

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga102-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/44-Pin, 16-Bit General Purpose Flash Microcontrollers with nanoWatt XLP Technology

Power Management Modes:

- Selectable Power Management modes with nanoWatt XLP Technology for Extremely Low Power:
 - Deep Sleep mode allows near total power-down (20 nA typical and 500 nA with RTCC or WDT), along with the ability to wake-up on external triggers, or self-wake on programmable WDT or RTCC alarm
 - Extreme low-power DSBOR for Deep Sleep, LPBOR for all other modes
 - Sleep mode shuts down peripherals and core for
 - substantial power reduction, fast wake-up - Idle mode shuts down the CPU and peripherals for
 - significant power reduction, down to 4.5 μA typical Doze mode enables CPU clock to run slower than
 - peripherals
 Alternate Clock modes allow on-the-fly switching to a lower clock speed for selective power reduction during Run mode, down to 15 μA typical

High-Performance CPU:

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator with:
 - 4x PLL option
 - Multiple divide options
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/integer Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture:
- 76 base instructions
- Flexible addressing modes
- Linear Program Memory Addressing, up to 12 Mbytes
- Linear Data Memory Addressing, up to 64 Kbytes
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Special Microcontroller Features:

- Operating Voltage Range of 2.0V to 3.6V
- Self-Reprogrammable under Software Control
- 5.5V Tolerant Input (digital pins only)
- High-Current Sink/Source (18 mA/18 mA) on All I/O pins

Special Microcontroller Features (continued):

- Flash Program Memory:
 - 10,000 erase/write cycle endurance (minimum)
 - 20-year data retention minimum
 - Selectable write protection boundary
- Fail-Safe Clock Monitor Operation:
 - Detects clock failure and switches to on-chip FRC Oscillator
- On-Chip 2.5V Regulator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Two Flexible Watchdog Timers (WDT) for Reliable Operation:
- Standard programmable WDT for normal operation
 Extreme low-power WDT with programmable
- period of 2 ms to 26 days for Deep Sleep mode • In-Circuit Serial Programming™ (ICSP™) and
- In-Circuit Debug (ICD) via 2 Pins
- JTAG Boundary Scan Support

Analog Features:

- 10-Bit, up to 13-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Three Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
- Supports capacitive touch sensing for touch screens and capacitive switches
- Provides high-resolution time measurement and simple temperature sensing

		гу			Rem	appable	Periph	erals							
PIC24FJ Device	Pins	Program Memo (Bytes)	SRAM (Bytes)	Remappable Pins	Timers 16-Bit	Capture Input	Compare/PWM Output	UART w/ IrDA [®]	IdS	I²C™	10-Bit A/D (ch)	Comparators	PMP/PSP	RTCC	CTMU
32GA102	28	32K	8K	16	5	5	5	2	2	2	10	3	Y	Y	Y
64GA102	28	64K	8K	16	5	5	5	2	2	2	10	3	Y	Y	Y
32GA104	44	32K	8K	26	5	5	5	2	2	2	13	3	Y	Y	Y
64GA104	44	64K	8K	26	5	5	5	2	2	2	13	3	Y	Y	Y

TABLE 4-27: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	ce Address > <14:1> 2:1> 2:1> Data EA<15:0> XXXX XXXX XXXX XXX XXXX XXXX XXXX XXX Data EA<15:0> XXXX XXXX XXXX XXX Data EA<15:0> XXXX XXXX XXXX XXXX XXX Data EA<14 XXX XXXX XXXX XXX	<0>		
Instruction Access	User	0 P		PC<22:1>		0		
(Code Execution)			0xx xxxx x	XXX XXXX	x xxxx xxx0			
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>				
(Byte/Word Read/Write)		0:	xxx xxxx	xxx xxxx xxx xx				
	Configuration	TBLPAG<7:0>			Data EA<15:0>			
		1xxx xxxx		XXX	xxxx xxxx xxxx xxxx			
Program Space Visibility	User	0	PSVPAG<7:0>		Data EA<14:0> ⁽¹⁾			
(Block Remap/Read)		0	XXXX XXXX		xxx xxxx xxxx xxxx			

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The LSb of program space addresses is always fixed as '0' in order to maintain word alignment of data in the program and data spaces.
 - **2:** Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit (MSb) of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the CPU Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space locations used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

When CORCON < 2 > = 1 and EA < 15 > = 1: **Program Space Data Space** PSVPAG 23 15 0 000000h 0000h 02 Data EA<14:0> 010000h 018000h The data in the page designated by PSVPAG is mapped into the upper half of the data memory 8000h space PSV Area ...while the lower 15 bits of the EA specify an exact FFFFh address within the PSV area. This corresponds exactly to the same lower 15 bits of the actual program 800000h space address.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase blocks of eight rows (512 instructions) at a time and to program one row at a time. It is also possible to program single words.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 64 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused addresses should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note: Writing to a location multiple times without erasing is *not* recommended.

All of the table write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

5.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

5.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

5.5 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.6 "Programming Operations"** for further details.

5.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 8. "Interrupts" (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24FJ64GA104 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset which forces the PC to zero. The micro-controller then begins program execution at location 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—	IC1IP2	IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0I							
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	Unimplemen	ted: Read as '0)'						
bit 14-12	T1IP<2:0>: ⊤	imer1 Interrupt	Priority bits						
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is disa	abled						
bit 11	Unimplemen	ted: Read as '0)'						
bit 10-8	OC1IP<2:0>:	Output Compa	re Channel 1 I	Interrupt Priority	/ bits				
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is disa	abled						
bit 7	Unimplemen	ted: Read as '0)'						
bit 6-4	IC1IP<2:0>:	nput Capture C	hannel 1 Inter	rupt Priority bits	3				
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is disa	abled						
bit 3	Unimplemen	ted: Read as 'd)'						
bit 2-0	INT0IP<2:0>:	External Interr	upt 0 Priority b	oits					
	111 = Interru	pt is priority 7 (ł	nighest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is disa	abled						

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	CRCIP2	CRCIP1	CRCIP0		U2ERIP2	U2ERIP1	U2ERIP0
bit 15						•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	U1ERIP2	U1ERIP1	U1ERIP0	_		—	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	CRCIP<2:0>	CRC Generat	or Error Interru	upt Priority bits			
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	U2ERIP<2:0	: UART2 Error	Interrupt Prio	rity bits			
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-4	U1ERIP<2:0	>: UART1 Error	Interrupt Prio	rity bits			
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 7-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: RP21 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP21 (see Table 10-3 for peripheral function numbers).
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP20R<4:0>: RP20 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP20 (see Table 10-3 for peripheral function numbers).

Note 1: This register is unimplemented in 28-pin devices; all bits read as '0'.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown			

REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP23R<4:0>: RP23 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP23 (see Table 10-3 for peripheral function numbers).

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RP22R<4:0>: RP22 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP22 (see Table 10-3 for peripheral function numbers).

Note 1: This register is unimplemented in 28-pin devices; all bits read as '0'.

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

Pin Select (PPS)" for more information.

3: The ADC event trigger is available only on Timer 2/3 in 32-bit mode and Timer 3 in 16-bit mode.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	_	—	_	_	_
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾	—	TCS ⁽²⁾	—
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timera When TxCO 1 = Starts 3: 0 = Stops 3: When TxCO 1 = Starts 10 0 = Stops 11	COn bit N < 3 > = 1: 2-bit Timerx/y 2-bit Timerx/y N < 3 > = 0: 3-bit Timerx 3-bit Timerx					
hit 14		nted: Read as '(۱'				
bit 13	TSIDL: Stop	in Idle Mode bit)				
	1 = Discontir 0 = Continue	nue module operati e module operati	ation when de	vice enters Idle e	mode		
bit 12-7	Unimpleme	nted: Read as ')'				
bit 6	TGATE: Tim <u>When TCS =</u> This bit is igr	erx Gated Time <u>= 1:</u> hored.	Accumulation	Enable bit			
	When TCS = 1 = Gated ti 0 = Gated ti	<u>= 0:</u> me accumulatio me accumulatio	n is enabled n is disabled				
bit 5-4	TCKPS<1:0	>: Timerx Input	Clock Prescale	Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-Bit 1	Timer Mode Sele	ect bit ⁽¹⁾				
	1 = Timerx a 0 = Timerx a In 32-bit mod	and Timery form and Timery act a de, T3CON cont	a single 32-bit s two 16-bit tin rol bits do not a	timer ners affect 32-bit time	er operation.		
bit 2	Unimpleme	nted: Read as ')'				
bit 1	TCS: Timerx	Clock Source S	elect bit ⁽²⁾				
	1 = Externa 0 = Internal	al clock from pin, clock (Fosc/2)	TxCK (on the	rising edge)			
bit 0	Unimpleme	nted: Read as ')'				
Note 1: 2:	In 32-bit mode, t If TCS = 1, RPIN Section 10.4 "P	he T3CON or T{ IRx (TxCK) mus eripheral Pin S	5CON control b t be configured elect (PPS)".	its do not affec I to an available	t 32-bit timer o e RPn pin. For	peration. more informatio	n, see

3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: compare events continuously toggle OCx pin
 - 010 = Single Compare Single-Shot mode: initialize OCx pin high, compare event forces OCx pin low
 - 001 = Single Compare Single-Shot mode: initialize OCx pin low, compare event forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
 - **2:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Logena.			
R = Readable bit W	= Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR '1'	= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

19.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device; the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

Divide the number of error clocks per minute by 4 to get the correct calibration value and load the RCFGCAL register with the correct value. (Each 1-bit increment in the calibration adds or subtracts 4 pulses.)

EQUATION 19-1:

(Ideal Frequency[†] – Measured Frequency) * 60 = Clocks per Minute

† Ideal Frequency = 32,768 Hz

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note:	It is up to the user to include, in the error
	value, the initial error of the crystal drift
	due to temperature and drift due to crystal
	aging.

19.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

19.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As displayed in Figure 19-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

DANG							DALLA		
R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
ADON	—	ADSIDL		—		FORM1	FORM0		
Dit 15							bit 8		
Davi e	D # 4 / 0	D # 4 / 0			D (14/ 0)				
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R/C-0, HCS		
SSRC2	SSRC1	SSRCU	—	—	ASAM	SAMP	DONE		
DIL 7	bit / bit 0								
Logond:	Lerendu C - Clearable bit UCS - Herdware Clearable/Settable bit								
R = Readable	bit	W = Writable	nit		ented hit read	l as '0'			
-n = Value at l	POR	'1' = Rit is set		$0^{\circ} = \text{Bit is clear}$	ared	x = Bit is unkn	own		
							own		
bit 15	ADON: A/D C	Operating Mode	bit ⁽¹⁾						
211 10	1 = A/D Conv	verter module is	operating						
	0 = A/D Conv	/erter is off							
bit 14	Unimplement	ted: Read as 'd)'						
bit 13	ADSIDL: Stop	o in Idle Mode b	bit						
	1 = Discontin	ue module ope	ration when de	evice enters Idle	e mode				
	0 = Continue	module operat	ion in Idle mod	le					
bit 12-10	Unimplement	ted: Read as 10)'						
DIT 9-8	FURM<1:0>:	Data Output Fo	ormat bits	0000)					
	11 = Signed I 10 = Fraction	al (dddd dddd	dd00 0000)	0000)					
	01 = Signed in	nteger (ssss s	ssd dddd d	ddd)					
	00 = Integer (0000 00dd d	ddd dddd)						
bit 7-5	SSRC<2:0>:	Conversion Trig	gger Source Se	elect bits					
	111 = Interna	I counter ends	sampling and store	starts conversio	n (auto-conve	rt)			
	101 = Reserv	event enus sar	nping and Star	IS CONVERSION					
	100 = Timer5	compare ends	sampling and	starts conversion	on				
	011 = Reserv	red		atarta agricarai					
	010 = 1 mers 001 = Active 1	transition on IN	T0 pin ends sa	ampling and sta	rts conversion				
	000 = Clearing the SAMP bit ends sampling and starts conversion								
bit 4-3	Unimplement	ted: Read as 'd)'						
bit 2	ASAM: A/D S	ample Auto-Sta	art bit						
	1 = Sampling	begins immed	iately after the	last conversion	completes; S	AMP bit is auto	-set		
hit 1		amnle Enable I	nit onivir billis	556					
	1 = A/D same	le/hold amplifie	r is samoling i	nput					
	0 = A/D samp	le/hold amplifie	r is holding	ipat					
bit 0	DONE: A/D C	onversion State	us bit						
	1 = A/D conve	ersion is done							
	0 = A/D conve	ersion is NOT d	one						

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NB	—	—	CH0SB4 ^(1,2)	CH0SB3 ^(1,2)	CH0SB2 ^(1,2)	CH0SB1 ^(1,2)	CH0SB0 ^(1,2)	
bit 15							bit 8	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CH0NA	—	—	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	
bit 7	bit 7 bit 0							
Legend:								
R = Readat	ble bit	W = Writable	bit		nented bit, read			
-n = value a	at POR	"1" = Bit is set		$0^{\circ} = Bit is clear$	ared	x = Bit is unkn	iown	
bit 15	CH0NB: Char 1 = Channel (0 = Channel (nnel 0 Negative) negative inpu) negative inpu	e Input Select fo t is AN1 t is VR-	or MUX B Multi	plexer Setting	bit		
bit 14-13	Unimplement	ted: Read as '	כ'					
bit 12-8	CH0SB<4:0>	Channel 0 Pc	sitive Input Sel	ect for MUX B	Multiplexer Set	tting bits ^(1,2)		
	<pre>11111 = Channel 0 positive input is reserved for CTMU use only⁽³⁾ 1xxxx = Unimplemented; do not use. 01111 = Channel 0 positive input is internal band gap reference (VBG) 01100 = Channel 0 positive input is VBG/2 01101 = Channel 0 positive input is voltage regulator output (VDDCORE) 01100 = Channel 0 positive input is AN12 01011 = Channel 0 positive input is AN11 01010 = Channel 0 positive input is AN10 01001 = Channel 0 positive input is AN9 01000 = Channel 0 positive input is AN8 00111 = Channel 0 positive input is AN8 00111 = Channel 0 positive input is AN7 00110 = Channel 0 positive input is AN7 00110 = Channel 0 positive input is AN8 00101 = Channel 0 positive input is AN8</pre>							
bit 7	CH0NA: Char	nnel 0 Negative	e Input Select fo	or MUX A Multi	plexer Setting	bit		
	1 = Channel (0 = Channel () negative inpu) negative inpu	t is AN1 t is VR-					
bit 6-5	Unimplement	ted: Read as '	כ'					
bit 4-0	CH0SA<4:0>	Channel 0 Pc	sitive Input Sel	ect for MUX A	Multiplexer Set	tting bits		
	Implemented	combinations a	are identical to t	those for CH0S	SB<4:0> (above	e).		
Note 1: (2: / 3: 5	 Combinations not shown here are unimplemented; do not use. Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; do not use. Selecting this internal channel allows the CTMU module to utilize the A/D Converter sample and hold 							

24.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 24-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. For the smallest time measurements, select the internal A/D Channel 31, CH0Sx <4:0>= 11111. This minimizes any stray capacitance that may otherwise be associated with using an input pin, thus keeping the total capacitance to that of the A/D Converter itself (4-5 pF). A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "PIC24F Family Reference Manual".

24.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module.

When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 24-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 24-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 24-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

TABLE 28-4:	DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)	
-------------	---	--

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Operating Current (IDD) ⁽²⁾								
DC24	10.5	15.5	mA	-40°C				
DC24a	10.5	15.5	mA	+25°C	2 5\/(3)			
DC24b	10.5	15.5	mA	+85°C	2.500	16 MIPS		
DC24c	11.3	15.5	mA	+125°C				
DC24d	11.3	15.5	mA	-40°C				
DC24e	11.3	15.5	mA	+25°C	2 3/(4)			
DC24f	11.3	15.5	mA	+85°C	3.30			
DC24g	11.3	15.5	mA	+125°C				
DC31	15.0	18.0	μA	-40°C				
DC31a	15.0	19.0	μA	+25°C	2 01/(3)			
DC31b	20.0	36.0	μA	+85°C	2.000			
DC31c	42.0	55.0	μA	+125°C				
DC31d	57.0	120.0	μA	-40°C				
DC31e	57.0	125.0	μA	+25°C	3 3//(4)			
DC31f	95.0	160.0	μA	+85°C	0.000			
DC31g	114.0	180.0	μA	+125°C				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- **3:** On-chip voltage regulator is disabled (DISVREG is tied to VDD).
- 4: On-chip voltage regulator is enabled (DISVREG is tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

^{2:} The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	0.65 BSC			
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Ran Package — Pattern —	PIC 24 FJ 64 GA1 04 T - I / PT - XXX nark	 Examples: a) PIC24FJ64GA104-I/PT: PIC24F device with, 64-Kbyte program memory, 44-pin, Industrial temp., TQFP package. b) PIC24FJ32GA102-I/ML: PIC24F device with32-Kbyte program memory, 28-pin, Industrial temp.,QFN package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GA1 = General purpose microcontrollers	
Pin Count	02 = 28-pin 04 = 44-pin	
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)}$ $E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Extended)}$	
Package	ML = 28-lead (6x6 mm) or 44-lead (8x8 mm) QFN (Quad Flat) PT = 44-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) SO = 28-lead (7.50 mm wide) SOIC (Small Outline) SP = 28-lead (300 mil) SPDIP (Skinny Plastic Dual In-Line) SS = 28-lead (530 mm) SSOP (Plastic Shrink Small)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	