
Microchip Technology - PIC24FJ32GA102-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 16-Bit

Speed 32MHz

Connectivity I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 21

Program Memory Size 32KB (11K x 24)

Program Memory Type FLASH

EEPROM Size -

RAM Size 8K x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 3.6V

Data Converters A/D 10x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga102-i-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic24fj32ga102-i-so-4390995
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC24FJ64GA104 FAMILY
RA0 2 27 19 I/O ST PORTA Digital I/O.

RA1 3 28 20 I/O ST

RA2 9 6 30 I/O ST

RA3 10 7 31 I/O ST

RA4 12 9 34 I/O ST

RA7 — — 13 I/O ST

RA8 — — 32 I/O ST

RA9 — — 35 I/O ST

RA10 — — 12 I/O ST

RB0 4 1 21 I/O ST PORTB Digital I/O.

RB1 5 2 22 I/O ST

RB2 6 3 23 I/O ST

RB3 7 4 24 I/O ST

RB4 11 8 33 I/O ST

RB5 14 11 41 I/O ST

RB6 15 12 42 I/O ST

RB7 16 13 43 I/O ST

RB8 17 14 44 I/O ST

RB9 18 15 1 I/O ST

RB10 21 18 8 I/O ST

RB11 22 19 9 I/O ST

RB12 23 20 10 I/O ST

RB13 24 21 11 I/O ST

RB14 25 22 14 I/O ST

RB15 26 23 15 I/O ST

RC0 — — 25 I/O ST PORTC Digital I/O.

RC1 — — 26 I/O ST

RC2 — — 27 I/O ST

RC3 — — 36 I/O ST

RC4 — — 37 I/O ST

RC5 — — 38 I/O ST

RC6 — — 2 I/O ST

RC7 — — 3 I/O ST

RC8 — — 4 I/O ST

RC9 — — 5 I/O ST

REFO 24 21 11 O — Reference Clock Output.

TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Function

Pin Number

I/O
Input
Buffer

Description28-Pin
SPDIP/

SOIC/SSOP

28-Pin
QFN

44-Pin
QFN/
TQFP

Legend: TTL = TTL input buffer ST = Schmitt Trigger input buffer
ANA = Analog level input/output I2C™ = I2C/SMBus input buffer
DS39951C-page 16 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
TABLE 3-1: CPU CORE REGISTERS

FIGURE 3-2: PROGRAMMER’S MODEL

Register(s) Name Description

W0 through W15 Working Register Array

PC 23-Bit Program Counter

SR ALU STATUS Register

SPLIM Stack Pointer Limit Value Register

TBLPAG Table Memory Page Address Register

PSVPAG Program Space Visibility Page Address Register

RCOUNT Repeat Loop Counter Register

CORCON CPU Control Register

N OV Z C

TBLPAG

22 0

7 0

 015

Program Counter

Table Memory Page

ALU STATUS Register (SR)

Working/Address
Registers

W0 (WREG)

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

 Frame Pointer

Stack Pointer

PSVPAG

7 0
Program Space Visibility

RA

0

RCOUNT

15 0
Repeat Loop Counter

SPLIM Stack Pointer Limit

SRL

Registers or bits shaded for PUSH.S and POP.S instructions.

0

0

Page Address Register

15 0

CPU Control Register (CORCON)

SRH

W14

W15

DC IPL
2 1 0

— ——————

IPL3 PSV— — — — — — — — — — — — — —

PC

Divider Working Registers

Multiplier Registers

15 0

Value Register

Address Register

Register
 2010 Microchip Technology Inc. DS39951C-page 27

P
IC

24F
J64G

A
104 F

A
M

IL
Y

D
S

3
9

9
5

1
C

-p
a

g
e

 3
6

 2

0
1

0
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

Bit 3 Bit 2 Bit 1 Bit 0
All

Resets

CN3IE CN2IE CN1IE CN0IE 0000

CN19IE(1) CN18IE(1) CN17IE(1) CN16IE 0000

CN3PUE CN2PUE CN1PUE CN0PUE 0000

N19PUE(1) CN18PUE(1) CN17PUE(1) CN16PUE 0000
TABLE 4-4: ICN REGISTER MAP

File
Name

Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE(1) CN9IE(1) CN8IE(1) CN7IE CN6IE CN5IE CN4IE

CNEN2 0062 — CN30IE CN29IE CN28IE(1) CN27IE CN26IE(1) CN25IE(1) CN24IE CN23IE CN22IE CN21IE CN20IE(1)

CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE(1) CN9PUE(1) CN8PUE(1) CN7PUE CN6PUE CN5PUE CN4PUE

CNPU2 006A — CN30PUE CN29PUE CN28PUE(1) CN27PUE CN26PUE(1) CN25PUE(1) CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE(1) C

Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: Unimplemented in 28-pin devices; read as ‘0’.

PIC24FJ64GA104 FAMILY
EXAMPLE 5-4: LOADING THE WRITE BUFFERS (C LANGUAGE CODE)

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE (ASSEMBLY LANGUAGE CODE)

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE (C LANGUAGE CODE)

// C example using MPLAB C30

#define NUM_INSTRUCTION_PER_ROW 64
unsigned int offset;
unsigned int i;
unsigned long progAddr = 0xXXXXXX; // Address of row to write
unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; // Buffer of data to write

//Set up NVMCON for row programming
NVMCON = 0x4001; // Initialize NVMCON

//Set up pointer to the first memory location to be written
TBLPAG = progAddr>>16; // Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF; // Initialize lower word of address

//Perform TBLWT instructions to write necessary number of latches
for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)

{
__builtin_tblwtl(offset, progData[i++]); // Write to address low word
__builtin_tblwth(offset, progData[i]); // Write to upper byte
offset = offset + 2; // Increment address

}

DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions

MOV #0x55, W0
MOV W0, NVMKEY ; Write the 55 key
MOV #0xAA, W1 ;
MOV W1, NVMKEY ; Write the AA key
BSET NVMCON, #WR ; Start the erase sequence
NOP ;
NOP ;
BTSC NVMCON, #15 ; and wait for it to be
BRA $-2 ; completed

// C example using MPLAB C30

asm("DISI #5"); // Block all interrupts with priority < 7
// for next 5 instructions

__builtin_write_NVM(); // Perform unlock sequence and set WR
DS39951C-page 56 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

Interrupt Source
Vector

Number
IVT Address

AIVT
Address

Interrupt Bit Locations

Flag Enable Priority

ADC1 Conversion Done 13 00002Eh 00012Eh IFS0<13> IEC0<13> IPC3<6:4>

Comparator Event 18 000038h 000138h IFS1<2> IEC1<2> IPC4<10:8>

CRC Generator 67 00009Ah 00019Ah IFS4<3> IEC4<3> IPC16<14:12>

CTMU Event 77 0000AEh 0001AEh IFS4<13> IEC4<13> IPC19<6:4>

External Interrupt 0 0 000014h 000114h IFS0<0> IEC0<0> IPC0<2:0>

External Interrupt 1 20 00003Ch 00013Ch IFS1<4> IEC1<4> IPC5<2:0>

External Interrupt 2 29 00004Eh 00014Eh IFS1<13> IEC1<13> IPC7<6:4>

I2C1 Master Event 17 000036h 000136h IFS1<1> IEC1<1> IPC4<6:4>

I2C1 Slave Event 16 000034h 000134h IFS1<0> IEC1<0> IPC4<2:0>

I2C2 Master Event 50 000078h 000178h IFS3<2> IEC3<2> IPC12<10:8>

I2C2 Slave Event 49 000076h 000176h IFS3<1> IEC3<1> IPC12<6:4>

Input Capture 1 1 000016h 000116h IFS0<1> IEC0<1> IPC0<6:4>

Input Capture 2 5 00001Eh 00011Eh IFS0<5> IEC0<5> IPC1<6:4>

Input Capture 3 37 00005Eh 00015Eh IFS2<5> IEC2<5> IPC9<6:4>

Input Capture 4 38 000060h 000160h IFS2<6> IEC2<6> IPC9<10:8>

Input Capture 5 39 000062h 000162h IFS2<7> IEC2<7> IPC9<14:12>

Input Change Notification 19 00003Ah 00013Ah IFS1<3> IEC1<3> IPC4<14:12>

LVD Low-Voltage Detect 72 0000A4h 0001A4h IFS4<8> IEC4<8> IPC18<2:0>

Output Compare 1 2 000018h 000118h IFS0<2> IEC0<2> IPC0<10:8>

Output Compare 2 6 000020h 000120h IFS0<6> IEC0<6> IPC1<10:8>

Output Compare 3 25 000046h 000146h IFS1<9> IEC1<9> IPC6<6:4>

Output Compare 4 26 000048h 000148h IFS1<10> IEC1<10> IPC6<10:8>

Output Compare 5 41 000066h 000166h IFS2<9> IEC2<9> IPC10<6:4>

Parallel Master Port 45 00006Eh 00016Eh IFS2<13> IEC2<13> IPC11<6:4>

Real-Time Clock/Calendar 62 000090h 000190h IFS3<14> IEC3<14> IPC15<10:8>

SPI1 Error 9 000026h 000126h IFS0<9> IEC0<9> IPC2<6:4>

SPI1 Event 10 000028h 000128h IFS0<10> IEC0<10> IPC2<10:8>

SPI2 Error 32 000054h 000154h IFS2<0> IEC2<0> IPC8<2:0>

SPI2 Event 33 000056h 000156h IFS2<1> IEC2<1> IPC8<6:4>

Timer1 3 00001Ah 00011Ah IFS0<3> IEC0<3> IPC0<14:12>

Timer2 7 000022h 000122h IFS0<7> IEC0<7> IPC1<14:12>

Timer3 8 000024h 000124h IFS0<8> IEC0<8> IPC2<2:0>

Timer4 27 00004Ah 00014Ah IFS1<11> IEC1<11> IPC6<14:12>

Timer5 28 00004Ch 00014Ch IFS1<12> IEC1<12> IPC7<2:0>

UART1 Error 65 000096h 000196h IFS4<1> IEC4<1> IPC16<6:4>

UART1 Receiver 11 00002Ah 00012Ah IFS0<11> IEC0<11> IPC2<14:12>

UART1 Transmitter 12 00002Ch 00012Ch IFS0<12> IEC0<12> IPC3<2:0>

UART2 Error 66 000098h 000198h IFS4<2> IEC4<2> IPC16<10:8>

UART2 Receiver 30 000050h 000150h IFS1<14> IEC1<14> IPC7<10:8>

UART2 Transmitter 31 000052h 000152h IFS1<15> IEC1<15> IPC7<14:12>
 2010 Microchip Technology Inc. DS39951C-page 67

PIC24FJ64GA104 FAMILY
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — AD1IE U1TXIE U1RXIE SPI1IE SPF1IE T3IE

bit 15 bit 8

R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

T2IE OC2IE IC2IE — T1IE OC1IE IC1IE INT0IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’

bit 13 AD1IE: A/D Conversion Complete Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 12 U1TXIE: UART1 Transmitter Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 11 U1RXIE: UART1 Receiver Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 10 SPI1IE: SPI1 Transfer Complete Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 9 SPF1IE: SPI1 Fault Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 8 T3IE: Timer3 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 7 T2IE: Timer2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 6 OC2IE: Output Compare Channel 2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 5 IC2IE: Input Capture Channel 2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 4 Unimplemented: Read as ‘0’

bit 3 T1IE: Timer1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled

bit 0 INT0IE: External Interrupt 0 Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
 2010 Microchip Technology Inc. DS39951C-page 77

PIC24FJ64GA104 FAMILY
REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

bit 15 bit 8

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— AD1IP2 AD1IP1 AD1IP0 — U1TXIP2 U1TXIP1 U1TXIP0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as ‘0’

bit 6-4 AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 3 Unimplemented: Read as ‘0’

bit 2-0 U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled
 2010 Microchip Technology Inc. DS39951C-page 85

PIC24FJ64GA104 FAMILY
REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0

— T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0

bit 15 bit 8

U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0

— OC3IP2 OC3IP1 OC3IP0 — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’

bit 14-12 T4IP<2:0>: Timer4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 11 Unimplemented: Read as ‘0’

bit 10-8 OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 7 Unimplemented: Read as ‘0’

bit 6-4 OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as ‘0’
DS39951C-page 88 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
bit 7 CLKLOCK: Clock Selection Lock Enabled bit

If FSCM is enabled (FCKSM1 = 1):
1 = Clock and PLL selections are locked
0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit

If FSCM is disabled (FCKSM1 = 0):
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.

bit 6 IOLOCK: I/O Lock Enable bit(2)

1 = I/O lock is active
0 = I/O lock is not active

bit 5 LOCK: PLL Lock Status bit(3)
1 = PLL module is in lock or PLL module start-up timer is satisfied
0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled

bit 4 Unimplemented: Read as ‘0’

bit 3 CF: Clock Fail Detect bit

1 = FSCM has detected a clock failure
0 = No clock failure has been detected

bit 2 POSCEN: Primary Oscillator Sleep Enable bit

1 = Primary Oscillator continues to operate during Sleep mode
0 = Primary Oscillator disabled during Sleep mode

bit 1 SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit

1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

1 = Initiate an oscillator switch to clock source specified by NOSC<2:0> bits
0 = Oscillator switch is complete

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.

2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In
addition, if the IOL1WAY Configuration bit is ‘1’, once the IOLOCK bit is set, it cannot be cleared.

3: Also resets to ‘0’ during any valid clock switch or whenever a non-PLL clock mode is selected.
DS39951C-page 104 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
9.2.4.3 Exiting Deep Sleep Mode

Deep Sleep mode exits on any one of the following events:

• POR event on VDD supply. If there is no DSBOR
circuit to re-arm the VDD supply POR circuit, the
external VDD supply must be lowered to the
natural arming voltage of the POR circuit.

• DSWDT time-out. When the DSWDT timer times
out, the device exits Deep Sleep.

• RTCC alarm (if RTCEN = 1).

• Assertion (‘0’) of the MCLR pin.

• Assertion of the INT0 pin (if the interrupt was
enabled before Deep Sleep mode was entered).
The polarity configuration is used to determine the
assertion level (‘0’ or ‘1’) of the pin that will cause
an exit from Deep Sleep mode. Exiting from Deep
Sleep mode requires a change on the INT0 pin
while in Deep Sleep mode.

Exiting Deep Sleep mode generally does not retain the
state of the device and is equivalent to a Power-on
Reset (POR) of the device. Exceptions to this include
the RTCC (if present), which remains operational
through the wake-up, the DSGPRx registers and the
DSWDT bit.

Wake-up events that occur from the time Deep Sleep
exits, until the time that the POR sequence completes,
are ignored, and are not captured in the DSWAKE
register.

The sequence for exiting Deep Sleep mode is:

1. After a wake-up event, the device exits Deep
Sleep and performs a POR. The DSEN bit is
cleared automatically. Code execution resumes
at the Reset vector.

2. To determine if the device exited Deep Sleep,
read the Deep Sleep bit, DPSLP (RCON<10>).
This bit will be set if there was an exit from Deep
Sleep mode. If the bit is set, clear it.

3. Determine the wake-up source by reading the
DSWAKE register.

4. Determine if a DSBOR event occurred during
Deep Sleep mode by reading the DSBOR bit
(DSCON<1>).

5. If application context data has been saved, read
it back from the DSGPR0 and DSGPR1
registers.

6. Clear the RELEASE bit (DSCON<0>).

9.2.4.4 Deep Sleep Wake-up Time

Since wake-up from Deep Sleep results in a POR, the
wake-up time from Deep Sleep is the same as the
device POR time. Also, because the internal regulator
is turned off, the voltage on VCAP may drop depending
on how long the device is asleep. If VCAP has dropped
below 2V, then there will be additional wake-up time
while the regulator charges VCAP.

Deep Sleep wake-up time is specified in Section 28.0
“Electrical Characteristics” as TDSWU. This specifi-
cation indicates the worst-case wake-up time, including
the full POR Reset time (including TPOR and TRST), as
well as the time to fully charge a 10 F capacitor on
VCAP which has discharged to 0V. Wake-up may be
significantly faster if VCAP has not discharged.

9.2.4.5 Saving Context Data with the
DSGPR0/DSGPR1 Registers

As exiting Deep Sleep mode causes a POR, most
Special Function Registers reset to their default POR
values. In addition, because VDDCORE power is not
supplied in Deep Sleep mode, information in data RAM
may be lost when exiting this mode.

Applications which require critical data to be saved
prior to Deep Sleep may use the Deep Sleep General
Purpose registers, DSGPR0 and DSGPR1, or data
EEPROM (if available). Unlike other SFRs, the con-
tents of these registers are preserved while the device
is in Deep Sleep mode. After exiting Deep Sleep,
software can restore the data by reading the registers
and clearing the RELEASE bit (DSCON<0>).

9.2.4.6 I/O Pins During Deep Sleep

During Deep Sleep, the general purpose I/O pins retain
their previous states and the Secondary Oscillator
(SOSC) will remain running, if enabled. Pins that are
configured as inputs (TRIS bit is set) prior to entry into
Deep Sleep remain high-impedance during Deep
Sleep. Pins that are configured as outputs (TRIS bit is
clear) prior to entry into Deep Sleep remain as output
pins during Deep Sleep. While in this mode, they
continue to drive the output level determined by their
corresponding LAT bit at the time of entry into Deep
Sleep.

Note: Any interrupt pending when entering Deep
Sleep mode is cleared.
DS39951C-page 114 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
14.3.1 PWM PERIOD

In edge aligned PWM mode, the period is specified by
the value of OCxRS register. In center aligned PWM
mode, the period of the synchronization source such as
Timer's PRy specifies the period. The period in both
cases can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM
PERIOD(1)

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the
OCxRS and OCxR registers. The OCxRS and OCxR
registers can be written to at any time, but the duty
cycle value is not latched until a period is complete.
This provides a double buffer for the PWM duty cycle
and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty
cycle include:

• Edge-Aligned PWM

- If OCxR and OCxRS are loaded with 0000h,
the OCx pin will remain low (0% duty cycle).

- If OCxRS is greater than OCxR, the pin will
remain high (100% duty cycle).

• Center-Aligned PWM (with TMRy as the sync
source)

- If OCxR, OCxRS and PRy are all loaded with
0000h, the OCx pin will remain low (0% duty
cycle).

- If OCxRS is greater than PRy, the pin will go
high (100% duty cycle).

See Example 14-1 for PWM mode timing details.
Table 14-1 and Table 14-2 show example PWM
frequencies and resolutions for a device operating at
4 MIPS and 10 MIPS, respectively.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION(1)

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)

PWM Period = [Value + 1] x TCY x (Prescaler Value)

Value = OCxRS in Edge-Aligned PWM modeWhere:

Note 1: Based on TCY = TOSC * 2; Doze mode
and PLL are disabled.

and can be PRy in Center-Aligned PWM mode
(If TMRy is the sync source).

()
Maximum PWM Resolution (bits) =

 FCY

 FPWM • (Prescale Value)
log10

log10(2)
bits

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

1. Find the OCxRS register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device
clock rate) and a prescaler setting of 1:1 using Edge-Aligned PWM mode.

TCY = 2 * TOSC = 62.5 ns
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 s
PWM Period = (OCxRS + 1) • TCY • (OCx Prescale Value)
19.2 s = (OCxRS + 1) • 62.5 ns • 1
OCxRS = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = log10(FCY/FPWM)/log102) bits
= (log10(16 MHz/52.08 kHz)/log102) bits
= 8.3 bits

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.
 2010 Microchip Technology Inc. DS39951C-page 159

PIC24FJ64GA104 FAMILY
bit 5 ACKDT: Acknowledge Data bit (When operating as I2C master. Applicable during master receive.)

Value that will be transmitted when the software initiates an Acknowledge sequence.
1 = Sends NACK during Acknowledge
0 = Sends ACK during Acknowledge

bit 4 ACKEN: Acknowledge Sequence Enable bit
(When operating as I2C master. Applicable during master receive.)

1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware
clear at end of master Acknowledge sequence.

0 = Acknowledge sequence is not in progress

bit 3 RCEN: Receive Enable bit (when operating as I2C master)

1 = Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.
0 = Receive sequence is not in progress

bit 2 PEN: Stop Condition Enable bit (when operating as I2C master)

1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.
0 = Stop condition is not in progress

bit 1 RSEN: Repeated Start Condition Enabled bit (when operating as I2C master)

1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master
Repeated Start sequence.

0 = Repeated Start condition is not in progress

bit 0 SEN: Start Condition Enabled bit (when operating as I2C master)

1 = Initiates Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.
0 = Start condition is not in progress

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)
 2010 Microchip Technology Inc. DS39951C-page 179

PIC24FJ64GA104 FAMILY
17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud
Rate Generator. The UxBRG register controls the
period of a free-running, 16-bit timer. Equation 17-1
shows the formula for computation of the baud rate
with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH
BRGH = 0(1,2)

Example 17-1 shows the calculation of the baud rate
error for the following conditions:

• FCY = 4 MHz

• Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is
FCY/16 (for UxBRG = 0) and the minimum baud rate
possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of
the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH
BRGH = 1(1,2)

The maximum baud rate (BRGH = 1) possible is FCY/4
(for UxBRG = 0) and the minimum baud rate possible
is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the
BRG timer to be reset (cleared). This ensures the BRG
does not wait for a timer overflow before generating the
new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)(1)

Note 1: FCY denotes the instruction cycle clock
frequency (FOSC/2).

2: Based on FCY = FOSC/2, Doze mode
and PLL are disabled.

Baud Rate =
FCY

16 • (UxBRG + 1)

FCY

16 • Baud Rate
UxBRG = – 1

Baud Rate =
FCY

4 • (UxBRG + 1)

FCY

4 • Baud Rate
UxBRG = – 1

Note 1: FCY denotes the instruction cycle clock
frequency.

2: Based on FCY = FOSC/2, Doze mode
and PLL are disabled.

Desired Baud Rate = FCY/(16 (UxBRG + 1))

Solving for UxBRG Value:

UxBRG = ((FCY/Desired Baud Rate)/16) – 1
UxBRG = ((4000000/9600)/16) – 1
UxBRG = 25

Calculated Baud Rate = 4000000/(16 (25 + 1))
= 9615

Error = (Calculated Baud Rate – Desired Baud Rate)
Desired Baud Rate

= (9615 – 9600)/9600
= 0.16%

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.
DS39951C-page 184 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
19.2 RTCC Module Registers

The RTCC module registers are organized into three
categories:

• RTCC Control Registers

• RTCC Value Registers

• Alarm Value Registers

19.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and
Alarm Time registers are accessed through
corresponding register pointers. The RTCC Value
register window (RTCVALH and RTCVALL) uses the
RTCPTR bits (RCFGCAL<9:8>) to select the desired
Timer register pair (see Table 19-1).

By writing to the RTCVALH byte, the RTCC Pointer
value (the RTCPTR<1:0> bits) decrements by one until
they reach ‘00’. Once they reach ‘00’, the MINUTES
and SECONDS value will be accessible through
RTCVALH and RTCVALL until the pointer value is
manually changed.

TABLE 19-1: RTCVAL REGISTER MAPPING

The Alarm Value register window (ALRMVALH and
ALRMVALL) uses the ALRMPTR bits
(ALCFGRPT<9:8>) to select the desired Alarm register
pair (see Table 19-2).

By writing to the ALRMVALH byte, the Alarm Pointer
value (ALRMPTR<1:0> bits) decrements by one until
they reach ‘00’. Once they reach ‘00’, the ALRMMIN
and ALRMSEC value will be accessible through
ALRMVALH and ALRMVALL until the pointer value is
manually changed.

TABLE 19-2: ALRMVAL REGISTER
MAPPING

Considering that the 16-bit core does not distinguish
between 8-bit and 16-bit read operations, the user must
be aware that when reading either the ALRMVALH or
ALRMVALL bytes, the ALRMPTR<1:0> value will be
decremented. The same applies to the RTCVALH or
RTCVALL bytes with the RTCPTR<1:0> being
decremented.

19.2.2 WRITE LOCK

To perform a write to any of the RTCC Timer registers,
the RTCWREN bit (RCFGCAL<13>) must be set (refer
to Example 19-1).

19.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected
using the Flash Configuration bit, RTCOSC (CW4<5>).
When the bit is set to ‘1’, the Secondary Oscillator
(SOSC) is used as the reference clock, and when the
bit is ‘0’, LPRC is used as the reference clock.

EXAMPLE 19-1: SETTING THE RTCWREN BIT

RTCPTR<1:0>
RTCC Value Register Window

RTCVAL<15:8> RTCVAL<7:0>

00 MINUTES SECONDS

01 WEEKDAY HOURS

10 MONTH DAY

11 — YEAR

ALRMPTR
<1:0>

Alarm Value Register Window

ALRMVAL<15:8> ALRMVAL<7:0>

00 ALRMMIN ALRMSEC

01 ALRMWD ALRMHR

10 ALRMMNTH ALRMDAY

11 — —

Note: This only applies to read operations and
not write operations.

Note: To avoid accidental writes to the timer, it is
recommended that the RTCWREN bit
(RCFGCAL<13>) is kept clear at any
other time. For the RTCWREN bit to be
set, there is only one instruction cycle time
window allowed between the 55h/AA
sequence and the setting of RTCWREN;
therefore, it is recommended that code
follow the procedure in Example 19-1.

asm volatile(“push w7”);
asm volatile(“push w8”);
asm volatile(“disi #5”);
asm volatile(“mov #0x55, w7”);
asm volatile(“mov w7, _NVMKEY”);
asm volatile(“mov #0xAA, w8”);
asm volatile(“mov w8, _NVMKEY”);
asm volatile(“bset _RCFGCAL, #13”); //set the RTCWREN bit
asm volatile(“pop w8”);
asm volatile(“pop w7”);
DS39951C-page 202 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS
(COMPARATORS 1 THROUGH 3)

R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R-0

CEN COE CPOL — — — CEVT COUT

bit 15 bit 8

R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0

EVPOL1 EVPOL0 — CREF — — CCH1 CCH0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 CEN: Comparator Enable bit

1 = Comparator is enabled
0 = Comparator is disabled

bit 14 COE: Comparator Output Enable bit

1 = Comparator output is present on the CxOUT pin.
0 = Comparator output is internal only

bit 13 CPOL: Comparator Output Polarity Select bit

1 = Comparator output is inverted
0 = Comparator output is not inverted

bit 12-10 Unimplemented: Read as ‘0’

bit 9 CEVT: Comparator Event bit

1 = Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are
disabled until the bit is cleared

0 = Comparator event has not occurred

bit 8 COUT: Comparator Output bit

When CPOL = 0:
1 = VIN+ > VIN-
0 = VIN+ < VIN-

When CPOL = 1:
1 = VIN+ < VIN-
0 = VIN+ > VIN-

bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits

11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
10 = Trigger/event/interrupt generated on transition of the comparator output:

If CPOL = 0 (non-inverted polarity):
High-to-low transition only.

If CPOL = 1 (inverted polarity):
Low-to-high transition only.

01 = Trigger/event/interrupt generated on transition of comparator output:

If CPOL = 0 (non-inverted polarity):
Low-to-high transition only.

If CPOL = 1 (inverted polarity):
High-to-low transition only.

00 = Trigger/event/interrupt generation is disabled

bit 5 Unimplemented: Read as ‘0’
 2010 Microchip Technology Inc. DS39951C-page 231

PIC24FJ64GA104 FAMILY
PWRSAV PWRSAV #lit1 Go into Sleep or Idle mode 1 1 WDTO, Sleep

RCALL RCALL Expr Relative Call 1 2 None

RCALL Wn Computed Call 1 2 None

REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None

REPEAT Wn Repeat Next Instruction (Wn) + 1 times 1 1 None

RESET RESET Software Device Reset 1 1 None

RETFIE RETFIE Return from Interrupt 1 3 (2) None

RETLW RETLW #lit10,Wn Return with Literal in Wn 1 3 (2) None

RETURN RETURN Return from Subroutine 1 3 (2) None

RLC RLC f f = Rotate Left through Carry f 1 1 C, N, Z

RLC f,WREG WREG = Rotate Left through Carry f 1 1 C, N, Z

RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C, N, Z

RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N, Z

RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N, Z

RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N, Z

RRC RRC f f = Rotate Right through Carry f 1 1 C, N, Z

RRC f,WREG WREG = Rotate Right through Carry f 1 1 C, N, Z

RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C, N, Z

RRNC RRNC f f = Rotate Right (No Carry) f 1 1 N, Z

RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N, Z

RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N, Z

SE SE Ws,Wnd Wnd = Sign-Extended Ws 1 1 C, N, Z

SETM SETM f f = FFFFh 1 1 None

SETM WREG WREG = FFFFh 1 1 None

SETM Ws Ws = FFFFh 1 1 None

SL SL f f = Left Shift f 1 1 C, N, OV, Z

SL f,WREG WREG = Left Shift f 1 1 C, N, OV, Z

SL Ws,Wd Wd = Left Shift Ws 1 1 C, N, OV, Z

SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N, Z

SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N, Z

SUB SUB f f = f – WREG 1 1 C, DC, N, OV, Z

SUB f,WREG WREG = f – WREG 1 1 C, DC, N, OV, Z

SUB #lit10,Wn Wn = Wn – lit10 1 1 C, DC, N, OV, Z

SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 C, DC, N, OV, Z

SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 C, DC, N, OV, Z

SUBB SUBB f f = f – WREG – (C) 1 1 C, DC, N, OV, Z

SUBB f,WREG WREG = f – WREG – (C) 1 1 C, DC, N, OV, Z

SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 C, DC, N, OV, Z

SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 C, DC, N, OV, Z

SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 C, DC, N, OV, Z

SUBR SUBR f f = WREG – f 1 1 C, DC, N, OV, Z

SUBR f,WREG WREG = WREG – f 1 1 C, DC, N, OV, Z

SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 C, DC, N, OV, Z

SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 C, DC, N, OV, Z

SUBBR SUBBR f f = WREG – f – (C) 1 1 C, DC, N, OV, Z

SUBBR f,WREG WREG = WREG – f – (C) 1 1 C, DC, N, OV, Z

SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 C, DC, N, OV, Z

SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 C, DC, N, OV, Z

SWAP SWAP.b Wn Wn = Nibble Swap Wn 1 1 None

SWAP Wn Wn = Byte Swap Wn 1 1 None

TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly
Mnemonic

Assembly Syntax Description
of

Words
of

Cycles
Status Flags

Affected
DS39951C-page 260 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
�������	
�����	����	����	��	����	
������	����	�	���	��	��� 	!���"
#�$	%&''	��	(�)��	��)�$

���* 2���%��&� %��!���%�
��*���"��)��� '�
�� � �%����������
����*�������
��$���%��������%"��%�
�%%
133)))�&�������
���&3
��*�����
DS39951C-page 286 2010 Microchip Technology Inc.

PIC24FJ64GA104 FAMILY
�������	+��)) 	
�����	0���	/)���)�	�+
�	�	1%%	���	��� 	!+
0/
"

����*
�� �������� !�����"#�$�%!��&�������'�(!%�&! %�(�����%"�)�%����%����%��"�����
�� ?������$����%�0�����%�� %���
+� ��&� ��� �����"�,��"����%�����!"�&��"�$�� �����
��%�! ��� �����"�$�� �����
��%�! ��� � �������%�#�"�����C�
�� �"�
�� ��&� ���������"�%����������
�����,�-���.��

/�01 /� �����&� ���������%�������#��%����!� ��)��)�%��!%�%������ �

���* 2���%��&� %��!���%�
��*���"��)��� '�
�� � �%����������
����*�������
��$���%��������%"��%�
�%%
133)))�&�������
���&3
��*�����

4��% �60;,�
��&� ����5�&�% ��6 67� ��8

6!&(���$���� 6 �9
��%�� �����/�0
��
�%����%�������� � > > ����
���""����*�������*� �� ���� ��+. ��.�
/� �%����%�������� �� ���. > >
���!�"��%�����!�"��<�"%� , ���� �+�� �++.
���""����*���<�"%� ,� ���� ��9. ���.
7������5��%� � ��+�. ��+:. �����
��
�%����%�������� 5 ���� ��+� ��.�
5�"�����*� � ���9 ���� ���.
4

��5�"�<�"%� (� ���� ��.� ����
5�)��5�"�<�"%� (���� ���9 ����
7��������)��
�������? / > > ��+�

NOTE 1

N

1 2

D

E1

eB

c

E

L

A2

eb

b1A1

A

3

��������
 ��������� ���)��� 0��	���/
 2010 Microchip Technology Inc. DS39951C-page 289

PIC24FJ64GA104 FAMILY
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
 2010 Microchip Technology Inc. DS39951C-page 295

PIC24FJ64GA104 FAMILY
APPENDIX A: REVISION HISTORY

Revision A (August 2009)

Original data sheet for the PIC24FJ64GA104 family of
devices.

Revision B (October 2009)

Corrected Section 10.3 “Input Change Notification”
regarding the number of ICN inputs and the availability
of pull-downs.

Updated Section 10.4.2 “Available Peripherals” by
removing the Timer 1 clock input from Table 10-2.

Updated Section 28.1 “DC Characteristics” as
follows:

• Added new specifications to Tables 29-4 and 29-5
for IDD and IIDLE at 0.5 MIPS operation.

• Updated Table 29-4 with revised maximum IDD
specifications for 1 MIP and 4 MIPS.

• Renumbered the parameters for the delta IPD
current (32 kHz, SOSCEL = 11) from DC62n to
DC63n.

Revision C (August 2010)

This revision includes the following updates:

Pin Diagrams

• Updated Pin 7 and Pin 14 in 28-Pin SPDIP, SOIC.

• Updated the device name, Pin13 and Pin 23, in
28-Pin QFN.

Removed IEC5, IFS5 and IPC21 rows from Table 4-5.

Updated CLKDIV bit details in Table 4-23.

Removed JTAG from Flash programming list in
Section 5.0 “Flash Program Memory”.

Updated Section 10.4.5 “Considerations for
Peripheral Pin Selection” as follows:

• Replaced the code in Example 10-2.

• Added the new code as Example 10-3.

Updated shaded note in Section 20.0 “32-Bit Pro-
grammable Cyclic Redundancy Check (CRC)
Generator” and Section 22.0 “Triple Comparator
Module”.

Updated Section 28.1 “DC Characteristics” as
follows:

• Updated the device name in Table 28-1.

• Added the “125°C data” in
Table 28-4,Table 28-5,Table 28-6 and Table 28-7.

• Updated Min and Typ columns of DC16 in
Table 28-3.

• Added rows, AD08 and AD09, in Table 28-22.

• Added Figure 28-2.

Added the 28-pin SSOP package to Section 29.0
“Packaging Information”.
 2010 Microchip Technology Inc. DS39951C-page 297

