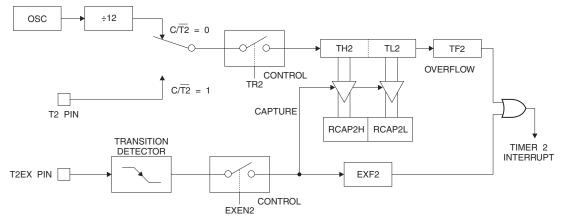
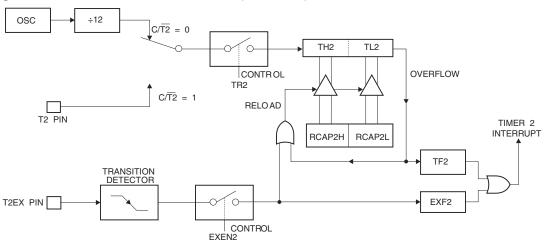


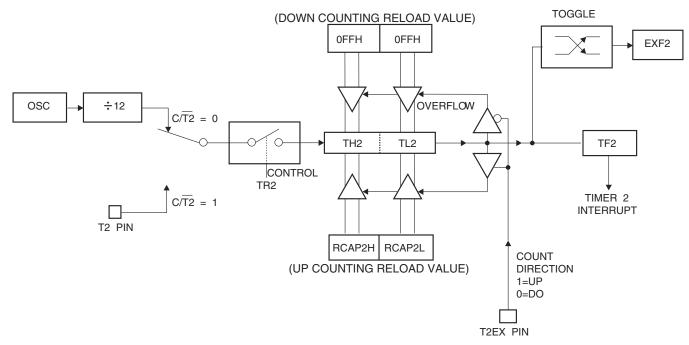
Figure 12-2 shows Timer 2 automatically counting up when DCEN=0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in Timer in Capture Mode RCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.

Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 12-2. In this mode, the T2EX pin controls the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.




Figure 12-2. Timer 2 Auto Reload Mode (DCEN = 0)

AT89C55WD

Table 12-2. T2MOD – Timer 2 Mode Control Register

T2MO	D Address = 0C9H Reset Value = XXXX XX00B									
Not Bit Addressable										
	_	_	_	_	-	_	T2OE	DCEN		
Bit	7	6	5	4	3	2	1	0		
Symbol	Function	Function								
-	Not impleme	Not implemented, reserved for future								
T2OE	Timer 2 Out	Timer 2 Output Enable bit								
DCEN	When set th	When set, this bit allows Timer 2 to be configured as an up/down counter								

Figure 12-3. Timer 2 Auto Reload Mode (DCEN = 1)

13. Baud Rate Generator

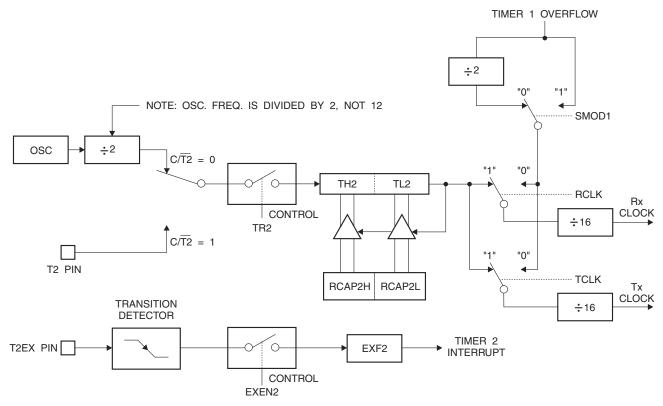
Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 5-2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 13-1.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

Modes 1 and 3 Baud Rates =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation (CP/T2 = 0). The timer operation is different for Timer 2 when it is used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at 1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time (at 1/2 the oscillator frequency). The baud rate formula is given below.


 $\frac{\text{Modes 1 and 3}}{\text{Baud Rate}} = \frac{\text{Oscillator Frequency}}{32 \text{ x [65536-RCAP2H,RCAP2L]]}}$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

Timer 2 as a baud rate generator is shown in Figure 13-1. This figure is valid only if RCLK or TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2 and will not generate an interrupt. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.

Note that when Timer 2 is running (TR2 = 1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. Under these conditions, the Timer is incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

14. Programmable Clock Out

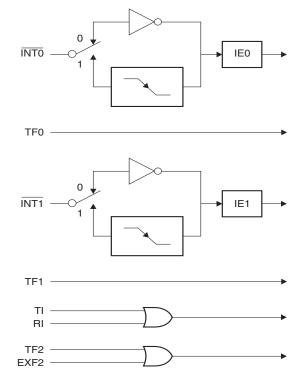
A 50% duty cycle clock can be programmed to come out on P1.0, as shown in Figure 14-1. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed to input the external clock for Timer/Counter 2 or to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz for a 16 MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (T2CON.1) must be cleared and bit T2OE (T2MOD.1) must be set. Bit TR2 (T2CON.2) starts and stops the timer.

The clock-out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L), as shown in the following equation.

Clock-Out Frequency =
$$\frac{\text{Oscillator Frequency}}{4 \text{ x [65536-(RCAP2H,RCAP2L)]}}$$

In the clock-out mode, Timer 2 roll-overs will not generate an interrupt. This behavior is similar to when Timer 2 is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and clock-out frequencies cannot be determined independently from one another since they both use RCAP2H and RCAP2L.



The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.


Table 15-1.	Interrupt Enable	(IE)	Register
-------------	------------------	------	----------

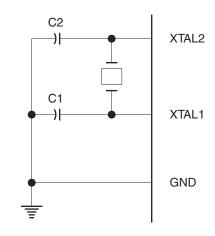

(MSB)			(LSB)					
EA	- ET2 ES ET1 EX1 ET0 EX0						EX0	
Enable Bit = 1 enables the interrupt.								
Enable Bit = 0 disables the interrupt.								
Symbol	Position	Functi	ion					
EA	IE.7	= 1, ea	Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.					
-	IE.6	Reserv	Reserved.					
ET2	IE.5	Timer	Timer 2 interrupt enable bit.					
ES	IE.4	Serial	Serial Port interrupt enable bit.					
ET1	IE.3	Timer	Timer 1 interrupt enable bit.					
EX1	IE.2	Extern	External interrupt 1 enable bit.					
ET0	IE.1	Timer	Timer 0 interrupt enable bit.					
EX0	IE.0	Extern	External interrupt 0 enable bit.					
User software products.	should never v	write 1s to re	eserved bits	, because th	iey may be i	used in futu	re AT89	

Figure 15-1. Interrupt Sources

Note: C1, C2 = $30 \text{ pF} \pm 10 \text{ pF}$ for Crystals = $40 \text{ pF} \pm 10 \text{ pF}$ for Ceramic Resonators

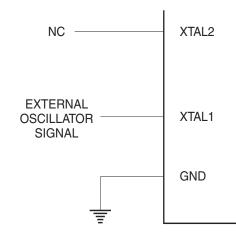


 Table 18-1.
 Status of External Pins During Idle and Power-down Modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

Chip Erase Sequence: Before the AT89C55WD can be reprogrammed, a Chip Erase operation needs to be performed. To erase the contents of the AT89C55WD, follow this sequence:

- 1. Raise V_{CC} to 6.5V.
- 2. Pulse ALE/PROG once (duration of 200 500 ns).
- 3. Wait for 150 ms.
- 4. Power V_{CC} down and up to 6.5V.
- 5. Pulse ALE/PROG once (duration of 200 500 ns).
- 6. Wait for 150 ms.
- 7. Power V_{CC} down and up.

Data Polling: The AT89C55WD features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P0.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be directly verified by reading them back.

Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows:

(000H) = 1EH indicates manufactured by Atmel (100H) = 55H (200H) = 06H indicates 89C55WD

21. Programming Interface

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

Most major worldwide programming vendors offer support for the Atmel AT89 microcontroller series. Please contact your local programming vendor for the appropriate software revision.

 Table 21-1.
 Flash Programming Modes

				ALE/	ĒĀ/						P0.7-0	P3.4	P2.5-0	P1.7-0
Mode	V _{cc}	RST	PSEN	PROG	V _{PP}	P2.6	P2.7	P3.3	P3.6	P3.7	Data	Address		
Write Code Data	5V	н	L	(1)	12V	L	Н	Н	Н	Н	D _{IN}	A14	A13-8	A7-0
Read Code Data	5V	Н	L	н	H/12V	L	L	L	Н	н	D _{OUT}	A14	A13-8	A7-0
Write Lock Bit 1	6.5 V	н	L	(2)	12V	Н	Н	н	Н	Н	х	х	х	х
Write Lock Bit 2	6.5 V	н	L	(2)	12V	н	Н	н	L	L	х	х	х	х
Write Lock Bit 3	6.5 V	Н	L	(2)	12V	Н	L	Н	Н	L	х	х	х	х
Read Lock Bits 1, 2, 3	5V	н	L	н	н	н	н	L	н	L	P0.2, P0.3, P0.4	х	х	х
Chip Erase	6.5 V	н	L	(3)	12V	Н	L	Н	L	L	х	х	х	х
Read Atmel ID	5V	Н	L	н	Н	L	L	L	L	L	1EH	Х	XX 0000	00H
Read Device ID	5V	н	L	н	н	L	L	L	L	L	55H	х	XX 0001	00H
Read Device ID	5V	н	L	н	н	L	L	L	L	L	06H	х	XX 0010	00H

Notes: 1. Write Code Data requires a 200 ns PROG pulse.

2. Write Lock Bits requires a 100 µs PROG pulse.

3. Chip Erase requires a 200 ns - 500 ns \overline{PROG} pulse.

4. RDY/BSY signal is output on P3.0 during programming.

AT89C55WD

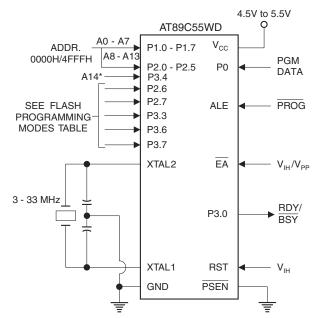
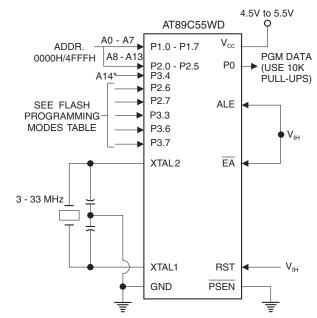
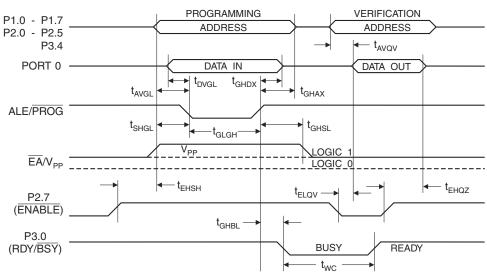
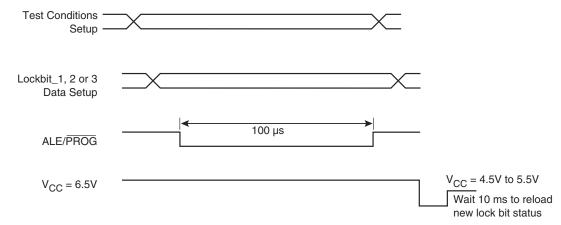



Figure 21-2. Verifying the Flash Memory

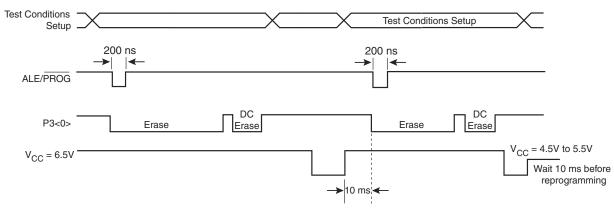
Note: *Programming address line A14 (P3.4) is not the same as the external memory address line A14 (P2.6).



22. Flash Programming and Verification Characteristics


 $T_A = 20^{\circ}C$ to 30°C, $V_{CC} = 4.5V$ to 5.5V

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	11.5	12.5	V
I _{PP}	Programming Supply Current		10	mA
I _{CC}	V _{CC} Supply Current		30	mA
1/t _{CLCL}	Oscillator Frequency	3	33	MHz
t _{AVGL}	Address Setup to PROG Low	48t _{CLCL}		
t _{GHAX}	Address Hold After PROG	48t _{CLCL}		
t _{DVGL}	Data Setup to PROG Low	48t _{CLCL}		
t _{GHDX}	Data Hold After PROG	48t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48t _{CLCL}		
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs
t _{GHSL}	V _{PP} Hold After PROG	10		μs
t _{GLGH}	PROG Width	0.2	1	μs
t _{AVQV}	Address to Data Valid		48t _{CLCL}	
t _{ELQV}	ENABLE Low to Data Valid		48t _{CLCL}	
t _{EHQZ}	Data Float After ENABLE	0	48t _{CLCL}	
t _{GHBL}	PROG High to BUSY Low		1.0	μs
t _{wc}	Byte Write Cycle Time		80	μs

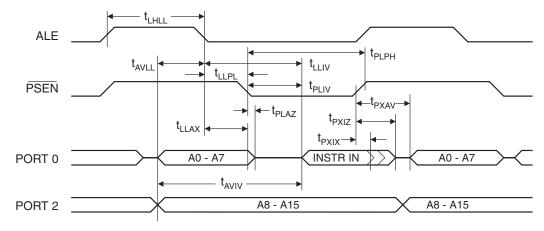


24. Lock Bit Programming

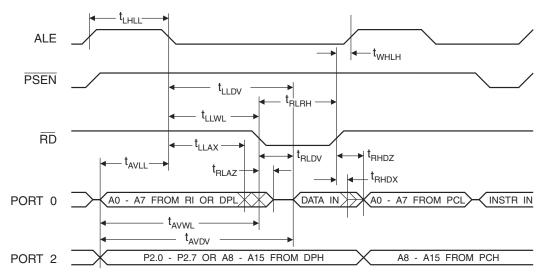
25. Parallel Chip Erase Mode

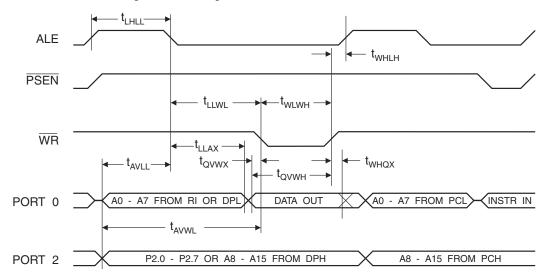
28. AC Characteristics

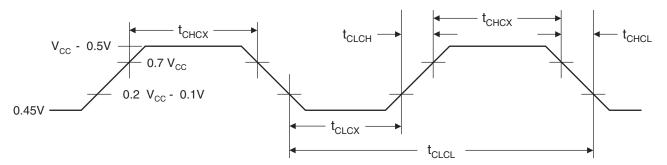
Under operating conditions, load capacitance for Port 0, ALE/ \overline{PROG} , and $\overline{PSEN} = 100 \text{ pF}$; load capacitance for all other outputs = 80 pF.


Symbol		12 MHz (Oscillator	Variable		
	Parameter	Min	Мах	Min	Мах	Units
1/t _{CLCL}	Oscillator Frequency			0	33	MHz
t _{LHLL}	ALE Pulse Width	127		2t _{CLCL} -40		ns
t _{AVLL}	Address Valid to ALE Low	43		t _{CLCL} -25		ns
t _{LLAX}	Address Hold After ALE Low	48		t _{CLCL} -25		ns
t _{LLIV}	ALE Low to Valid Instruction In		233		4t _{CLCL} -65	ns
t _{LLPL}	ALE Low to PSEN Low	43		t _{CLCL} -25		ns
t _{PLPH}	PSEN Pulse Width	205		3t _{CLCL} -45		ns
t _{PLIV}	PSEN Low to Valid Instruction In		145		3t _{CLCL} -60	ns
t _{PXIX}	Input Instruction Hold After PSEN	0		0		ns
t _{PXIZ}	Input Instruction Float After PSEN		59		t _{CLCL} -25	ns
t _{PXAV}	PSEN to Address Valid	75		t _{CLCL} -8		ns
t _{AVIV}	Address to Valid Instruction In		312		5t _{CLCL} -80	ns
t _{PLAZ}	PSEN Low to Address Float		10		10	ns
t _{RLRH}	RD Pulse Width	400		6t _{CLCL} -100		ns
t _{wLWH}	WR Pulse Width	400		6t _{CLCL} -100		ns
t _{RLDV}	RD Low to Valid Data In		252		5t _{CLCL} -90	ns
t _{RHDX}	Data Hold After RD	0		0		ns
t _{RHDZ}	Data Float After RD		97		2t _{CLCL} -28	ns
t _{LLDV}	ALE Low to Valid Data In		517		8t _{CLCL} -150	ns
t _{AVDV}	Address to Valid Data In		585		9t _{CLCL} -165	ns
t _{LLWL}	ALE Low to RD or WR Low	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	Address to RD or WR Low	203		4t _{CLCL} -75		ns
t _{ovwx}	Data Valid to WR Transition	23		t _{CLCL} -30		ns
t _{ovwн}	Data Valid to WR High	433		7t _{CLCL} -130		ns
t _{wHQX}	Data Hold After WR	33		t _{CLCL} -25		ns
t _{RLAZ}	RD Low to Address Float		0		0	ns
t _{WHLH}	RD or WR High to ALE High	43	123	t _{CLCL} -25	t _{CLCL} +25	ns

28.1 External Program and Data Memory Characteristics

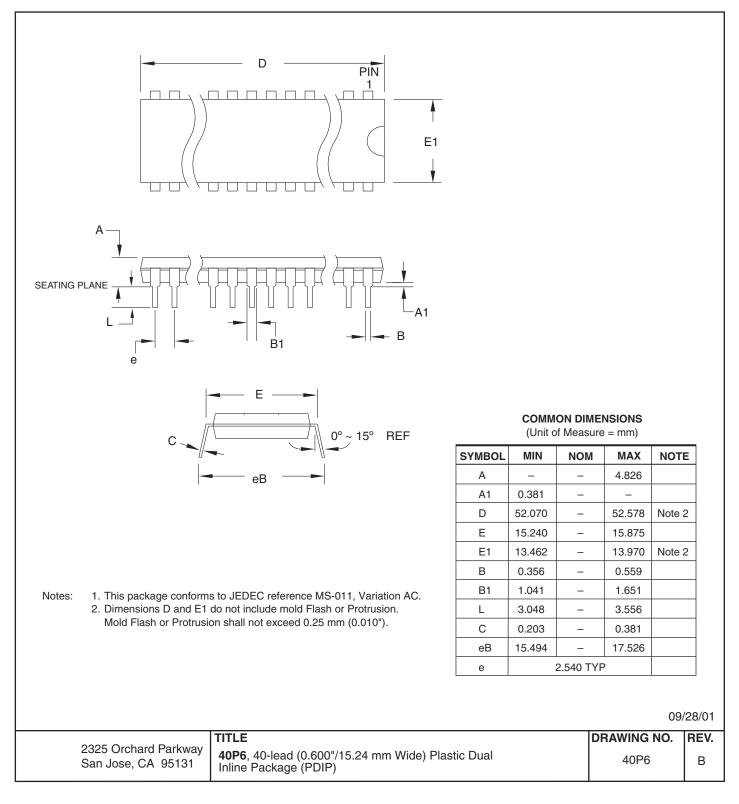



29. External Program Memory Read Cycle


30. External Data Memory Read Cycle

31. External Data Memory Write Cycle

32. External Clock Drive Waveforms


33. External Clock Drive

Symbol	Parameter	Min	Мах	Units
1/t _{CLCL}	Oscillator Frequency	0	33	MHz
t _{CLCL}	Clock Period	30		ns
t _{CHCX}	High Time	12		ns
t _{CLCX}	Low Time	12		ns
t _{CLCH}	Rise Time		5	ns
t _{CHCL}	Fall Time		5	ns

39.3 40P6 - PDIP

