

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga104-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

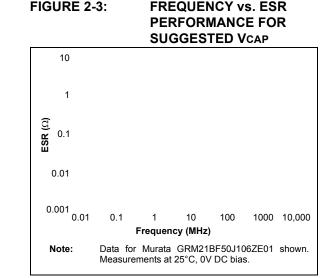
Pin Number						
Function	28-Pin SPDIP/ SOIC/SSOP	28-Pin QFN	44-Pin QFN/ TQFP	I/O	Input Buffer	Description
VCAP	20	17	7	Р	_	External Filter Capacitor Connection (regulator enabled).
Vdd	13, 28	10, 25	28, 40	Р	_	Positive Supply for Peripheral Digital Logic and I/O Pins.
VDDCORE	20	17	7	Р	 Positive Supply for Microcontroller Core Logic (regula disabled). 	
VREF-	3	28	20	I	ANA	A/D and Comparator Reference Voltage (low) Input.
VREF+	2	27	19	I	ANA	A/D and Comparator Reference Voltage (high) Input.
Vss	8, 27	5, 24	29, 39	Р	_	Ground Reference for Logic and I/O Pins.

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

2.4 Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)

Note:	This section applies only to PIC	24FJ
	devices with an on-chip voltage regu	lator.

The on-chip voltage regulator enable/disable pin (ENVREG or DISVREG, depending on the device family) must always be connected directly to either a supply voltage or to ground. The particular connection is determined by whether or not the regulator is to be used:


- For ENVREG, tie to VDD to enable the regulator, or to ground to disable the regulator
- For DISVREG, tie to ground to enable the regulator or to VDD to disable the regulator

Refer to **Section 25.2 "On-Chip Voltage Regulator"** for details on connecting and using the on-chip regulator.

When the regulator is enabled, a low-ESR (<5 Ω) capacitor is required on the VCAP/VDDCORE pin to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. A suitable example is the Murata GRM21BF50J106ZE01 (10 μ F, 6.3V) or equivalent. Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP/VDDCORE. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 28.0 "Electrical Characteristics"** for additional information.

When the regulator is disabled, the VCAP/VDDCORE pin must be tied to a voltage supply at the VDDCORE level. Refer to **Section 28.0 "Electrical Characteristics"** for information on VDD and VDDCORE.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω .

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 26.0 "Development Support"**.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

© 2010	
Microchip	
Technology	
Inc.	

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	—	—	—	—	_	—	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Input Capt	ure 1 Buffe	r Register							0000
IC1TMR	0146								Timer	Value 1 Re	egister							xxxx
IC2CON1	0148	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C		Input Capture 2 Buffer Register							0000								
IC2TMR	014E		Timer Value 2 Register xx						xxxx									
IC3CON1	0150	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	—	_	_	—	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154								Input Capt	ure 3 Buffe	er Register							0000
IC3TMR	0156								Timer	Value 3 Re	egister		-			-		xxxx
IC4CON1	0158	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC4CON2	015A	—	—	_	—	—	—	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C								Input Capt	ure 4 Buffe	er Register							0000
IC4TMR	015E								Timer	Value 4 Re	egister							xxxx
IC5CON1	0160	—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC5CON2	0162	—	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC5BUF	0164								Input Capt	ure 5 Buffe	r Register							0000
IC5TMR	0166								Timer	Value 5 Re	gister							xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/SO-0, HC ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0, HS ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR		—	—	—	—
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	ERASE	—	—	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	WR: Write Control bit ⁽¹⁾
	 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once the operation is complete.
	0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit ⁽¹⁾
	1 = Enable Flash program/erase operations
	0 = Inhibit Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit ⁽¹⁾
	1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit)
	0 = The program or erase operation completed normally
bit 12-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit ⁽¹⁾
	 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command
bit 5-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation Select bits ^(1,2)
	1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0) ⁽³⁾ 0011 = Memory word program operation (ERASE = 0) or no operation (ERASE = 1) 0010 = Memory page erase operation (ERASE = 1) or no operation (ERASE = 0) 0001 = Memory row program operation (ERASE = 0) or no operation (ERASE = 1)
Note 1:	These bits can only be reset on POR.
	All other combinations of NVMOP<3:0> are unimplemented.

3: Available in ICSP[™] mode only. Refer to device programming specification.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred. Note that BOR is also set after a Power-on Reset.
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—
DPSLP (RCON<10>)	PWRSAV #SLEEP instruction with DSCON <dsen> set</dsen>	POR

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC Configuration bits
BOR	(CW2<10:8>)
MCLR	COSC Control bits
WDTO	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the System Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Interrupt Source	Vector	IVT Address	AIVT	Interrupt Bit Locations			
interrupt Source	Number	IVI Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
CTMU Event	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>	
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>	
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
LVD Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>	
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>	
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>	
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>	
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>	
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>	
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>	

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0				
	—	PMPIF	_	—	_	OC5IF					
bit 15							bit				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
IC5IF	IC4IF	IC3IF	—	—	—	SPI2IF	SPF2IF				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15-14	Unimplemen	nted: Read as '0'									
bit 13	PMPIF: Para	llel Master Port I	nterrupt Flag	Status bit							
		request has occu									
		request has not o									
bit 12-10	•	nted: Read as '0'			•••						
bit 9	•	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred									
	•	request has occurrequest has not o									
bit 8	-	nted: Read as '0'									
bit 7	-	Capture Channel		lag Status bit							
	1 = Interrupt request has occurred										
		request has not o									
bit 6	IC4IF: Input Capture Channel 4 Interrupt Flag Status bit										
		request has occu request has not o									
bit 5	•	•		lag Status hit							
DIL J	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred										
		request has not o									
bit 4-2	Unimplemen	nted: Read as '0'	1								
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit										
		request has occu									
	-	request has not o									
bit 0		SPF2IF: SPI2 Fault Interrupt Flag Status bit									
		request has occu									

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE				
bit 15				•			bit				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own				
bit 15-14	Unimplemer	nted: Read as '	0'								
bit 13	AD1IE: A/D	Conversion Cor	nplete Interrupt	t Enable bit							
		request enable request not ena									
bit 12	-	RT1 Transmitte		ole bit							
	1 = Interrupt	request enable	d								
	0 = Interrupt	request not ena	abled								
bit 11		RT1 Receiver li		bit							
		request enable									
bit 10		request not ena		- 							
	SPI1IE: SPI1 Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled										
		request not ena									
bit 9	SPF1IE: SPI1 Fault Interrupt Enable bit										
		request enable request not ena									
bit 8		Interrupt Enab									
		request enable									
		request not ena									
bit 7		Interrupt Enab									
		request enable request not ena									
bit 6		ut Compare Ch		ot Enable bit							
	•	request enable									
	0 = Interrupt request not enabled										
bit 5	IC2IE: Input	Capture Chann	el 2 Interrupt E	nable bit							
		request enable									
	-	request not ena									
bit 4	-	nted: Read as '									
bit 3		Interrupt Enab request enable									
		request not ena									
bit 2	OC1IE: Outp	ut Compare Ch	annel 1 Interru	pt Enable bit							
	1 = Interrupt	request enable	d								
		request not ena									
bit 1	-	Capture Chann		nable bit							
		request enable request not ena									
bit 0		rnal Interrupt 0									
		request enable									

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	CTMUIE	—	—	—	—	LVDIE			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
_	_	—	—	CRCIE	U2ERIE	U1ERIE	—			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-14	Unimplemen	nted: Read as '0	,							
bit 13	CTMUIE: CT	MU Interrupt Ena	able bit							
		request enabled request not enat	bled							
bit 12-9	Unimplemen	ted: Read as '0	,							
bit 8	LVDIE: Low-	Voltage Detect Ir	nterrupt Enab	ole bit						
		request enabled request not enabled	bled							
bit 7-4	-	ted: Read as '0								
bit 3	CRCIE: CRC	Generator Inter	rupt Enable b	bit						
		request enabled request not enat	bled							
bit 2	U2ERIE: UAI	RT2 Error Interru	pt Enable bit	t						
	1 = Interrupt request enabled									
	0 = Interrupt	request not enat	oled							
bit 1		RT1 Error Interru	pt Enable bit	t						
		request enabled	lad							
hit O	•	request not enab								
bit 0	Unimplemen	ted: Read as '0								

9.2.4.3 Exiting Deep Sleep Mode

Deep Sleep mode exits on any one of the following events:

- POR event on VDD supply. If there is no DSBOR circuit to re-arm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit.
- DSWDT time-out. When the DSWDT timer times out, the device exits Deep Sleep.
- RTCC alarm (if RTCEN = 1).
- Assertion ('0') of the $\overline{\text{MCLR}}$ pin.
- Assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level ('0' or '1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode.

Note: Any interrupt pending when entering Deep Sleep mode is cleared.

Exiting Deep Sleep mode generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and the DSWDT bit.

Wake-up events that occur from the time Deep Sleep exits, until the time that the POR sequence completes, are ignored, and are not captured in the DSWAKE register.

The sequence for exiting Deep Sleep mode is:

- 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector.
- To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode. If the bit is set, clear it.
- 3. Determine the wake-up source by reading the DSWAKE register.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>).
- If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers.
- 6. Clear the RELEASE bit (DSCON<0>).

9.2.4.4 Deep Sleep Wake-up Time

Since wake-up from Deep Sleep results in a POR, the wake-up time from Deep Sleep is the same as the device POR time. Also, because the internal regulator is turned off, the voltage on VCAP may drop depending on how long the device is asleep. If VCAP has dropped below 2V, then there will be additional wake-up time while the regulator charges VCAP.

Deep Sleep wake-up time is specified in **Section 28.0 "Electrical Characteristics**" as TDSWU. This specification indicates the worst-case wake-up time, including the full POR Reset time (including TPOR and TRST), as well as the time to fully charge a 10 μ F capacitor on VCAP which has discharged to 0V. Wake-up may be significantly faster if VCAP has not discharged.

9.2.4.5 Saving Context Data with the DSGPR0/DSGPR1 Registers

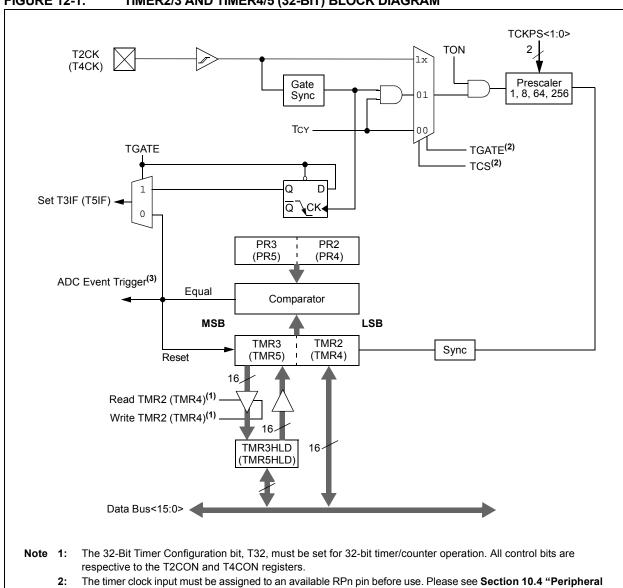
As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VDDCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode.

Applications which require critical data to be saved prior to Deep Sleep may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1, or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).

9.2.4.6 I/O Pins During Deep Sleep

During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRIS bit is set) prior to entry into Deep Sleep remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRIS bit is clear) prior to entry into Deep Sleep remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LAT bit at the time of entry into Deep Sleep. NOTES:

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-13	Unimplement	ted: Read as 'd)'					
bit 12-8	RP25R<5:0>:	RP25 Output	Pin Mapping b	its				


REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

Peripheral output number n is assigned to pin, RP25 (see Table 10-3 for peripheral function numbers).

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP24 (see Table 10-3 for peripheral function numbers).

Note 1: This register is unimplemented in 28-pin devices; all bits read as '0'.

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

Pin Select (PPS)" for more information.

3: The ADC event trigger is available only on Timer 2/3 in 32-bit mode and Timer 3 in 16-bit mode.

13.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 34. "Input Capture with Dedicated Timer" (DS39722).

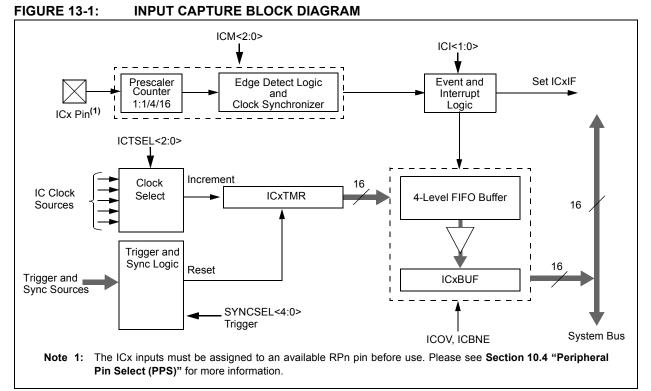
Devices in the PIC24FJ64GA104 family all feature 5 independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 20 user-selectable trigger/sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

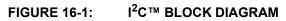
The module is controlled through two registers: ICxCON1 (Register 13-1) and ICxCON2 (Register 13-2). A general block diagram of the module is shown in Figure 13-1.

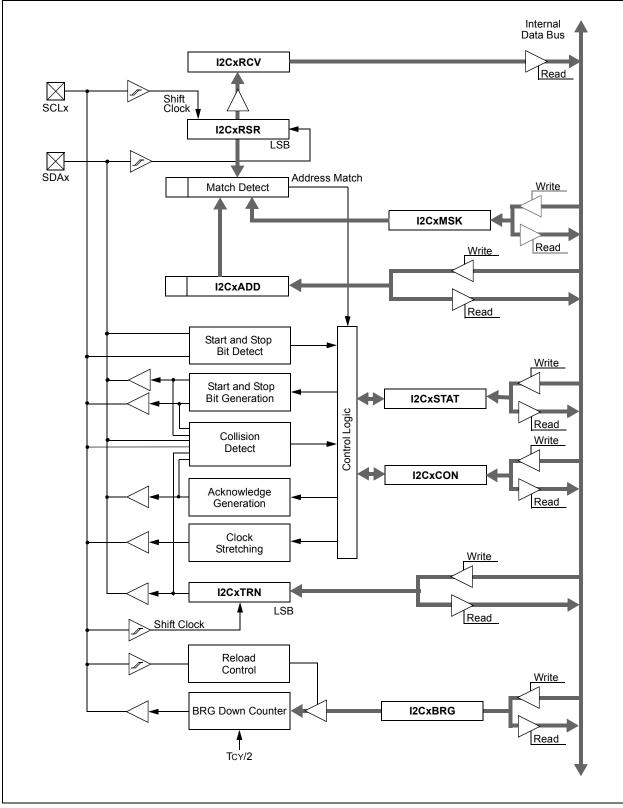
13.1 General Operating Modes


13.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the input capture module operates in a free-running mode. The internal 16-bit counter ICxTMR counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.


Standard, free-running operation is selected by setting the SYNCSEL bits to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.


When the SYNCSEL bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
- 11111 = This OC module⁽¹⁾ 11110 = Reserved 11101 = Reserved 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 100xx = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1 01010 = Input Capture 5⁽²⁾ 01001 = Reserved 01000 = Reserved 00111 = Reserved 00110 = Reserved 00101 = Output Compare 5⁽¹⁾ 00100 = Output Compare $4^{(1)}$ 00011 = Output Compare 3⁽¹⁾ 00010 = Output Compare 2⁽¹⁾ 00001 = Output Compare 1⁽¹⁾ 00000 = Not synchronized to any other module
- Note 1: Do not use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCM bits (OCxCON1<1:0>) = 001.

21.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705).

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- Conversion speeds of up to 500 ksps
- 13 analog input pins
- External voltage reference input pins
- Internal band gap reference inputs
- · Automatic Channel Scan mode
- Selectable conversion trigger source
- 16-word conversion result buffer
- Selectable Buffer Fill modes
- · Four result alignment options
- Operation during CPU Sleep and Idle modes

On all PIC24FJ64GA104 family devices, the 10-bit A/D Converter has 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 21-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure port pins as analog inputs and/or select band gap reference inputs (AD1PCFGL<15:0> and AD1PCFGH<1:0>).
 - b) Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select interrupt rate (AD1CON2<5:2>).
 - g) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select A/D interrupt priority.

25.5.2 CODE SEGMENT PROTECTION

In addition to global General Segment protection, a separate subrange of the program memory space can be individually protected against writes and erases. This area can be used for many purposes where a separate block of erase and write-protected code is needed, such as bootloader applications. Unlike common boot block implementations, the specially protected segment in the PIC24FJ64GA104 family devices can be located by the user anywhere in the program space and configured in a wide range of sizes.

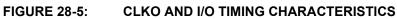
Code segment protection provides an added level of protection to a designated area of program memory, by disabling the NVM safety interlock, whenever a write or erase address falls within a specified range. It does not override General Segment protection controlled by the GCP or GWRP bits. For example, if GCP and GWRP are enabled, enabling segmented code protection for the bottom half of program memory does not undo General Segment protection for the top half.

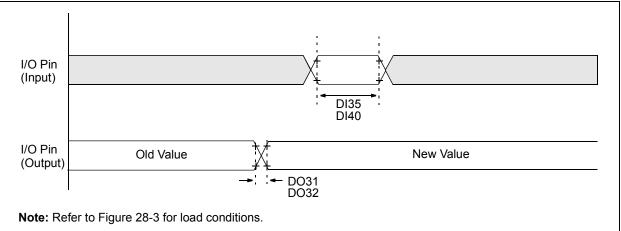
The size and type of protection for the segmented code range are configured by the WPFPx, WPEND, WPCFG and WPDIS bits in Configuration Word 3. Code segment protection is enabled by programming the WPDIS bit (= 0). The WPFP bits specify the size of the segment to be protected by specifying the 512-word code page that is the start or end of the protected segment. The specified region is inclusive, therefore, this page will also be protected.

The WPEND bit determines if the protected segment uses the top or bottom of the program space as a boundary. Programming WPEND (= 0) sets the bottom of program memory (000000h) as the lower boundary of the protected segment. Leaving WPEND unprogrammed (= 1) protects the specified page through the last page of implemented program memory, including the Configuration Word locations. A separate bit, WPCFG, is used to independently protect the last page of program space, including the Flash Configuration Words. Programming WPCFG (= 0) protects the last page, regardless of the other bit settings. This may be useful in circumstances where write protection is needed for both a code segment in the bottom of memory, as well as the Flash Configuration Words.

The various options for segment code protection are shown in Table 25-2.

25.5.3 CONFIGURATION REGISTER PROTECTION


The Configuration registers are protected against inadvertent or unwanted changes, or reads in two ways. The primary protection method is the same as that of the RP registers – shadow registers contain a complimentary value which is constantly compared with the actual value.


To safeguard against unpredictable events, Configuration bit changes resulting from individual cell level disruptions (such as ESD events) will cause a parity error and trigger a device Reset.

The data for the Configuration registers is derived from the Flash Configuration Words in program memory. When the GCP bit is set, the source data for device configuration is also protected as a consequence. Even if General Segment protection is not enabled, the device configuration can be protected by using the appropriate code cement protection setting.

Segmen	Segment Configuration Bits		Segment Configuration Bits Write/Erase Protection of Code Segment		Write/Erace Protection of Code Segment
WPDIS	WPEND	WPCFG	Write/Erase Protection of Code Segment		
1	x	1	No additional protection enabled; all program memory protection is configured by GCP and GWRP		
1	x	0	Last code page protected, including Flash Configuration Words		
0	1	0	Addresses from the first address of code page are defined by WPFP<5:0> through the end of implemented program memory (inclusive) are protected, including Flash Configuration Words		
0	0	0	Address, 000000h, through the last address of code page, defined by WPFP<5:0> (inclusive) is protected		
0	1	1	Addresses from first address of code page, defined by WPFP<5:0> through the end of implemented program memory (inclusive), are protected, including Flash Configuration Words		
0	0	1	Addresses from first address of code page, defined by WPFP<5:0> through the end of implemented program memory (inclusive), are protected		

TABLE 25-2: SEGMENT CODE PROTECTION CONFIGURATION OPTIONS

TABLE 28-20: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TioR	Port Output Rise Time	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	
DI35	Tinp	INTx pin High or Low Time (output)	20	—	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—		Тсү	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 28-21: RESET, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No. Symbol Characteristic				Min. Typ ⁽¹⁾ Max.		Units	Conditions	
SY10	TmcL	MCLR Pulse Width (low)	2	—		μs		
SY11	TPWRT	Power-up Timer Period	_	64		ms		
SY12	TPOR	Power-on Reset Delay	—	2	—	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	100	ns		
SY25	TBOR	Brown-out Reset Pulse Width	1			μS	$V \text{DD} \leq V \text{BOR}$	
	TRST	Internal State Reset Time	—	50	—	μS		
	Toswu	Wake-up from Deep Sleep Time	—	200	—	μS	Based on full discharge of 10 µF capacitor on VCAP. Includes TPOR and TRST.	
	Трм		—	10		μS	Sleep wake-up with PMSLP = 0 and WUTSEL<1:0> = 11	
				190	—	μS		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

INDEX

Α	
A/D Converter	
Analog Input Model	
Transfer Function	
AC Characteristics	
ADC Specifications	
Capacitive Loading Requirements on	
Output Pins	
CLKO and I/O Timing	
Conversion Requirements	
External Clock Requirements	
Internal RC Oscillator Accuracy	
Internal RC Oscillator Specifications	
Load Conditions and Requirements for	
Timing Specifications	
PLL Clock Timing Specifications	
Reset, Power-up Timer and Brown-out	
Reset Timing	
Temperature and Voltage Specifications	
Alternate Interrupt Vector Table (AIVT)	65
Assembler	
MPASM Assembler	

В

Block Diagrams
10-Bit High-Speed A/D Converter
16-Bit Asynchronous Timer3 and Timer5 147
16-Bit Synchronous Timer2 and Timer4 147
16-Bit Timer1 Module143
32-Bit Timer2/3 and Timer4/5 146
8-Bit Multiplexed Address and Data
Application Example
Accessing Program Memory Using
Table Instructions
Addressable PSP Example198
Addressing for Table Registers
CALL Stack Frame
Comparator Voltage Reference
CPU Programmer's Model
CRC Module
CRC Shift Engine
CTMU Connections and Internal Configuration
for Capacitance Measurement
CTMU Typical Connections and Internal
Configuration for Pulse Delay Generation 236
CTMU Typical Connections and Internal
Configuration for Time Measurement
Data Access From Program Space Address
Generation
I ² C Module 176
Individual Comparator Configurations
Input Capture 151
LCD Control Example, Byte Mode 200
Legacy PSP Example 198
Master Mode, Demultiplexed Addressing 198
Master Mode, Fully Multiplexed Addressing 199
Master Mode, Partially Multiplexed Addressing 199
Multiplexed Addressing Application Example 199
On-Chip Regulator Connections
Output Compare (16-Bit Mode)156
Parallel EEPROM Example, 16-Bit Data 200
Parallel EEPROM Example, 8-Bit Data

Partially Multiplexed Addressing Application

Example	. 199
PIC24F CPU Core	26
PIC24FJ64GA104 Family (General)	12
PMP Module Overview	. 191
PSV Operation	50
Reset System	
RTCC.	. 201
Shared I/O Port Structure	. 121
SPI Master, Frame Master Connection	. 173
SPI Master, Frame Slave Connection	. 173
SPI Master/Slave Connection	
(Enhanced Buffer Modes)	. 172
SPI Master/Slave Connection (Standard Mode)	. 172
SPI Slave, Frame Master Connection	. 173
SPI Slave, Frame Slave Connection	. 173
SPIx Module (Enhanced Mode)	. 167
SPIx Module (Standard Mode)	. 166
System Clock	. 101
Triple Comparator Module	. 229
UART (Simplified)	. 183
Watchdog Timer (WDT)	. 248

C Comr

C Compilers	
MPLAB C18	252
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Basic Sequence for Clock Switching	107
Configuring UART1 Input and Output	
Functions (PPS), 'C'	128
Configuring UART1 Input and Output	
Functions (PPS), Assembly	
Erasing a Program Memory Block, 'C'	55
Erasing a Program Memory Block, Assembly	54
I/O Port Write/Read	
Initiating a Programming Sequence, 'C'	56
Initiating a Programming Sequence, Assembly	56
Loading the Write Buffers, 'C'	56
Loading the Write Buffers, Assembly	55
PWRSAV Instruction Syntax	111
Setting the RTCWREN Bit	202
Single-Word Flash Programming, 'C'	57
Single-Word Flash Programming, Assembly	57
Code Protection	248
Code Segment	249
Code Segment Protection	
Configuration Options	
Configuration Register	249
General Segment	248
Comparator Voltage Reference	233
Configuring	233
Configuration Bits	239
Core Features	9
CPU	
Arithmetic Logic Unit (ALU)	29
Control Registers	28
Core Registers	
Programmer's Model	25