

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga102t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28/44-Pin, 16-Bit General Purpose Flash Microcontrollers with nanoWatt XLP Technology

Power Management Modes:

- Selectable Power Management modes with nanoWatt XLP Technology for Extremely Low Power:
 - Deep Sleep mode allows near total power-down (20 nA typical and 500 nA with RTCC or WDT), along with the ability to wake-up on external triggers, or self-wake on programmable WDT or RTCC alarm
 - Extreme low-power DSBOR for Deep Sleep, LPBOR for all other modes
 - Sleep mode shuts down peripherals and core for
 - substantial power reduction, fast wake-up - Idle mode shuts down the CPU and peripherals for
 - significant power reduction, down to 4.5 μA typical Doze mode enables CPU clock to run slower than
 - peripherals
 Alternate Clock modes allow on-the-fly switching to a lower clock speed for selective power reduction during Run mode, down to 15 μA typical

High-Performance CPU:

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator with:
 - 4x PLL option
 - Multiple divide options
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/integer Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture:
- 76 base instructions
- Flexible addressing modes
- Linear Program Memory Addressing, up to 12 Mbytes
- Linear Data Memory Addressing, up to 64 Kbytes
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Special Microcontroller Features:

- Operating Voltage Range of 2.0V to 3.6V
- Self-Reprogrammable under Software Control
- 5.5V Tolerant Input (digital pins only)
- High-Current Sink/Source (18 mA/18 mA) on All I/O pins

Special Microcontroller Features (continued):

- Flash Program Memory:
 - 10,000 erase/write cycle endurance (minimum)
 - 20-year data retention minimum
 - Selectable write protection boundary
- Fail-Safe Clock Monitor Operation:
 - Detects clock failure and switches to on-chip FRC Oscillator
- On-Chip 2.5V Regulator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Two Flexible Watchdog Timers (WDT) for Reliable Operation:
- Standard programmable WDT for normal operation
 Extreme low-power WDT with programmable
- period of 2 ms to 26 days for Deep Sleep mode • In-Circuit Serial Programming™ (ICSP™) and
- In-Circuit Debug (ICD) via 2 Pins
- JTAG Boundary Scan Support

Analog Features:

- 10-Bit, up to 13-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Three Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
- Supports capacitive touch sensing for touch screens and capacitive switches
- Provides high-resolution time measurement and simple temperature sensing

		гу			Rem	appable	Periph	erals							
PIC24FJ Device	Pins	Program Memo (Bytes)	SRAM (Bytes)	Remappable Pins	Timers 16-Bit	Capture Input	Compare/PWM Output	UART w/ IrDA [®]	IdS	I²C™	10-Bit A/D (ch)	Comparators	PMP/PSP	RTCC	CTMU
32GA102	28	32K	8K	16	5	5	5	2	2	2	10	3	Y	Y	Y
64GA102	28	64K	8K	16	5	5	5	2	2	2	10	3	Y	Y	Y
32GA104	44	32K	8K	26	5	5	5	2	2	2	13	3	Y	Y	Y
64GA104	44	64K	8K	26	5	5	5	2	2	2	13	3	Y	Y	Y

TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

	F	Pin Number					
Function	28-Pin SPDIP/ SOIC/SSOP	28-Pin QFN	44-Pin QFN/ TQFP	I/O	Input Buffer	Description	
VCAP	20	17	7	Р	—	External Filter Capacitor Connection (regulator enabled).	
Vdd	13, 28	10, 25	28, 40	Р	_	Positive Supply for Peripheral Digital Logic and I/O Pins.	
VDDCORE	20	17	7	Р	—	Positive Supply for Microcontroller Core Logic (regulator disabled).	
VREF-	3	28	20	Ι	ANA	A/D and Comparator Reference Voltage (low) Input.	
VREF+	2	27	19	Ι	ANA	A/D and Comparator Reference Voltage (high) Input.	
Vss	8, 27	5, 24	29, 39	Р	_	Ground Reference for Logic and I/O Pins.	

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 3-1: CPU CORE REGISTERS	TABLE 3-1:	CPU CORE REGISTERS
-------------------------------	------------	--------------------

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

FIGURE 3-2:	PROGRAMMER'S MODEL
-------------	--------------------

5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-7).

EXAMPLE 5-7: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (ASSEMBLY LANGUAGE CODE)

; Setup a MOV MOV MOV	<pre>pointer to data Program Memory #tblpage(PROG_ADDR), W0 W0, TBLPAG #tbloffset(PROG_ADDR), W0</pre>	; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Initialize PM Page Boundary SFR Initialize a register with program memory address
MOV	#LOW_WORD, W2	;	
MOV	#HIGH_BYTE, W3	;	
TBLWTL	W2, [W0]	;	Write PM low word into program latch
TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
; Setup NV MOV MOV	MCON for programming one word t #0x4003, W0 W0, NVMCON	to ; ;	data Program Memory Set NVMOP bits to 0011
DISI	#5	;	Disable interrupts while the KEY sequence is written
MOV	#0x55, W0	;	Write the key sequence
MOV	W0, NVMKEY		
MOV	#0xAA, W0		
MOV	W0, NVMKEY		
BSET	NVMCON, #WR	;	Start the write cycle
NOP		;	Insert two NOPs after the erase
NOP		;	Command is asserted

EXAMPLE 5-8: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY (C LANGUAGE CODE)

// C example using MPLAB C30	
unsigned int offset; unsigned long progAddr = 0xXXXXXX; unsigned int progDataL = 0xXXXX; unsigned char progDataH = 0xXX;	<pre>// Address of word to program // Data to program lower word // Data to program upper byte</pre>
<pre>//Set up NVMCON for word programming NVMCON = 0x4003;</pre>	// Initialize NVMCON
<pre>//Set up pointer to the first memory location to TBLPAG = progAddr>>16; offset = progAddr & 0xFFFF;</pre>	be written // Initialize PM Page Boundary SFR // Initialize lower word of address
<pre>//Perform TBLWT instructions to write latches builtin_tblwtl(offset, progDataL); builtin_tblwth(offset, progDataH); asm("DISI #5"); builtin_write_NVM();</pre>	<pre>// Write to address low word // Write to upper byte // Block interrupts with priority < 7 // for next 5 instructions // C30 function to perform unlock // sequence and set WR</pre>

NOTES:

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 8. "Interrupts" (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

PIC24FJ64GA104 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset which forces the PC to zero. The micro-controller then begins program execution at location 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

U-0	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
		D (1) (D 4 4 4	D 444 A	D # • • •
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	OC2IE	IC2IE	—	ITIE	OCTIE	ICTIE	INTUE
DIL 7							DILL
Leaend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	AD1IE: A/D (Conversion Cor	nplete Interrup	t Enable bit			
	1 = Interrupt	request enable	d abled				
hit 12		RT1 Transmitte	r Interrunt Enal	ole hit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 11	U1RXIE: UAI	RT1 Receiver I	nterrupt Enable	e bit			
	1 = Interrupt	request enable	d				
hit 10		Transfor Com	iDieu	-nabla bit			
	1 = Interrunt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 9	SPF1IE: SPI	1 Fault Interrup	t Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 8	T3IE: Timer3	Interrupt Enab	le bit				
	1 = Interrupt	request enable	0 abled				
bit 7	T2IF: Timer2	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 6	OC2IE: Outp	ut Compare Ch	annel 2 Interru	pt Enable bit			
	1 = Interrupt	request enable	d				
L:1 C		request not ena					
DIT 5	1 = Interrupt	capture Chann	ei ∠ interrupt ⊢ d	nable bit			
	0 = Interrupt	request enable	abled				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 2	OC1IE: Outp	ut Compare Ch	annel 1 Interru	pt Enable bit			
	1 = Interrupt 0 = Interrupt	request enable	0 abled				
bit 1	IC1IE: Input (Capture Chann	el 1 Interrunt F	nable bit			
~	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 0	INTOIE: Exte	rnal Interrupt 0	Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	T4IP2	T4IP1	T4IP0		OC4IP2	OC4IP1	OC4IP0	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
_	OC3IP2	OC3IP1	OC3IP0	—	_	—	_	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	Unimplemen	ted: Read as 'o)'					
bit 14-12	T4IP<2:0>: ⊺	imer4 Interrupt	Priority bits					
	111 = Interru	pt is priority 7 (I	nighest priority	/ interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
	000 = Interru	pt source is dis	abled					
bit 11	Unimplemen	ted: Read as '0)'					
bit 10-8	OC4IP<2:0>:	Output Compa	re Channel 4	Interrupt Priority	y bits			
	111 = Interru	pt is priority 7 (ł	nighest priority	/ interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1						
	000 = Interru	pt source is dis	abled					
bit 7	Unimplemen	ted: Read as ')'					
bit 6-4	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits							
	111 = Interru	pt is priority 7 (i	nignest priority	/ interrupt)				
	•							
	•							
	001 = Interru	pt is priority 1	ablad					
h # 0.0		pi source is dis						
U-6 JIU	Unimplemen	itea: Read as '(J					

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

REGISTER 7-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	—	LVDIP2	LVDIP1	LVDIP0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as	'0'
----------	------------------------	-----

- bit 2-0 LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
 - •
 - 001 = Interrupt is priority 1
 - 000 = Interrupt source is disabled

REGISTER 7-31: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	_		—	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	CTMUIP2	CTMUIP1	CTMUIP0	—	_	—	—	
bit 7							bit 0	
Legend:								

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

10.3 Input Change Notification

The input change notification function of the I/O ports allows the PIC24FJ64GA104 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 31 external inputs that may be selected (enabled) for generating an interrupt request on a Change-of-State.

Registers, CNEN1 and CNEN2, contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin has a weak pull-up connected to it. The pull-up acts as a current source that is connected to the pin. This eliminates the need for external resistors when push button or keypad devices are connected. The pull-ups are separately enabled using the CNPU1 and CNPU2 registers (for pull-ups). Each CN pin has individual control bits for its pull-up. Setting a control bit enables the weak pull-up for the corresponding pin.

When the internal pull-up is selected, the pin pulls up to VDD - 0.7V (typical). Make sure that there is no external pull-up source when the internal pull-ups are enabled, as the voltage difference can cause a current path.

Note:	Pull-ups	on	change	notification	pins	
	should al	ways	be disat	oled wheneve	er the	
	port pin is configured as a digital output.					

10.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select feature provides an alternative to these choices by enabling the user's peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.4.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 25 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "n" is the remappable pin number.

See Table 1-2 for a summary of pinout options in each package offering.

10.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

Peripheral Pin Select is not available for I^2C^{TM} change notification inputs, RTCC alarm outputs or peripherals with analog inputs.

A key difference between pin select and non pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

10.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (for example, OC and UART transmit) take priority over any general purpose digital functions permanently tied to that pin, such as PMP and port I/O. Specialized digital outputs, such as USB functionality, take priority over PPS outputs on the same pin. The pin diagrams at the beginning of this data sheet list peripheral outputs in order of priority. Refer to them for priority concerns on a particular pin.

Unlike devices with fixed peripherals, pin-selectable peripheral inputs never take ownership of a pin. The pin's output buffer is controlled by the pin's TRIS bit setting, or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly, reading the input. If an analog function is enabled on the same pin, the pin-selectable input will be disabled.

10.4.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '11111' and all RPORx registers reset to '00000', all Peripheral Pin Select inputs are tied to Vss and all Peripheral Pin Select outputs are disconnected.

Note:	RP31 does not have to exist on a device
	for the registers to be reset to it, or for
	peripheral pin outputs to be tied to it.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in C or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output. The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pin-selectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use.

Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled, as if it were tied to a fixed pin. Where this happens in the application code (immediately following device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs, nor reconfigure pins with analog functions for digital I/O. If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select.

Example 10-2 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 12-8
 RP5R<4:0>: RP5 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP5 (see Table 10-3 for peripheral function numbers).

 bit 7-5
 Unimplemented: Read as '0'

 bit 4-0
 RP4R<4:0>: RP4 Output Pin Mapping bits
 - Peripheral output number n is assigned to pin, RP4 (see Table 10-3 for peripheral function numbers).

REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** RP7 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP7 (see Table 10-3 for peripheral function numbers).

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** RP6 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP6 (see Table 10-3 for peripheral function numbers).

11.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

HS = Hardware Settable bit

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15							bit 8

R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

R = Readable bit		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	FLTMD:	Fault Mode Select bit		
	1 = Faul	t mode is maintained until the	e Fault source is removed and	the corresponding OCFLT0 bit is
	0 = Faul	t mode is maintained until the	e Fault source is removed and	a new PWM period starts
bit 14	FLTOUT	Fault Out bit		·
	1 = PWN	/I output is driven high on a F	ault	
	0 = PWN	I output is driven low on a Fa	ault	
bit 13	FLTTRIE	N: Fault Output State Select	bit	
	1 = Pin i 0 = Pin l	s forced to an output on a Fa /O condition is unaffected by	a Fault	
bit 12		CMP Invert bit		
	1 = OCx	output is inverted		
	0 = OCx	output is not inverted		
bit 11	Unimple	mented: Read as '0'		
bit 10-9	DCB<1:0	>: OC Pulse-Width Least Sig	gnificant bits ⁽³⁾	
	11 = Del	ay OCx falling edge by 3/4 of	the instruction cycle	
	01 = Del	ay OCx falling edge by 1/2 of	the instruction cycle	
	00 = OC	k falling edge occurs at start o	of the instruction cycle	
bit 8	OC32: C	ascade Two OC Modules Ena	able bit (32-bit operation)	
	1 = Case	ade module operation enable	ed	
bit 7		: OCx Trigger/Sync Select bit		
2	1 = Trigg	er OCx from source designa	ted by SYNCSELx bits	
	0 = Synd	chronize OCx with source des	signated by SYNCSELx bits	
bit 6	TRIGST	T: Timer Trigger Status bit		
	1 = Time	r source has been triggered	and is running	
bit 5			elect hit	
bit 5	1 = 0Cx	nin is tri-stated		
	0 = Outp	ut compare peripheral x conn	nected to OCx pin	
Note 1:	Do not use a	n OC module as its own trigg	er source, either by selecting t	his mode or another equivalent
2.	Use these in	nuts as trigger sources only a	and never as sync sources	
2. 3:	These bits af	fect the rising edge when OC	SINV = 1. The bits have no effectively as the sources.	ct when the
5.	OCM bits (O	CxCON1<1:0>) = 001.		

Legend:

20.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729). The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- · Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 20-1. A simple version of the CRC shift engine is shown in Figure 20-2.

FIGURE 20-2: CRC SHIFT ENGINE DETAIL

20.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

20.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt.

20.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation:
 - Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits
 - e) Configure the data width and shift direction using the DWIDTH and LENDIAN bits
 - f) Select the desired interrupt mode using the CRCISEL bit
- Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left
- Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

20.2 Registers

There are eight registers associated with the module:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 20-1 and Register 20-2) control the operation of the module, and configure the various settings. The CRCXOR registers (Register 20-3 and Register 20-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	<u> </u>	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	CTMUEN: CT	MU Enable bit					
	1 = Module is	s enabled					
	0 = Module is	s disabled					
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	CTMUSIDL: 8	Stop in Idle Mod	de bit				
	1 = Discontin	ue module ope	ration when de	evice enters Idl	le mode		
	0 = Continue	module operat	ion in Idle mod	le			
bit 12	TGEN: Time	Generation Ena	able bit ⁽¹⁾				
	1 = Enables	edge delay gen	eration				
	0 = Disables	edge delay ger	neration				
bit 11	EDGEN: Edg	e Enable bit					
	1 = Edges an	e not blocked					
bit 10			e Enable bit				
bit 10	$1 = Fdge 1 e^{-1}$	vent must occu	r before Edge	2 event can or	cur		
	0 = No edge	sequence is ne	eded	2 00011 0011 00			
bit 9	IDISSEN: Ana	alog Current Sc	ource Control b	bit			
	1 = Analog ci	urrent source o	utput is ground	ded			
	0 = Analog ci	urrent source o	utput is not gro	ounded			
bit 8	CTTRIG: Trig	ger Control bit					
	1 = Trigger of	utput is enabled	d .				
L:1 7		utput is disable					
Dit /	EDG2POL: E	dge 2 Polarity					
	1 = Eage 2 Is 0 = Edge 2 is	s programmed f	or a positive e	age response edge response			
bit 6-5		.0>: Edge 2 Sol	urce Select hit	e			
bit 0 0	11 = CTFD1	nin		5			
	10 = CTED2	pin					
	01 = OC1 mo	dule					
	00 = Timer1 r	nodule					
bit 4	EDG1POL: E	dge 1 Polarity	Select bit				
	1 = Edge 1 is	s programmed f	or a positive e	dge response			
		s programmed t	or a negative (euge response			
N		a a starla a sa litera d	a and an day to				-

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER

Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more information, see **Section 10.4 "Peripheral Pin Select (PPS)"**.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽¹⁾	Мах	Units	ts Conditions					
Power-Down	Current (IPD) ⁽	2)							
DC60	0.05	1.0	μA	-40°C					
DC60a	0.2	1.0	μA	+25°C					
DC60i	2.0	6.5	μA	+60°C	2.0V ⁽³⁾				
DC60b	3.5	12	μA	+85°C					
DC60m	29.9	50	μA	+125°C					
DC60c	0.1	1.0	μA	-40°C					
DC60d	0.4	1.0	μA	+25°C					
DC60j	2.5	15	μA	+60°C	2.5V ⁽³⁾	Base Power-Down Current ⁽⁵⁾			
DC60e	4.2	25	μA	+85°C					
DC60n	36.2	75	μA	+125°C					
DC60f	3.3	9.0	μA	-40°C					
DC60g	3.3	10	μA	+25°C					
DC60k	5.0	20	μA	+60°C	3.3∨ ⁽⁴⁾				
DC60h	7.0	30	μA	+85°C					
DC60p	39.2	80	μA	+125°C					
DC70c	0.003	0.2	μA	-40°C					
DC70d	0.02	0.2	μA	+25°C					
DC70j	0.2	0.35	μA	+60°C	2.5V ⁽⁴⁾				
DC70e	0.51	1.5	μA	+85°C					
DC70a	6.1	12	μA	+125°C		Base Deep Sleep Current			
DC70f	0.01	0.3	μA	-40°C					
DC70g	0.04	0.3	μA	+25°C					
DC70k	0.2	0.5	μA	+60°C	3.3V ⁽⁴⁾				
DC70h	0.71	2.0	μA	+85°C					
DC70b	7.2	16	μA	+125°C					

TABLE 28-6: DC CHARACTERISTICS: POWER-DOWN BASE CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear and the Peripheral Module Disable (PMD) bits for all unused peripherals are set.

3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG is tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 28-11: COMPARATOR SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments		
D300	VIOFF	Input Offset Voltage*		20	40	mV			
D301	VICM	Input Common Mode Voltage*	0	—	Vdd	V			
D302	CMRR	Common Mode Rejection Ratio*	55	—	—	dB			
300	TRESP	Response Time* ⁽¹⁾		150	400	ns			
301	Тмс2оv	Comparator Mode Change to Output Valid [*]	_	—	10	μS			

* Parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 28-12: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments		
VRD310	CVRES	Resolution	VDD/24		Vdd/32	LSb			
VRD311	CVRAA	Absolute Accuracy	—	—	AVDD - 1.5	LSb			
VRD312	CVRur	Unit Resistor Value (R)	—	2k	—	Ω			
VR310	TSET	Settling Time ⁽¹⁾	_	—	10	μS			

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

TABLE 28-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
	Vbg	Band Gap Reference Voltage	1.14	1.2	1.26	V		
	Tbg	Band Gap Reference Start-up Time	-	1	—	ms		
	Vrgout	Regulator Output Voltage	2.35	2.5	2.75	V		
	CEFC	External Filter Capacitor Value	4.7	10	-	μF	Series resistance < 3 Ohm recommended; < 5 Ohm required.	

NOTES: