

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga102t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 7. "Reset" (DS39712).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset

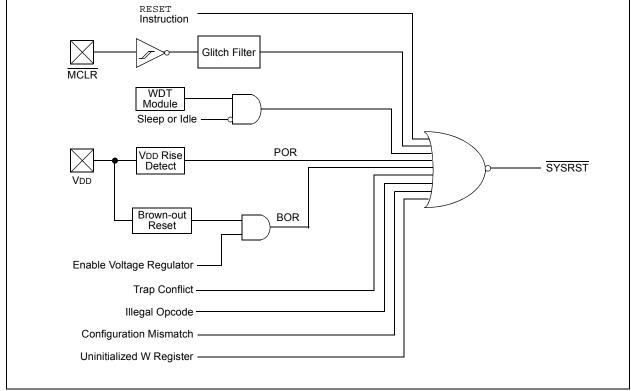
FIGURE 6-1:

- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Refer to the specific peripheral or CPU Note: section of this manual for register Reset states.


All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A Power-on Reset will clear all bits, except for the BOR and POR bits (RCON<1:0>), which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

The status bits in the RCON register Note: should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

RESET SYSTEM BLOCK DIAGRAM

7.3 Interrupt Control and Status Registers

The PIC24FJ64GA104 family of devices implements the following registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- · IEC0 through IEC4
- IPC0 through IPC20 (except IPC13, IPC14 and IPC17)
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or an external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>); these indicate the current CPU interrupt priority level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which, together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

The interrupt controller has the Interrupt Controller Test Register (INTTREG) that displays the status of the interrupt controller. When an interrupt request occurs, its associated vector number and the new interrupt priority level are latched into INTTREG.

This information can be used to determine a specific interrupt source if a generic ISR is used for multiple vectors – such as when ISR remapping is used in bootloader applications. It also could be used to check if another interrupt is pending while in an ISR.

All interrupt registers are described in Register 7-1 through Register 7-32, on the following pages.

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are						
	initialized, such that all user interrupt						
	sources are assigned to priority level 4.						

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

9.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features				
	of this group of PIC24F devices. It is not				
	intended to be a comprehensive reference				
	source. For more information, refer to the				
	"PIC24F Family Reference Manual",				
	Section 39. "Power-Saving Features				
	with Deep Sleep" (DS39727).				

The PIC24FJ64GA104 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep, Idle and Deep Sleep modes
- · Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals except RTCC and DSWDT. It also freezes I/O states and removes power to SRAM and Flash memory. The assembly syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

9.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC with LPRC as clock source is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1:	PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	; Put the device into SLEEP mode
PWRSAV	#IDLE_MODE	; Put the device into IDLE mode
BSET	DSCON, #DSEN	; Enable Deep Sleep
PWRSAV	#SLEEP_MODE	; Put the device into Deep SLEEP mode

REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_			SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK2R<4:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—		RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: RP21 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP21 (see Table 10-3 for peripheral function numbers).
bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP20R<4:0>: RP20 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP20 (see Table 10-3 for peripheral function numbers).

Note 1: This register is unimplemented in 28-pin devices; all bits read as '0'.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP23R<4:0>: RP23 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP23 (see Table 10-3 for peripheral function numbers).

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RP22R<4:0>: RP22 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP22 (see Table 10-3 for peripheral function numbers).

Note 1: This register is unimplemented in 28-pin devices; all bits read as '0'.

12.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

- Two Independent 16-Bit Timers with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- ADC Event Trigger (Timer4/5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the ADC event trigger; this is implemented only with Timer5. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 12-1; T3CON and T5CON are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer4 are the most significant word of the 32-bit timers.

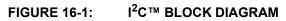
Note:	For 32-bit operation, T3CON and T5CON							
	control bits are ignored. Only T2CON and							
	T4CON control bits are used for setup and							
	control. Timer2 and Timer4 clock and gate							
	inputs are utilized for the 32-bit timer							
	modules, but an interrupt is generated with							
	the Timer3 or Timer5 interrupt flags.							

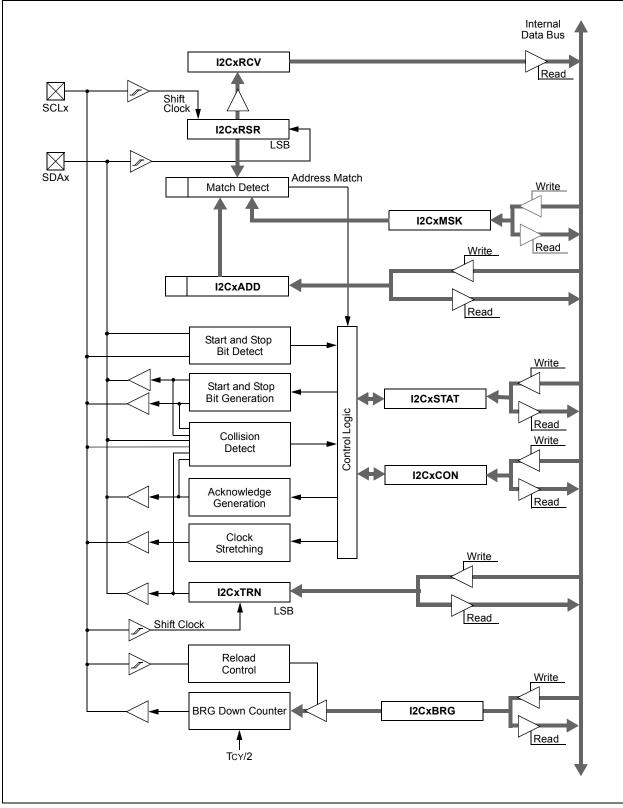
To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE; use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:


- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE; use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	_	TSIDL ⁽¹⁾			—		_				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,2)	—				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	wn				
bit 15	TON: Timery	On bit ⁽¹⁾									
		1 = Starts 16-bit Timery									
	0 = Stops 16	-									
bit 14		ted: Read as '									
bit 13	TSIDL: Stop in Idle Mode bit ⁽¹⁾ 1 = Discontinue module operation when device enters Idle mode										
			ion in Idle mode		emode						
bit 12-7		ted: Read as '									
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾										
	When TCS = 1:										
	This bit is ignored.										
	When TCS = 0:										
	 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled 										
bit 5-4				Select hits(1)							
	TCKPS<1:0>: Timery Input Clock Prescale Select bits ⁽¹⁾ 11 = 1:256										
	10 = 1:64										
	01 = 1:8										
	00 = 1:1		- 1								
bit 3-2	-	ted: Read as '									
bit 1	-	Clock Source S									
		clock from pin	TyCK (on the ri	sing eage)							
bit 0		ted: Read as '	0'								
	Vhen 32-hit oper	ation is enable	d (T2CON<3> (or T4CON<3>	= 1) these hit	s have no effect o	on Timery				
	peration; all time						Shi titilety				
	f TCS = 1, RPIN		-								

Pin Select (PPS)" for more information. 3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: compare events continuously toggle OCx pin
 - 010 = Single Compare Single-Shot mode: initialize OCx pin high, compare event forces OCx pin low
 - 001 = Single Compare Single-Shot mode: initialize OCx pin low, compare event forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
 - **2:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (When operating as I ² C master. Applicable during master receive.)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
DIL 4	(When operating as I ² C master. Applicable during master receive.)
	1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clear at end of master Acknowledge sequence.
	0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enabled bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enabled bit (when operating as I ² C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition is not in progress

RW-0 RW-0 ⁽²⁾ U-0 R/W-0 ⁽²⁾ R/W-0 R/W-0 R/W-0 R/W-0 CSF1 CSF0 ALP — CS1P BEP WRSP RDSP bit 7 bit — CS1P BEP WRSP RDSP bit 7 — Dit — CS1P BEP WRSP RDSP bit 7 — O CS1P BEP WRSP RDSP bit 7 — O = Unimplemented bit, read as '0'	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
RW-0 RW-0 RW-0 ⁽²⁾ U-0 RW-0 ⁽²⁾ RW-0 RW-0 RW-0 CSF1 CSF0 ALP — CS1P BEP WRSP RDSP bit Dit — CS1P BEP WRSP RDSP bit — - CS1P BEP WRSP RDSP bit — - CS1P BEP WRSP RDSP bit — - CS1P BEP WRSP RDSP bit - - Other - CS1P BEP WRSP RDSP bit - - - - Bit - - Bit - - - - - - - - - -	PMPEN		PSIDL	ADRMUX1 ⁽¹⁾	ADRMUX0 ⁽¹⁾	PTBEEN	PTWREN	PTRDEN			
CSF1 CSF0 ALP	bit 15		•					bit 8			
CSF1 CSF0 ALP	D 444 0	D 1110	D (A) (2)		DAM (2)		DAMA				
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown PMPEN: Parallel Master Port Enable bit 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0-: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed o PMA<10:8- 00 = Address and data appear on separate pins 01 = PMEE port is enabled 0 = PMRE port is enabled 0 = PMREPORT is enabled		-	-	0-0		-	-				
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PMPEN: Parallel Master Port Enable bit 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation when device enters Idle mode 0 = Continue module operation when device enters Idle mode 1 = Discontinue module operation when device enters Idle mode 1 = Discontinue module operation when device enters Idle mode 1 = Discontinue module operation when device enters Idle mode 1 = Chartinue module operation when device enters Idle mode 1 = Chartinue module operation when device enters Idle mode 1 = Chartinue module operation when device enters Idle mode 1 = Chartinue module operation when device enters Idle mode 1 = Atl t6 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed of PMA<10.8> 00 = Address and data appear on separate pins 01 = DMBE port is disabled 0 = PMBRP/PMENB port is enabled 0 = PMMRP/PMENB port is enabled 0 = PMMRP/PMENB port is disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMMRP/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0;: Chip Select Function bits 1 = Reserved 1 = PMServed 1 = PMSS1 functions as chip set 1 = Reserved 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)		CSF0	ALP	—	CS1P	BEP	WRSP				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PMPEN: Parallel Master Port Enable bit 1 = PMP is enabled x = Bit is unknown bit 15 PMPEN: Parallel Master Port Enable bit 1 = PMP is enabled x = Bit is unknown bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins 01 = PMEEPits Bits enabled 0 = PMRP/PMENB port is enabled 0 = PMRP/PMENB port is enabled 0 = PMRP/PMENB port is enabled 0 = PMEEPits Bits bit 10 PTBEEN: Read/Write Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMRD/PMWR port is enabled 0 = PMCS1 functions as chip set 1 = PMWR/PMENB port is enabled 0 = PMCS1 functions as chip set <td< td=""><td>bit 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>bit</td></td<>	bit 7							bit			
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PMPEN: Parallel Master Port Enable bit 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits ⁽¹⁾ 1 = Reserved 1 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = All 16 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMEE port is enabled 0 = PMBE port is disabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is enabled 0 = PMBEP ort is disabled 0 = PMWR/PMENB port is disabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is disabled 0 = PMCS1 functions as chip set 1 = Reserved 0 = PMCS1 functions as chip set 1 = Reserved 0 = Reserved 0 = Reserved 0 = Reserved </td <td>Legend:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Legend:										
 PMPEN: Parallel Master Port Enable bit 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed Dit 14 Unimplemented: Read as '0' PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Dit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMD<7:0> pins; upper 3 bits are multiplexed or PMD<7:0> pins; upper 3 bits are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA<10:8> 00 = Address and data appear on separate pins DTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMEE port is disabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled 0 = PMRD/PMWR port is disabled 0 = PMRCS1 functions as chip set 0 = Reserved 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALT and PMALH) 0 = Active-low (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1) 	R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'				
 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed 0 = PMP is disabled, no off-chip access performed 0 = SiDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 1 = Discontinue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Aldress/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA<7:0.8> 00 = Address and data appear on separate pins 01 = PMBE port is enabled 0 = PMBE port is disabled 0 = PMBE port is disabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled 0 = PMRD/PMWR port is disabled 0 = PMCD/PMWR port is disabled 0 = PMCS1 functions as chip set 0 = PMCS1 functions as chip set 0 = Reserved 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMACS1/PMCS1) 0 = Active-low (PMCS1/PMCS1) 	-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ired	x = Bit is unkr	nown			
 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed 0 = PMP is disabled, no off-chip access performed 0 = SiDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 1 = Discontinue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Aldress/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA<7:0.8> 00 = Address and data appear on separate pins 01 = PMBE port is enabled 0 = PMBE port is disabled 0 = PMBE port is disabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled 0 = PMRD/PMWR port is disabled 0 = PMCD/PMWR port is disabled 0 = PMCS1 functions as chip set 0 = PMCS1 functions as chip set 0 = Reserved 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMACS1/PMCS1) 0 = Active-low (PMCS1/PMCS1) 											
 0 = PMP is disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMRD/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 1 = Reserved 0 = PMRD/PMWR port is disabled bit 5 ALP: Address Latch Polarity bit⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1) 	bit 15			rt Enable bit							
bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = All 16 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA-10:8> 00 = Address and data appear on separate pins 00 = Address and data appear on separate pins 01 = PMBE port is enabled 0 = PMBE port is enabled 0 = PMBE port is enabled 0 = PMBE port is enabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is enabled 0 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 10 = PMCS1 functions as chip set 1 = Reserved 10 = Reserved 0 = Reserved 00 = Reserved 0 = Reserved 00 = Reserved 0 = Reserved 01 = Active-high (PMALL and PMALH)					f						
 bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX-1:0>: Address/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on PMD<10> 00 = Address and data appear on separate pins 00 = Address and data appear on separate pins 01 = PMBE port is enabled 0 = PMBE port is disabled 0 = PMBE port is disabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is enabled 0 = PMRD/PMWR port is disabled 0 = Reserved 10 = Reserved 11 = Reserved 12 = Reserved 13 = Reserved 14 = Reserved 15 ALP: Address Latch Polarity bit⁽²⁾ 14 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALS 1/PMCS1) 					errormed						
 a Discontinue module operation when device enters Idle mode a Discontinue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits⁽¹⁾ a Reserved a All 16 bits of address are multiplexed on PMD<7:0> pins bit 10 = All 16 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on PMD a Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) a PMWR/PMENB port is enabled bit 9 PTWREN: Write Enable Strobe Port Enable bit a PMWR/PMENB port is enabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit a PMRD/PMWR port is disabled bit 7-6 CSF<1:0:: Chip Select Function bits a Reserved a PMCS1 functions as chip set a Reserved bit 5 ALP: Address Latch Polarity bit⁽²⁾ a Active-high (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Pola		-									
 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is enabled 0 = PMBE port is disabled 0 = PMRD/PMENB port is enabled 0 = PMRD/PMENB port is enabled 0 = PMRD/PMWR port is disabled 0 = Reserved 10 = PMCS1 functions as chip set 0 = Reserved 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1) 	DIT 13	•			uine entere Idle						
bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMWR/PMENB port is enabled 0 = PMRD/PMWR port is enabled 0 = PMCS1 functions as chip set 0 = Reserved 0 = Active-ligh (PMALL and											
11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed of PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is disabled 0 = PMBE port is disabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 0 = Reserved 0 = Reserved 0 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-high (PMCS1/PMCS1)	bit 12-11										
10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed of PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is disabled 0 = PMBE port is disabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled 0 = PMWR/PMENB port is disabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled 0 = PMCS1 functions as chip set 01 = Reserved 0 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1)	511 12 11										
PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 10 = PMCS1 functions as chip set 0 = Reserved 10 = Reserved 00 = Reserved 10 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)											
00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 10 = PMCS1 functions as chip set 01 = Reserved 10 = Reserved 0 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1) bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)		01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or									
bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode) 1 = PMBE port is enabled 0 = PMBE port is disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved 00 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALC) PMALH bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)											
1 = PMBE port is enabled 0 = PMBE port is disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled 0 = PMCS1 functions as chip set 0 = Reserved 0 = Reserved 0 = Reserved 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)	h:: 40			-	-	-)					
0 = PMBE port is disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved 00 = Reserved 01 = Reserved 02 = Reserved 03 = Reserved 04 = Reserved 05 = Reserved 06 = Reserved 07 = Reserved 08 = Reserved 09 = Reserved 09 = Reserved 09 = Reserved 11 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)	DIT 10			Enable bit (16-	Bit Master mode	e)					
bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1)											
1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved 00 = Reserved 01 = Reserved 02 = Reserved 03 = Reserved 04 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1)	bit 9			be Port Enable	e bit						
0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved 00 = Reserved 01 = Reserved 02 = Reserved 03 = Reserved 04 = Active-high (PMALL and PMALH) 0 = Active-low (PMCS1/PMCS1)											
<pre>1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)</pre>											
 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1) 	bit 8										
bit 7-6 CSF<1:0>: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)		1 = PMRD/PI	MWR port is e	nabled							
11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)											
10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)	bit 7-6	CSF<1:0>: C	hip Select Fun	ction bits							
01 = Reserved 00 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)											
00 = Reserved bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)		•									
1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)											
0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)	bit 5										
bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)											
bit 3 CS1P : Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (<u>PMCS1/PMCS1</u>) 0 = Active-low (<u>PMCS1/PMCS1</u>)	bit 4										
1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)		•									
$0 = \text{Active-low} (\overline{\text{PMCS1}}/\overline{\text{PMCS1}})$	DIT 3			•							
Note 1: PMA<10:2> bits are not available on 28-pin devices.											
	Note 1 P	MA<10 [.] 2> hite a	are not availab	le on 28-nin dev	vices						

REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER

- **Note 1:** PMA<10:2> bits are not available on 28-pin devices.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 24	4-1: CTMU	JCON: CTMU	CONTROL	REGISTER					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMUEN	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN	CTTRIG		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	CTMUEN: CT 1 = Module is	MU Enable bit s enabled							
	0 = Module is	s disabled							
	-	ted: Read as 'o							
		Stop in Idle Moo							
		module ope module operat		evice enters Idl de	e mode				
		Generation Ena							
	1 = Enables edge delay generation								
	0 = Disables edge delay generation								
	EDGEN: Edge Enable bit								
	1 = Edges an 0 = Edges an								
	-		e Enable bit						
	EDGSEQEN: Edge Sequence Enable bit 1 = Edge 1 event must occur before Edge 2 event can occur								
		sequence is ne							
	IDISSEN: Analog Current Source Control bit								
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded 								
	-	ger Control bit	utput is not give	Junueu					
	1 = Trigger o	utput is enable utput is disable							
		dge 2 Polarity							
		s programmed f s programmed f							
bit 6-5	EDG2SEL<1:	:0>: Edge 2 So	urce Select bit	S					
	11 = CTED1 10 = CTED2 01 = OC1 mo 00 = Timer1 r	pin dule							
bit 4	EDG1POL: E	dge 1 Polarity	Select bit						
	1 = Edge 1 is	s programmed f s programmed f	or a positive e						
Note 1: If T	GEN = 1, the	peripheral input	ts and outputs	must be config	ured to an avail	able RPn pin.	For more		

REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER

Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more information, see **Section 10.4 "Peripheral Pin Select (PPS)"**.

REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16
r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1
r	JTAGEN ⁽¹⁾	GCP	GWRP	DEBUG	—	ICS1	ICS0
bit 15							bit 8
R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	_	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0
							Dit

Legend:	r = Reserved bit		
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read	d as '0'
-n = Value when device is unprogrammed		'1' = Bit is set	'0' = Bit is cleared

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit ⁽¹⁾
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	 1 = Device resets into Operational mode 0 = Device resets into Debug mode
bit 10	Unimplemented: Read as '1'
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	 1 = Watchdog Timer is enabled 0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	Unimplemented: Read as '1'
bit 4	FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32
Note 1: 7	The ITAGEN bit can only be modified using In Circuit Serial Programming™ (ICS

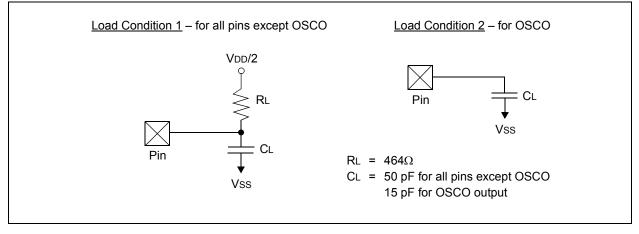
Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming[™] (ICSP[™]). It cannot be modified while connected through the JTAG interface.

TABLE 28-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operati	ing Voltag	e						
DC10	Supply Voltage							
	VDD		2.2	_	3.6	V	Regulator enabled	
	Vdd Vddcore		VDDCORE	-	3.6	V	Regulator disabled	
			2.0		2.75	V	Regulator disabled	
DC12	VDR RAM Data Retention Voltage ⁽²⁾		1.5		—	V		
DC16	VPOR VDD Start Voltage to Ensure Internal Power-on Reset Signal		Vss		—	V		
DC17	SVDD VDD Rise Rate to Ensure Internal Power-on Reset Signal		0.05	_	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	
DC18	VBOR	Brown-out Reset Voltage	—	2.05	—	V		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

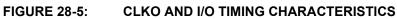
2: This is the limit to which VDD can be lowered without losing RAM data.


28.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ64GA104 family AC characteristics and timing parameters.

TABLE 28-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial and $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 28.1 "DC Characteristics" .					
	operating volage vob range as described in Section 20.1 De Characteristics .					


FIGURE 28-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

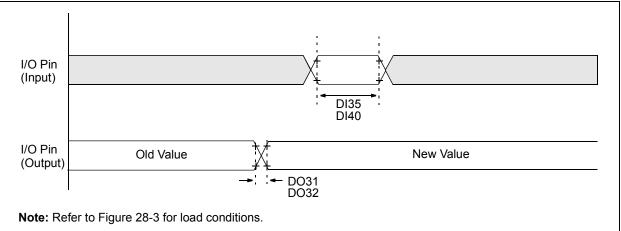


TABLE 28-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_		15	pF	In XT and HS modes when external clock is used to drive OSCI.
DO56	Сю	All I/O Pins and OSCO	—	_	50	pF	EC mode.
DO58	Св	SCLx, SDAx	—	_	400	pF	In l ² C™ mode.

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 28-20: CLKO AND I/O TIMING REQUIREMENTS

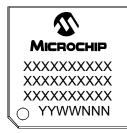
AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max			Units	Conditions	
DO31	TioR	Port Output Rise Time	_	10	25	ns		
DO32	TIOF	Port Output Fall Time	_	10	25	ns		
DI35	Tinp	INTx pin High or Low Time (output)	20	—	_	ns		
DI40	Trbp	CNx High or Low Time (input)	2	—		Тсү		


Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 28-21: RESET, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No. Symbol Characteristic			Min.	Typ ⁽¹⁾	Max.	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	—		μs	
SY11	TPWRT	Power-up Timer Period	_	64		ms	
SY12	TPOR	Power-on Reset Delay	—	2	—	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	100	ns	
SY25	TBOR	Brown-out Reset Pulse Width	1			μS	$V \text{DD} \leq V \text{BOR}$
	TRST	Internal State Reset Time	—	50	—	μS	
	Toswu	Wake-up from Deep Sleep Time	—	200	—	μS	Based on full discharge of 10 µF capacitor on VCAP. Includes TPOR and TRST.
	Трм		—	10		μS	Sleep wake-up with PMSLP = 0 and WUTSEL<1:0> = 11
			—	190	—	μS	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


44-Lead QFN

Example

44-Lead TQFP

Example

NOTES: