

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32ga104t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview					
2.0	Guidelines for Getting Started with 16-bit Microcontrollers					
3.0	CPU					
4.0	Memory Organization					
5.0	Flash Program Memory					
6.0	Resets					
7.0	Interrupt Controller					
8.0	Oscillator Configuration	101				
9.0	Power-Saving Features	111				
10.0	I/O Ports	121				
11.0	Timer1					
12.0	Timer2/3 and Timer4/5					
13.0	Input Capture with Dedicated Timers	151				
14.0	Output Compare with Dedicated Timers					
15.0	Serial Peripheral Interface (SPI)					
16.0	Inter-Integrated Circuit (I ² C [™])					
17.0	Universal Asynchronous Receiver Transmitter (UART)					
18.0	Parallel Master Port (PMP)	191				
19.0	Real-Time Clock and Calendar (RTCC)					
20.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator					
21.0	10-Bit High-Speed A/D Converter	219				
22.0	Triple Comparator Module					
23.0	Comparator Voltage Reference					
24.0	Charge Time Measurement Unit (CTMU)					
25.0	Special Features					
26.0	Development Support					
27.0	Instruction Set Summary					
28.0	Electrical Characteristics					
29.0	Packaging Information					
Appe	endix A: Revision History					
Index	x					
The I	Microchip Web Site					
Cust	omer Change Notification Service					
Custo	ustomer Support					
Read	der Response					
Prod	uct Identification System					

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC^{\circledast} devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word which contains the byte using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is indirectly addressable. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SFR SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where SFRs are actually implemented, is shown in Table 4-2. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is shown in Tables 4-3 through 4-26.

	SFR Space Address										
	xx00	xx20	xx40	xx60	xx80	xxA0	xxC0	xxE0			
000h		Core		ICN		Interrupts					
100h	Timers			ture Compare			_				
200h	l ² C™	UART	SPI	—	_	— — I/C					
300h	A/D	A/D/CTMU	—	—	_	—	_	—			
400h	—	—	—	—	—	—	—	—			
500h	_	—	—	—	_	—	—	_			
600h	PMP	RTCC	CRC/Comp	Comparators		PPS		—			
700h	_		System/DS	NVM/PMD	_	_	_	_			

TABLE 4-2:IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in Flash Configuration Word 2 (CW2); see Table 6-2. The RCFGCAL and NVMCON registers are only affected by a POR.

6.4 Deep Sleep BOR (DSBOR)

Deep Sleep BOR is a very low-power BOR circuitry, used when the device is in Deep Sleep mode. Due to low-current consumption, accuracy may vary.

The DSBOR trip point is around 2.0V. DSBOR is enabled by configuring CW4 (DSBOREN) = 1. DSBOR will re-arm the POR to ensure the device will reset if VDD drops below the POR threshold.

	Vector		ΑΙΥΤ	Interrupt Bit Locations			
Interrupt Source	Number	IVT Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
CTMU Event	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>	
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>	
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
LVD Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>	
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>	
Parallel Master Port	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>	
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>	
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>	
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>	
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>	

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0		
	—	CTMUIF	_	—	—	—	LVDIF		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0		
_	—	—	—	CRCIF	U2ERIF	U1ERIF	_		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable b	pit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15-14	Unimplemen	Unimplemented: Read as '0'							
bit 13	CTMUIF: CTM	MU Interrupt Fla	ig Status bit						
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	urred occurred						
bit 12-9	Unimplemen	ted: Read as 'o	,						
bit 8	LVDIF: Low-V	/oltage Detect I	nterrupt Flag S	Status bit					
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	urred occurred						
bit 7-4	Unimplemen	ted: Read as '0	,						
bit 3	CRCIF: CRC	Generator Inter	rupt Flag Stat	us bit					
	1 = Interrupt r	request has occ	urred						
	0 = Interrupt r	request has not	occurred						
bit 2	U2ERIF: UAF	RT2 Error Interro	upt Flag Status	s bit					
	1 = Interrupt request has occurred								
bit 1		Equest has not	unt Elog Statur	, hit					
DILI	1 = Interrupt r		urred	S DIL					
	0 = Interrupt r	request has not	occurred						
bit 0	Unimplemen	ted: Read as '0) 3						

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0		
bit 15			L		1	I	bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
—	IC2IP2	IC2IP1	IC2IP0	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
L:4 / C			o.'						
Dit 15		ted: Read as 1)' Dui auita hita						
DIT 14-12	12IP<2:0>: 1	imerz interrupt	Priority Dits	(intorrunt)					
	•		ingriest priority	(interrupt)					
	•								
	•								
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled						
bit 11	Unimplemen	ted: Read as '	o'						
bit 10-8	OC2IP<2:0>:	Output Compa	are Channel 2	Interrupt Priority	/ bits				
	111 = Interru	pt is priority 7 (l	highest priority	v interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						
bit 7	Unimplemen	ted: Read as '	כי						
bit 6-4	IC2IP<2:0>:	nput Capture C	Channel 2 Inter	rupt Priority bits	3				
	111 = Interru	pt is priority 7 (l	highest priority	v interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						
bit 3-0	Unimplemen	ted: Read as '	י'						

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
_	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15	Unimplemen	ted: Read as '	כ'					
bit 14-12	CNIP<2:0>: II	nput Change N	otification Inter	rupt Priority bit	S			
	111 = Interrup	ot is priority 7 (I	nighest priority	interrupt)				
	•							
	•							
	001 = Interrupt is priority 1							
	000 = Interrup	ot source is dis	abled					
bit 11	Unimplemen	ted: Read as '	כ'					
bit 10-8	CMIP<2:0>: (Comparator Inte	errupt Priority b	oits				
	111 = Interrup	ot is priority 7 (I	nighest priority	interrupt)				
	•							
	•							
	001 = Interrup	ot is priority 1						
	000 = Interrup	ot source is dis	abled					
bit 7	Unimplemen	ted: Read as '	כ'					
bit 6-4	MI2C1IP<2:0	>: Master I2C1	Event Interrup	t Priority bits				
	111 = Interrup	ot is priority 7 (I	nighest priority	interrupt)				
	•							
	•							
	001 = Interrup	ot is priority 1						
	000 = Interrup	ot source is dis	abled					
bit 3	Unimplemen	ted: Read as '	כ'					
bit 2-0	SI2C1IP<2:0>	Slave I2C1 E	Event Interrupt	Priority bits				
	111 = Interrup	ot is priority 7 (I	nighest priority	interrupt)				
	•							
	•							
	001 = Interrup	ot is priority 1						
	000 = Interrup	ot source is dis	abled					

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—	—	
bit 15			•				bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	OC5IP2	OC5IP1	OC5IP0	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown	
bit 15-7	Unimplemen	ted: Read as '	כי					
bit 6-4	OC5IP<2:0>:	Output Compa	ire Channel 5 I	nterrupt Priority	y bits			
	111 = Interru	ot is priority 7 (I	nighest priority	interrupt)				
	•							
	•							
	•							
	001 = Interru	ot is priority 1						
	000 = Interru	ot source is dis	abied					
bit 3-0	Unimplemen	ted: Read as '	כ'					

REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0	
CPUIRQ		VHOLD		ILR3	ILR2	ILR1	ILR0	
bit 15				•			bit 8	
L								
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	
bit 7								
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown	
bit 15	CPUIRQ: Inte	errupt Request f	rom Interrupt (Controller CPU	bit			
	1 = An interru	upt request has	occurred but I	has not yet bee	en Acknowledg	ed by the CPU	; this happens	
	0 = No interru	upt request is u	nigher than th nacknowledge	d de interrupt prio	nty			
bit 14	Unimplemented: Read as '0'							
bit 13	VHOLD: Vector Number Capture Configuration bit							
	1 = The VEC	NUM bits conta	in the value of	the highest pri	ority pending ir	nterrupt		
	0 = The VEC has occu	NUM bits conta rred with higher	iin the value of r priority than tl	the last Ackno he CPU, even i	wledged interru	upt (i.e., the las ts are pending	st interrupt that	
bit 12	Unimplemente	ed: Read as '0'						
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Leve	l bits				
	1111 = CPU	Interrupt Priority	y Level is 15					
	•							
	•							
	0001 = CPU 0000 = CPU	Interrupt Priority Interrupt Priority	y Level is 1 y Level is 0					
bit 7	Unimplemente	ed: Read as '0'						
bit 6-0	VECNUM<6:0	D>: Pending Int	errupt Vector II	D bits (pending	vector number	r is VECNUM +	- 8)	
	0111111 = In	iterrupt Vector p	pending is num	ber 135				
	•							
	•							
	0000001 = In	iterrupt Vector r	pending is num	ıber 9				
	0000000 = In	iterrupt Vector	pending is num	iber 8				

REGISTER 7-32: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.5 Secondary Oscillator (SOSC)

8.5.1 BASIC SOSC OPERATION

PIC24FJ64GA104 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as RTCC, Timer1 or DSWDT) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time. To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.

To use the Secondary Oscillator, the SOSCSEL<1:0> bits (CW3<9:8>) must be configured in an oscillator mode – either '11' or '01'. Setting SOSCSEL to '00' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins. Digital functionality will not be available if the SOSC is configured in either of the oscillator modes.

8.5.2 LOW-POWER SOSC OPERATION

The Secondary Oscillator can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low drive strength, low-power state. By default, the oscillator uses a higher drive strength, and therefore, requires more power. The Secondary Oscillator Mode Configuration bits, SOSCSEL<1:0> (CW3<9:8>), determine the oscillator's power mode. Programming the SOSCSEL bits to '01' selects low-power operation.

The lower drive strength of this mode makes the SOSC more sensitive to noise and requires a longer start-up time. When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator starts up and oscillates properly.

8.5.3 EXTERNAL (DIGITAL) CLOCK MODE (SCLKI)

The SOSC can also be configured to run from an external 32 kHz clock source, rather than the internal oscillator. In this mode, also referred to as Digital mode, the clock source provided on the SCLKI pin is used to clock any modules that are configured to use the Secondary Oscillator. In this mode, the crystal driving circuit is disabled and the SOSCEN bit (OSCCON<1>) has no effect.

8.5.4 SOSC LAYOUT CONSIDERATIONS

The pinout limitations on low pin count devices, such as those in the PIC24FJ64GA104 family, may make the SOSC more susceptible to noise than other PIC24F devices. Unless proper care is taken in the design and layout of the SOSC circuit, this external noise may introduce inaccuracies into the oscillator's period. In general, the crystal circuit connections should be as short as possible. It is also good practice to surround the crystal circuit with a ground loop or ground plane. For more information on crystal circuit design, please refer to **Section 6 "Oscillator"** (DS39700) of the *"PIC24F Family Reference Manual"*. Additional information is also available in these Microchip Application Notes:

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PICmicro[®] Devices" (DS00826)
- AN849, "Basic PICmicro[®] Oscillator Design" (DS00849).

8.6 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FJ64GA104 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 8-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the POSCEN bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

REGISTER 8-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

	11.0					D/M/ 0	D/M/ 0
	0-0						
RUEN		RUSSLP	RUSEL	RODIV3	RODIVZ	RODIVI	RODIVU
DIT 15							DIT 8
11-0	11-0	11-0	11-0	11-0	11-0	11-0	11-0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
				_			— —
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
				0 2000 0.00			
bit 15	ROEN: Refer	ence Oscillator	Output Enable	e bit			
	1 = Reference	e oscillator is er	nabled on REF	O pin			
	0 = Reference	e oscillator is di	sabled				
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	ROSSLP: Re	eference Oscilla	tor Output Stop	p in Sleep bit			
	1 = Reference	e oscillator cont	inues to run in	Sleep			
	0 = Reference	e oscillator is di	sabled in Slee	р			
bit 12	ROSEL: Refe	erence Oscillato	r Source Sele	ct bit			
	1 = Primary (Oscillator is use	d as the base	clock. Note that	t the crystal osc	cillator must be	enabled using
		C<2:U> DIts; the	the base cloc	ains the operation k: base clock re	on in Sieep mo	ae. k switching of t	he device
bit 11-8		· Reference Os	cillator Divisor	Select hits		R Switching of t	
bit II-0	1111 = Base	clock value divi	ided by 32 768				
	1110 = Base	clock value divi	ided by 16,384	ļ			
	1101 = Base	clock value divi	ided by 8,192				
	1100 = Base	clock value div	ided by 4,096				
	1011 = Base	clock value divi	ided by 2,048				
	1010 = Base	clock value divi	ided by 1,024				
	1000 = Base	clock value divi	ided by 256				
	0111 = Base	clock value div	ided by 128				
	0110 = Base	clock value div	ided by 64				
	0101 = Base	clock value div	ided by 32				
	0100 = Base	CIOCK VAIUE divi	ided by 16				
	0011 = Base	clock value divi	ided by 8				
	0001 = Base	clock value divi	ided by 2				
	0000 = Base	clock value					
bit 7-0	Unimplemen	ted: Read as 'o)'				

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

11-0	J_0	R///_0	R/\//_0	R///-0	R///-0	U-0	U-0	
			ICTSEL2	ICTSEL1			_	
bit 15		ICOIDE	ICTOLLZ	IOTOLLI	ICTOLLO			
bit to							bit 0	
U-0	R/W-0	R/W-0	R-0, HCS	R-0, HCS	R/W-0	R/W-0	R/W-0	
_	ICI1	ICI0	ICOV	ICBNE	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾	
bit 7							bit 0	
Legend:		HCS = Hardv	vare Clearable/	Settable bit				
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
hit 15 11	Uninenlensen	ted: Dood oo '	0'					
DIL 10-14		Conturo y Mo	U dulo Stop in Idl	o Control hit				
DIL 13	1 = Input cant	ure module ha	ute Stop III Iui	mode				
	0 = Input capt	ure module co	intinues to oper	ate in CPU Idle	e mode			
bit 12-10	ICTSEL<2:0>	: Input Captur	e Timer Select	bits				
	111 = System	n clock (Fosc/2	2)					
	110 = Reserv	ved						
	101 = Reserv	ved						
	011 = Timer5							
	010 = Timer4							
	001 = Timer2							
1:107	000 = 1 mer3		-1					
bit 9-7	Unimplement	ted: Read as '	0'					
DIT 6-5		ect Number of	Captures per li	nterrupt bits				
	10 = Interrupt	on every foun	capture even	IL				
	01 = Interrupt	on every seco	ond capture eve	ent				
	00 = Interrupt	on every capt	ure event					
bit 4	ICOV: Input C	apture x Over	flow Status Flag	g bit (read-only)			
	1 = Input capt	ure overflow o	ccurred					
bit 3	ICBNE: Input	Capture x Buf	fer Empty Statu	us bit (read-only	()			
bit o	1 = Input capt	ure buffer is n	ot empty. at lea	st one more ca	, , ipture value cai	n be read		
	0 = Input capt	ure buffer is e	mpty					
bit 2-0	ICM<2:0>: Inp	out Capture Me	ode Select bits	[1]				
	111 = Interru	pt mode: input	capture functio	ns as interrupt	pin only when c	levice is in Slee	p or Idle mode	
	(rising	edge detect of	nly, all other co	ntrol bits are no	ot applicable)			
	101 = Presca	aler Capture m	ode: capture or	n every 16th ris	ing edge			
	100 = Presca	aler Capture m	ode: capture or	n every 4th risir	ng edge			
	011 = Simple	Capture mod	e: capture on e	very rising edg	e			
	010 = Simple	e Capture mod	e: capture on e	very tailing edg)e (rising and fallir	na). ICI<1.0 hite	do not control	
	interru	pt generation f	for this mode	on every euge	(nong anu idili	ig_{j} , $i \subset 1 \cup 0$ lis		
	000 = Input capture module turned off							

Note 1: The ICx input must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

FIGURE 14-1: OUTPUT COMPARE BLOCK DIAGRAM (16-BIT MODE)

To set up the SPI module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1<8>) is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Ran Package — Pattern —	PIC 24 FJ 64 GA1 04 T - I / PT - XXX nark	 Examples: a) PIC24FJ64GA104-I/PT: PIC24F device with, 64-Kbyte program memory, 44-pin, Industrial temp., TQFP package. b) PIC24FJ32GA102-I/ML: PIC24F device with32-Kbyte program memory, 28-pin, Industrial temp.,QFN package.
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	FJ = Flash program memory	
Product Group	GA1 = General purpose microcontrollers	
Pin Count	02 = 28-pin 04 = 44-pin	
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)}$ $E = -40^{\circ}C \text{ to } +125^{\circ}C \text{ (Extended)}$	
Package	ML = 28-lead (6x6 mm) or 44-lead (8x8 mm) QFN (Quad Flat) PT = 44-lead (10x10x1 mm) TQFP (Thin Quad Flatpack) SO = 28-lead (7.50 mm wide) SOIC (Small Outline) SP = 28-lead (300 mil) SPDIP (Skinny Plastic Dual In-Line) SS = 28-lead (530 mm) SSOP (Plastic Shrink Small)	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	