E. Renesas Electronics America Inc - UPD70F3762GC-UEU-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

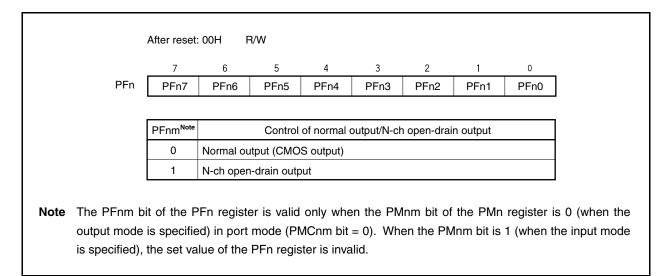
Product Status	Not For New Designs
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	77
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	<u> </u>
RAM Size	56К х 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3762gc-ueu-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Pin I/O Circuit Types, I/O Buffer Power Supplies and Connection of Unused Pins

Pin Name	Alternate Function	I/O Circuit Type		Recommended Connection	JG3-H	JH3-H
P00	INTP00	10-D	Input:	Independently connect to EV_{DD} or V_{SS}	-	\checkmark
P01	INTP01		.	via a resistor.	-	\checkmark
P02	NMI		Output:	Leave open.	\checkmark	\checkmark
P03	INTP02/ADTRG/UCLK				\checkmark	\checkmark
P04	INTP03				\checkmark	\checkmark
P05	INTP04				\checkmark	\checkmark
P10	ANO0	12-D	Input:	Independently connect to AVREF1 or	\checkmark	\checkmark
P11	ANO1		Output:	AVss via a resistor. Leave open.	\checkmark	\checkmark
P20	TIAB03/KR2/TOAB03/RTP02	10-D	Input:	Independently connect to EV_{DD} or V_{SS}	-	\checkmark
P21	SIF2/TIAB00/KR3/TOAB00/RTP03		Outout	via a resistor.	-	\checkmark
P22	SOF2/KR4/RTP04		Output:	Leave open.	-	\checkmark
P23	SCKF2/KR5/RTP05				-	\checkmark
P24	INTP05				-	\checkmark
P25	INTP06				-	\checkmark
P30	TXDC0/SOF4/INTP07	10-D	Input:	Independently connect to EV_{DD} or V_{SS}	\checkmark	\checkmark
P31	RXDC0/SIF4/INTP08		0.1.1	via a resistor.	\checkmark	\checkmark
P32	ASCKC0/SCKF4/TIAA00/TOAA00		Output:	Leave open.	\checkmark	\checkmark
P33	TIAA01/TOAA01/RTCDIV/RTCCL				\checkmark	\checkmark
P34	TIAA10/TOAA10/TOAA1OFF/INTP09				\checkmark	\checkmark
P35	TIAA11/TOAA11/RTC1HZ				\checkmark	\checkmark
P36	TXDC3/SCL00/CTXD0 ^{Note} /UDMARQ0				\checkmark	\checkmark
P37	RXDC3/SDA00/CRXD0 ^{Note} /UDMAAK0				\checkmark	\checkmark
P40	SIF0/TXDC4/SDA01	10-D	Input:	Independently connect to EV_{DD} or V_{SS}	\checkmark	\checkmark
P41	SOF0/RXDC4/SCL01		<u> </u>	via a resistor.	\checkmark	\checkmark
P42	SCKF0/INTP10		Output:	Leave open.	\checkmark	\checkmark
P50	TIAB01/KR0/TOAB01/RTP00/UDMARQ1	10-D	Input:	Independently connect to EV_{DD} or V_{SS}	\checkmark	\checkmark
P51	TIAB02/KR1/TOAB02/RTP01/UDMAAK1		.	via a resistor.	\checkmark	\checkmark
P52	TIAB03/KR2/TOAB03/RTP02/DDI		Output:	Leave open.	\checkmark	-
P53	SIF2/TIAB00/KR3/TOAB00/RTP03/DDO				\checkmark	-
P54	SOF2/KR4/RTP04/DCK				\checkmark	-
P55	SCKF2/KR5/RTP05/DMS				\checkmark	-
P56	INTP05/DRST	10-N	Input: Output:	Independently connect to Vss via a resistor. Fixing to VDD level is prohibited. Leave open.	V	_
			Culput.	Internally pull-down after reset by RESET pin.		

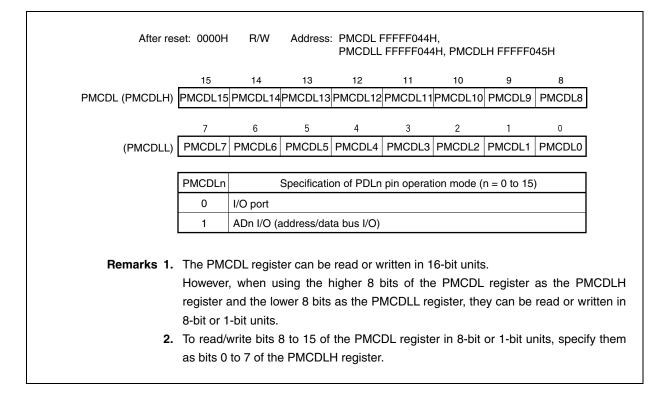

Note μPD70F3770, 70F3771 only

Remark JG3-H: V850ES/JG3-H, JH3-H: V850ES/JH3-H

(6) Port n function register (PFn)

The PFn register specifies normal output or N-ch open-drain output.

Each bit of this register corresponds to one pin of port n, and the output mode of the port pin can be specified in 1bit units.


(2/2)
١		1

V850ES/JH3	8-H									
	set: 00H	R/W	Address: F	FFFF440H	I					
	7	6	5	4	3	2	1	0		
PMC0	0	0	PMC05	PMC04	PMC03	PMC02	PMC01	PMC00		
							-			
	PMC05		Spe	ecification o	f P05 pin o	peration m	iode			
	0	I/O port								
	1	INTP04 ii	nput							
	PMC04		Spe	ecification o	f P04 pin c	peration m	ode			
	0	I/O port								
	1	INTP03 ii	INTP03 input							
	PMC03		Spe	ecification o	f P03 pin c	peration m	iode			
	0	I/O port			•					
	1		nput/ADTR0	G input/UCL	_K input					
	PMC02		Spe	ecification o	f P02 pin o	peration m	ode			
	0	I/O port								
	1	NMI inpu	t							
	PMC01		Spe	ecification o	f P01 pin c	peration m	lode			
	0	I/O port								
	1	INTP01 ii	nput							
	PMC00		Spe	ecification o	f P00 pin c	peration m	lode			
	0	I/O port								
	1	INTP00 ii	nput							

(4) Port 0 function control register (PFC0)

After res	et: 00H	0H R/W Address: FFFFF460H								
	7	6	5	4	3	2	1	0	_	
PFC0	0	0	0	0	PFC03	0	0	0		
Remark	For deta specific		ernate fun	ction spe	cification,	see 4.3.1	(6) Por	t 0 altern	ate function	

(3) Port DL mode control register (PMCDL)

4.4 Port Register Settings When Alternate Function Is Used

Table 4-20 shows the port register settings when each port is used for an alternate function. When using a port pin as an alternate-function pin, refer to the description of each pin.

(e) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TAAnOVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TAAnOPT0 register. To accurately detect an overflow, read the TAAnOVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

(i) Operation to write 0 (without conflict with setting)	(iii) Operation to clear to 0 (without conflict with setting)
Overflow set signal 0 write signal Overflow flag (TAAnOVF bit)	Overflow set signal 0 write signal Register access signal Read Write Overflow flag (TAAnOVF bit)
(ii) Operation to write 0 (conflict with setting)	(iv) Operation to clear to 0 (conflict with setting) Overflow Set signal O write signal Register Access signal Read Write
(TAAnOVF bit)	Overflow flag (TAAnOVF bit)

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of the overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow has actually occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set (1) even after execution of the clear instruction.

(2) Operation timing in pulse width measurement mode

(a) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TAAnOVF bit to 0 with the CLR instruction and by writing 8-bit data (bit 0 is 0) to the TAAnOPT0 register. To accurately detect an overflow, read the TAAnOVF bit when it is 1, and then clear the overflow flag by using a bit manipulation instruction.

(i) Operation to write 0 (without conflict with setting)	(iii) Operation to clear to 0 (without conflict with setting)
Overflow set signal 0 write signal Overflow flag (TAAnOVF bit)	Overflow set signal 0 write signal Register access signal Read Write Overflow flag (TAAnOVF bit)
(ii) Operation to write 0 (conflict with setting)	(iv) Operation to clear to 0 (conflict with setting)
Overflow set signal	Overflow set signal
0 write signal	0 write signal
Overflow flag (TAAnOVF bit)	Register Read Write
	Overflow flag (TAAnOVF bit)
Remark n = 0 to 3, 5	

To clear the overflow flag to 0, read the overflow flag to check if it is set to 1, and clear it with the CLR instruction. If 0 is written to the overflow flag without checking if the flag is 1, the set information of the overflow may be erased by writing 0 ((ii) in the above chart). Therefore, software may judge that no overflow has occurred even when an overflow has actually occurred.

If execution of the CLR instruction conflicts with occurrence of an overflow when the overflow flag is cleared to 0 with the CLR instruction, the overflow flag remains set (1) even after execution of the clear instruction.

8.5 Operation

TABn can perform the following operations.

Operation	TABnCTL1.TABnEST Bit (Software Trigger Bit)	TIABn0 Pin (External Trigger Input)	Capture/Compare Register Setting	Compare Register Write
Interval timer mode	Invalid	Invalid	Compare only	Anytime write
External event count mode ^{Note 1}	Invalid	Invalid	Compare only	Anytime write
External trigger pulse output mode ^{Note 2}	Valid	Valid	Compare only	Batch write
One-shot pulse output mode ^{Note 2}	Valid	Valid	Compare only	Anytime write
PWM output mode	Invalid	Invalid	Compare only	Batch write
Free-running timer mode	Invalid	Invalid	Switching enabled	Anytime write
Pulse width measurement mode ^{Note 2}	Invalid	Invalid	Capture only	Not applicable
Triangular wave PWM mode	Invalid	Invalid	Compare only	Batch write

- **Notes 1.** To use the external event count mode, specify that the valid edge of the TIABn0 pin capture trigger input is not detected (by clearing the TABnIOC1.TABnIS1 and TABnIOC1.TABnIS0 bits to "00").
 - 2. When using the external trigger pulse output mode, one-shot pulse output mode, and pulse width measurement mode, select the internal clock as the count clock (by clearing the TABnCTL1.TABnEEE bit to 0).

Remark n = 0, 1

(2) TAB1 option register 2 (TAB1OPT2)

The TAB1OPT2 register is an 8-bit register that controls the timer Q option function.

This register can be rewritten when the TAB1CTL0.TAB1CE bit is 1. However, rewriting the TAB1DTM bit is prohibited when the TAB1CE bit is 1. The same value can be rewritten.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

Allel I	eset: 00H	R/W	Addres	s: FFFFF5	81H					
	<7>	<6>	<5>	<4>	<3>	<2	2>	<1>	<0>	_
TAB1OPT2	TAB1RDE	TAB1DTM	TAB1ATM3	TAB1ATM2	TAB1AT	3 TAB1	AT2	TAB1AT1	TAB1AT0)
	TAB1RDE			Trans	fer culling	enable	;			1
	0	Do not cul and valley	,	transfer tin	iing is gen	erated	every	time at c	rest	1
	1	Cull transformed register.	er at the s	ame interv	al as interr	upt cul	ling se	et by the ∃	TAB1OPT1	
	TAB1DTM	D	ead-time o	counter ope	ration mo	de sele	ection	m = 1 to	3)	1
	TAB1DTM Dead-time counter operation mode selection (m = 1 to 3) 0 The dead-time counter counts up normally and, if TOAB1m output of TAB1 is at a narrow interval (TOAB1m output width < dead-time width), the dead-time counter is cleared and counts up again.									
	1 The dead-time counter counts up normally and, if TOAB1m output of TAB1 is at a narrow interval (TOAB1m output width < dead-time width), the dead-time counter counts down and the dead-time control width is automatically narrowed.									
		the TAB1D stop the time d bit.			0	•]
set Thi: and (TA	en using i to other th s means th I transfers B1RDE bit en genera	han 00000) hat interru , cannot k t = 0), tran), be sure opts and be set se sfers are	e to set th transfers parately e not perf	e TAB1F are ger If inter ormed n	RDE binerate rupts ormal	it to 1 d at t and f ly.	he sam transfer	e timing. s are set	Inter sepa
Thi: and (TA 2. Wh Not not TO/ take pin:	to other th s means th I transfers B1RDE bit	han 00000 hat interru , cannot k = 0), tran ting a dea te operatio d, so the s are in the s such as a high-imp), be sure opts and be set se sfers are d-time po out sto output neir defa s making pedance	e to set th transfers parately. e not perf eriod, set pped (TA levels of ult states the TOA state be	the TAB1F are ger If inter ormed n the TAB B1CTL0. the TO/ a. There B1T1 to fore stop	RDE bi nerate rupts ormal 1DTC TAB1 AB1T1 fore, 1 TOAE	it to 1 d at 1 and 1 ly. regis CE bi I to ⁻ for th B1T3	transfer ster to 1 it = 0), a TOAB1T ie prote and TO	e timing. s are set or highe dead-tim 3 and To ction of t AB1B1 to	Inter sepa r. OAB1 the sy o TOA

(3) Intermittent batch rewrite mode (transfer culling mode)

This mode is set by clearing the TAB1OPT0.TAB1CMS bit to 0 and setting the TAB1OPT2.TAB1RDE bit to 1. In this mode, the values written to each compare register are transferred to the internal buffer register all at once after the culled transfer timing and compared with the counter value. The transfer timing is the timing at which an interrupt is generated (INTTAB1CC0, INTTAB1OV) by interrupt culling.

For details of the interrupt culling function, see **11.4.3** Interrupt culling function.

(a) Rewriting procedure

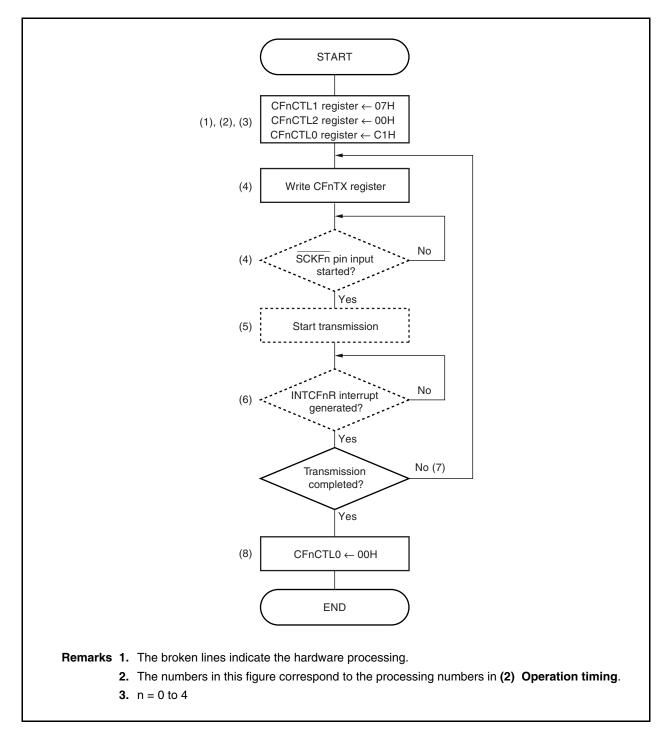
If data is written to the TAB1CCR1 register, the data of the TAB1CCR0 to TAB1CCR3, TAB1OPT1, TAA4CCR0, and TAA4CCR1 registers are transferred all at once to the internal buffer register at the next transfer timing. Therefore, write to the TAB1CCR1 register last. Writing to the register is prohibited after the TAB1CCR1 register has been written until the transfer timing is generated (until the INTTAB1OV or INTTAB1CC0 interrupt occurs). The operation procedure is as follows.

- <1> Rewrite the TAB1CCR0, TAB1CCR2, TAB1CCR3, TAB1OPT1, TAA4CCR0, and TAA4CCR1 registers. Do not rewrite registers that do not have to be rewritten.
- <2> Rewrite the TAB1CCR1 register.

Rewrite the same value to the register even when it is not necessary to rewrite the TAB1CCR1 register.

<3> Hold the next rewriting pending until the transfer timing is generated.

Perform the next rewrite after the INTTAB1OV or INTTAB1CC0 interrupt has occurred.


<4> Return to <1>.

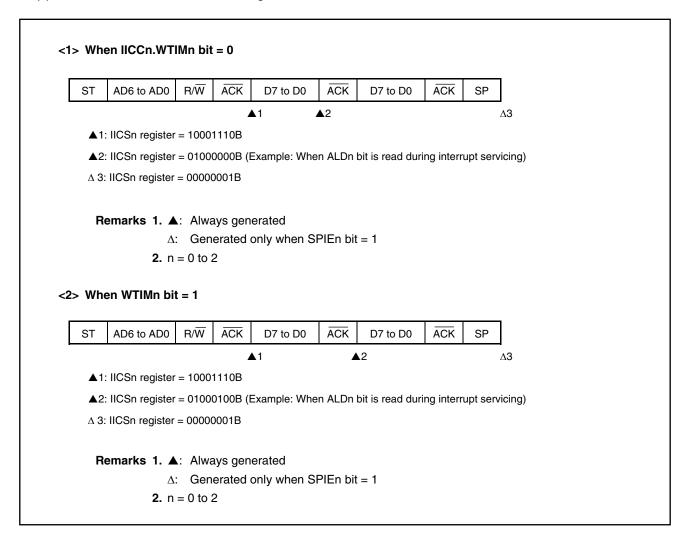
18.6.4 Single transfer mode (slave mode, transmission mode)

MSB first (CFnCTL0.CFnDIR bit = 0), communication type 1 (CFnCTL1.CFnCKP and CFnCTL1.CFnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKFn}) (CFnCTL1.CFnCKS2 to CFnCTL1.CFnCKS0 bits = 111), transfer data length = 8 bits (CFnCTL2.CFnCL3 to CFnCTL2.CFnCL0 bits = 0000)

(1) Operation flow

19.1.2 UARTC4, CSIF0, and I²C01 mode switching

In the V850ES/JG3-H and V850ES/JH3-H, UARTC4, CSIF0, and I²C01 share the same pins and therefore cannot be used simultaneously. Switching among UARTC4, CSIF0, and I²C01 must be set in advance, using the PMC4, PFC4, and PFCE4 registers.


Caution The transmit/receive operation of UARTC4, CSIF0, and I²C01 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After re	set: 00H	R/W	Address:	FFFFF448F	1			
Allerie	361. 0011	10,00	Address.	11111440				
	7	6	5	4	3	2	1	0
PMC4	0	0	0	0	0	PMC42	PMC41	PMC40
After re	set: 00H	R/W	Address:	FFFF468H	ł			
	7	6	5	4	3	2	1	0
PFC4	0	0	0	0	0	PFC42	PFC41	PFC40
After re	set: 00H	R/W	Address:	FFFF708H	ł			
	7	6	5	4	3	2	1	0
PFCE4	0	0	0	0	0	0	PFCE41	PFCE40
	PMC4n	PFC4n	PFCE4n		Operatio	n mode		
	0	×	×	Port I/O m	ode			
	1	0	0	CSIF0 mo	de			
	1	0	1	I ² C01 mod	le			
	1	1	0	UARTC4 r	node			
	Remarks	s 1. n=0	0, 1					
		2. × = 0	don't care					

Figure 19-2. UARTC4, CSIF0, and I²C01 Mode Switch Settings

(3) When arbitration loss occurs during data transfer

(9) CAN0 module error counter register (C0ERC)

The C0ERC register indicates the count value of the transmission/reception error counter.

	15	14	13	12	11	10	9	8				
C0ERC	REPS	REC6	REC5	REC4	REC3	REC2	REC1	REC0				
	7	6	5	4	3	2	1	0				
	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0				
REPS		Reception error passive status bit										
0	The valu	The value of the reception error counter is not error passive (< 128)										
1	The valu	e of the rece	ption error co	ounter is in the	error passiv	re range (≥ 12	28)					
REC6 to REC	0			Reception e	rror counter	bit						
0 to 127		•		e bits reflect t CAN protoco		he reception	error counte	r. The				
	REC6 to RI		RECS0 bit				ception err	or passive :				
TEC/ IO TEC	-											
0 to 255		Number of transmission errors. These bits reflect the status of the transmission error counter. The number of errors is defined by the CAN protocol.										

(2/2)

(a) Read

TSLOCK	Time stamp lock function enable bit
0	Time stamp lock function stopped. The TSOUT signal toggles each time the selected time stamp capture event occurs.
1	Time stamp lock function enabled. The TSOUT signal toggled each time the selected time stamp capture event occurred. However, the TSOUT output signal is locked when a data frame has been correctly received to message buffer 0 ^{Note} .

Note The TSEN bit is automatically cleared to 0.

TSSEL	Time stamp capture event selection bit
0	The time stamp capture event is SOF.
1	The time stamp capture event is the last bit of EOF.

TSEN	TSOUT operation setting bit					
0	TSOUT toggle operation is disabled.					
1	TSOUT toggle operation is enabled.					

Remark The TSOUT signal is output from the CAN controller to a timer. For details, refer to CHAPTER 7 16-BIT TIMER/EVENT COUNTER A (TAA).

(b) Write

Set TSLOCK	Clear TSLOCK	Setting of TSLOCK bit			
0	1	TSLOCK bit is cleared to 0.			
1	0	TSLOCK bit is set to 1.			
Other than above		TSLOCK bit is not changed.			

Set TSSEL	Clear TSSEL	Setting of TSSEL bit				
0	1	SSEL bit is cleared to 0.				
1	0	TSSEL bit is set to 1.				
Other than above		TSSEL bit is not changed.				

Set TSEN	Clear TSEN	Setting of TSEN bit				
0	1	SEN bit is cleared to 0.				
1	0	TSEN bit is set to 1.				
Other than above		TSEN bit is not changed.				

(29) UF0 FIFO clear 0 register (UF0FIC0)

This register clears each FIFO.

This register is write-only, in 8-bit units. If this register is read, 00H is read.

FW can clear the target FIFO by writing 1 to the corresponding bit of this register. The bit to which 1 has been written is automatically cleared to 0. Writing 0 to the bit is invalid.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1, 3, 7) and the current setting of the interface.

	7	6	5	4	3	2	1	0	Address	After reset	
	BKI2SC	BKI2CC	BKI1SC	BKI1CC	ITR2C	ITR1C	EP0WC	EP0RC	00200060H	00H	
Bit positio	n	Bit name		Function							
7, 5	BKI	InSC	1: C Writing BKInNł The BK	These bits clear only the FIFO on the SIE side of the UF0BIn register (reset the counter 1: Clear Writing these bits is invalid while an IN token for Endpoint m is being processed with the BKInNK bit set to 1. The BKInNK bit is automatically cleared to 0 by clearing the FIFO. Make sure that the FIFO on the CPU side is empty when these bits are used.							
6, 4	BKI	InCC		bits clear oi Clear	nly the FIF	O on the C	PU side of	the UF0BIn	register (reset	the counter).	
2	ITR	1C	1: C Writing IT1NK	These bits clear the UF0INT1 register (reset the counter). 1: Clear Writing these bits is invalid while an IN token for Endpoint 7 is being processed with the IT1NK bit set to 1. The IT1NK bit is automatically cleared to 0 by clearing the FIFO.							
1	EPO	DWC	1: C Writing EP0NK	This bit clears the UF0E0W register (resets the counter). 1: Clear Writing this bit is invalid while an IN token for Endpoint0 is being processed with the EP0NKW bit set to 1. The EP0NKW bit is automatically cleared to 0 by clearing the FIFO.							
0	EP	ORC	1: C When t	lear he EP0NKI	R bit is set	egister (res to 1 (excep clearing th	ot when it h	,	t by FW), the EF	PONKR bit is	

m = 3 where n = 2

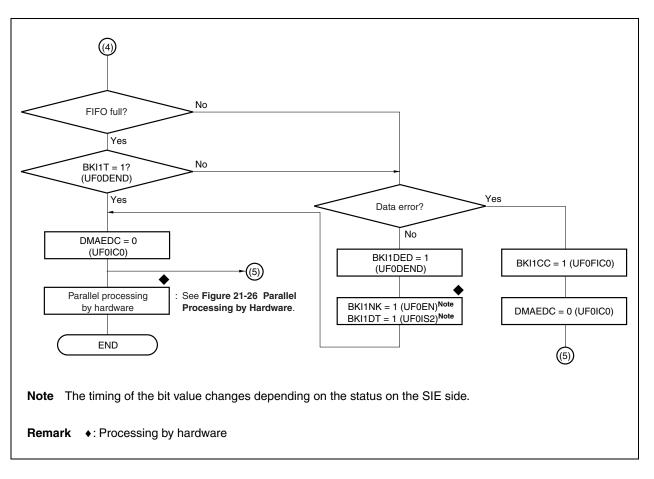


Figure 21-33 DMA Processing by Bulk Transfer (IN) (4/4)

(4) DMA addressing control registers 0 to 3 (DADC0 to DADC3)

The DADC0 to DADC3 registers are 16-bit registers that control the DMA transfer mode for DMA channel n (n = 0 to 3).

These registers can be read or written in 16-bit units.

Reset sets these registers to 0000H.

	15	14	13	12	11	10	9	8
DADCn	0	DS0	0	0	0	0	0	0
(n = 0 to 3)	7	6	5	4	3	2	1	0
	, SAD1	SAD0	DAD1	DAD0	0	0	0	0
	0/101	0,120	BRBT	BRBO	0	0	Ū	
		1						
	DS0			Setting of	of transfer	data size		
	0	8 bits						
	1	16 bits						
	SAD1	SAD0	Setting	g of count c	lirection of	f the transfe	er source a	ddress
	0	0	Incremen	t				
	0	1	Decrement					
	1	0	Fixed					
	1	1	Setting pr	rohibited				
	DAD1	DAD0	Cotti	ing of count	direction	of the desti	notion odd	****
	0	0	Incremen	ing of count	airection	or the dest	nation add	less
	0	1	Decreme	-				
	1	0	Fixed					
	1	1	Setting pr	rohibited				
			County pr					
s 1. Be sure	to clear b	its 15. 13	to 8. and	3 to 0 of	the DAD	Cn reaist	er to 0.	
2. Set the						-		sabled (E
bit = 0).		J		5	5			

- Period from after completion of DMA transfer (DCHCn.TCn bit = 1) to start of the next DMA transfer
- 3. The DS0 bit specifies the size of the transfer data, and does not control bus sizing. If 8-bit data (DS0 bit = 0) is set, therefore, the lower data bus is not always used.
- 4. If the transfer data size is set to 16 bits (DS0 bit = 1), transfer cannot be started from an odd address. Transfer is always started from an address with the first bit of the lower address aligned to 0.
- 5. If DMA transfer is executed on an on-chip peripheral I/O register (as the transfer source or destination), be sure to specify the same transfer size as the register size. For example, to execute DMA transfer on an 8-bit register, be sure to specify 8-bit transfer.

22.9 DMA Transfer Start Factors

There are two types of DMA transfer start factors, as shown below.

(1) Request by software

If the STGn bit is set to 1 while the DCHCn.TCn bit = 1 and Enn bit = 1 (DMA transfer enabled), DMA transfer is started.

To request the next DMA transfer cycle immediately after that, confirm, by using the DBCn register, that the preceding DMA transfer cycle has been completed, and set the STGn bit to 1 again (n = 0 to 3).

TCn bit = 0, Enn bit = 1 \downarrow STGn bit = 1 ... Starts the first DMA transfer. \downarrow Confirm that the contents of the DBCn register have been updated. STGn bit = 1 ... Starts the second DMA transfer. \downarrow : \downarrow

Generation of terminal count ... Enn bit = 0, TCn bit = 1, and INTDMAn signal is generated.

(2) Request by on-chip peripheral I/O

If an interrupt request is generated from the on-chip peripheral I/O set by the DTFRn register when the DCHCn.TCn bit = 0 and Enn bit = 1 (DMA transfer enabled), DMA transfer is started.

- Cautions 1. Two start factors (software trigger and hardware trigger) cannot be used for one DMA channel. If two start factors are simultaneously generated for one DMA channel, only one of them is valid. The start factor that is valid cannot be identified.
 - 2. A new transfer request that is generated after the preceding DMA transfer request was generated or in the preceding DMA transfer cycle is ignored (cleared).
 - 3. The transfer request interval of the same DMA channel varies depending on the setting of bus wait in the DMA transfer cycle, the start status of the other channels, or the external bus hold request. In particular, as described in Caution 2, a new transfer request that is generated for the same channel before the DMA transfer cycle or during the DMA transfer cycle is ignored. Therefore, the transfer request intervals for the same DMA channel must be sufficiently separated by the system. When the software trigger is used, completion of the DMA transfer cycle that was generated before can be checked by updating the DBCn register.

<5> QB-V850ESJX3H ^{Note} In-circuit emulator	The in-circuit emulator serves to debug hardware and software when developing application systems using the V850ES/JG3-H or V850ES/JH3-H. It supports the integrated debugger ID850QB. This emulator should be used in combination with a power supply unit and emulation probe. Use the USB interface cable to connect this emulator to the host machine.
<3> USB interface cable	Cable to connect the host machine and the QB-V850ESJX3H.
<4> AC adapter	100 to 240 V can be supported by replacing the AC plug.
<9> QB-100GC-EA-04S QB-128GF-EA-01S QB-100GC-EA-05T QB-128GF-EA-02T Exchange adapter	Adapter to perform pin conversion. • QB-100GC-EA-04S: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-EA-01S: 128-pin plastic LQFP (GF-GAT type) • QB-100GC-EA-05T: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-EA-02T: 128-pin plastic LQFP (GC-GAT type)
<10> QB-100-CA-01S QB-128-CA-01S (S type only) Check pin adapter	Adapter used in waveform monitoring using the oscilloscope, etc. • QB-100-CA-01S: 100-pin plastic LQFP (GC-UEU type) • QB-128-CA-01S: 128-pin plastic LQFP (GF-GAT type)
<11> QB-100-SA-01S QB-144-SA-01S QB-100GC-YS-01T QB-128GF-YS-01T Space adapter	Adapter to adjust the height. • QB-100-SA-01S: 100-pin plastic LQFP (GC-UEU type) • QB-144-SA-01S: 128-pin plastic LQFP (GF-GAT type) • QB-100GC-YS-01T: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-YS-01T: 128-pin plastic LQFP (GF-GAT type)
<12> QB-100GC-YQ-01T QB-128GF-YQ-01T (T type only) YQ connector	Conversion adapter to connect target connector and exchange adapter • QB-100GC-YQ-01T: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-YQ-01T: 128-pin plastic LQFP (GF-GAT type)
<13> QB-100GC-MA-01S QB-128GF-MA-01S QB-100GC-HQ-01T QB-128GF-HQ-01T Mount adapter	Adapter to mount the V850ES/JG3-H or V850ES/JH3-H on a socket. • QB-100GC-MA-01S: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-MA-01S: 128-pin plastic LQFP (GF-GAT type) • QB-100GC-HQ-01T: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-HQ-01T: 128-pin plastic LQFP (GF-GAT type)
<14> QB-100GC-TC-01S QB-128GF-TC-01S QB-100GC-NQ-01T QB-128GF-NQ-01T Target connector	Connector to solder on the target system. • QB-100GC-TC-01S: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-TC-01S: 128-pin plastic LQFP (GF-GAT type) • QB-100GC-NQ-01T: 100-pin plastic LQFP (GC-UEU type) • QB-128GF-NQ-01T: 128-pin plastic LQFP (GF-GAT type)

Note The QB-V850ESJX3H is supplied with a power supply unit, USB interface cable, and flash memory programmer (MINICUBE2). It is also supplied with integrated debugger ID850QB as control software.

Remark The numbers in the angle brackets correspond to the numbers in Figure A-2.

			(6/37
Symbol	Name	Unit	Page
COMDATA110	CAN0 message data byte 1 register 10	CAN	969
COMDATA111	CAN0 message data byte 1 register 11	CAN	969
COMDATA112	CAN0 message data byte 1 register 12	CAN	969
C0MDATA113	CAN0 message data byte 1 register 13	CAN	969
C0MDATA114	CAN0 message data byte 1 register 14	CAN	969
C0MDATA115	CAN0 message data byte 1 register 15	CAN	969
C0MDATA116	CAN0 message data byte 1 register 16	CAN	969
C0MDATA117	CAN0 message data byte 1 register 17	CAN	969
COMDATA118	CAN0 message data byte 1 register 18	CAN	969
COMDATA119	CAN0 message data byte 1 register 19	CAN	969
COMDATA120	CAN0 message data byte 1 register 20	CAN	969
COMDATA121	CAN0 message data byte 1 register 21	CAN	969
C0MDATA122	CAN0 message data byte 1 register 22	CAN	969
C0MDATA123	CAN0 message data byte 1 register 23	CAN	969
C0MDATA124	CAN0 message data byte 1 register 24	CAN	969
C0MDATA125	CAN0 message data byte 1 register 25	CAN	969
COMDATA126	CAN0 message data byte 1 register 26	CAN	969
COMDATA127	CAN0 message data byte 1 register 27	CAN	969
COMDATA128	CAN0 message data byte 1 register 28	CAN	969
C0MDATA129	CAN0 message data byte 1 register 29	CAN	969
COMDATA130	CAN0 message data byte 1 register 30	CAN	969
COMDATA131	CAN0 message data byte 1 register 31	CAN	969
COMDATA200	CAN0 message data byte 2 register 00	CAN	969
COMDATA201	CAN0 message data byte 2 register 01	CAN	969
COMDATA202	CAN0 message data byte 2 register 02	CAN	969
C0MDATA203	CAN0 message data byte 2 register 03	CAN	969
COMDATA204	CAN0 message data byte 2 register 04	CAN	969
COMDATA205	CAN0 message data byte 2 register 05	CAN	969
COMDATA206	CAN0 message data byte 2 register 06	CAN	969
COMDATA207	CAN0 message data byte 2 register 07	CAN	969
COMDATA208	CAN0 message data byte 2 register 08	CAN	969
COMDATA209	CAN0 message data byte 2 register 09	CAN	969
COMDATA210	CAN0 message data byte 2 register 10	CAN	969
COMDATA211	CAN0 message data byte 2 register 11	CAN	969
C0MDATA212	CAN0 message data byte 2 register 12	CAN	969
C0MDATA213	CAN0 message data byte 2 register 13	CAN	969
COMDATA214	CAN0 message data byte 2 register 14	CAN	969
COMDATA215	CAN0 message data byte 2 register 15	CAN	969
COMDATA216	CAN0 message data byte 2 register 16	CAN	969
C0MDATA217	CAN0 message data byte 2 register 17	CAN	969