

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga102-i-so

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0190	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0192	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0194							Οι	utput Compa	are 1 Second	lary Register							0000
OC1R	0196								Output C	Compare 1 R	egister							0000
OC1TMR	0198								Timer	Value 1 Reg	ister							xxxx
OC2CON1	019A	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	019E							Οι	utput Compa	are 2 Second	lary Register							0000
OC2R	01A0								Output C	Compare 2 R	egister							0000
OC2TMR	01A2								Timer	Value 2 Reg	ister							xxxx
OC3CON1	01A4	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	01A8							Οι	utput Compa	are 3 Second	lary Register							0000
OC3R	01AA								Output C	Compare 3 R	egister							0000
OC3TMR	01AC								Timer	Value 3 Reg	ister							xxxx
OC4CON1	01AE		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	01B0	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	01B2							Οι	utput Compa	are 4 Second	lary Register							0000
OC4R	01B4								Output C	Compare 4 R	egister							0000
OC4TMR	01B6								Timer	Value 4 Reg	ister							xxxx
OC5CON1	01B8	—	—	- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM0 0000														
OC5CON2	01BA	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	01BC							Ou	utput Compa	are 5 Second	lary Register							0000
OC5R	01BE								Output C	Compare 5 R	egister							0000
OC5TMR	01C0								Timer	Value 5 Reg	ister							xxxx

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: SYSTEM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	-	-	DPSLP	СМ	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK		CF	POSCEN	SOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_		_	-	—	_	0100
OSCTUN	0748	_		_			_		_	-		TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_		_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 "Resets" for more information.

2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 "Oscillator Configuration" for more information.

TABLE 4-24: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ⁽¹⁾
DSCON	758	DSEN			—	_	_	-	_	_	_	—		-	—	DSBOR	RELEASE	0000
DSWAKE	075A	_	_	_	_	_	_	_	DSINT0	DSFLT	_	_	DSWDT	DSRTC	DSMCLR	_	DSPOR	0001
DSGPR0	075C							Deep SI	eep Genera	I Purpose R	egister 0							0000
DSGPR1	075E							Deep SI	eep Genera	I Purpose R	egister 1							0000
Legend:	— = un	implemente	ed, read as	'0'. Reset v	alues are s	hown in he	xadecimal.											

Note 1: The Deep Sleep registers are only reset on a VDD POR event.

TABLE 4-25: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_	_	_	_	_	ERASE	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1)
NVMKEY	0766	—	_	—	_	—	—	—	—			١	VMKEY R	egister<7:0	>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-26: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_		ADC1MD	0000
PMD2	0772	_	_	_	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_		_	_	CMPMD	RTCCMD	PMPMD	CRCMD	_		_	_	_	I2C2MD	_	0000
PMD4	0776	_	_	_	_	_	—	—	_	—			—	REFOMD	CTMUMD	LVDMD	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK (C LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
<pre>//Set up pointer to the first memory locat: TBLPAG = progAddr>>16;</pre>	ion to be written // Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	// Initialize lower word of address
builtin_tblwtl(offset, 0x0000);	// Set base address of erase block // with dummy latch write
NVMCON = 0×4042 ;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7 // for next 5 instructions</pre>
builtin_write_NVM();	// C30 function to perform unlock // sequence and set WR
	_

EXAMPLE 5-3: LOADING THE WRITE BUFFERS (ASSEMBLY LANGUAGE CODE)

; Set up NVMCO	N for row programming operation	ons	
MOV	#0x4001, W0	;	
MOV	W0, NVMCON	; Initialize NVMCON	
; Set up a poi	nter to the first program memor	ory location to be written	
; program memo	ry selected, and writes enabled	ed	
MOV	#0x0000, W0	;	
MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR	
	#0x6000, W0	; An example program memory address	
	TBLWT instructions to write the	ne latches	
; Oth_program_			
MOV	#LOW_WORD_0, W2	;	
MOV	<pre>#HIGH_BYTE_0, W3</pre>	i	
	W2, [W0]	; Write PM low word into program latch	
	W3, [W0++]	; Write PM high byte into program latch	
; 1st_program_			
MOV	#LOW_WORD_1, W2		
	<pre>#HIGH_BYTE_1, W3</pre>		
	W2, [W0]	; Write PM low word into program latch	
	W3, [W0++]	; Write PM high byte into program latch	
	_word #LOW_WORD_2, W2	;	
	<pre>#LOW_WORD_2, W2 #HIGH_BYTE_2, W3</pre>	•	
	W2, [W0]	, ; Write PM low word into program latch	
	W3, [W0++]	; Write PM high byte into program latch	
•		, write in high syte into program faten	
•			
; 63rd_program	word		
MOV	#LOW_WORD_31, W2	;	
MOV	#HIGH_BYTE_31, W3	;	
TBLWTL	W2, [W0]	; Write PM low word into program latch	
TBLWTH	W3, [W0]	; Write PM high byte into program latch	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF
bit 15							bit 8
	DAMA		11.0	DAMO		DAMA	
R/W-0 T2IF	R/W-0 OC2IF	R/W-0 IC2IF	U-0	R/W-0 T1IF	R/W-0 OC1IF	R/W-0	R/W-0 INT0IF
bit 7	00211	10211		110	00111	ICTII	bit 0
Legend:							
R = Readab		W = Writable		U = Unimplem			
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-14	Unimplemen	ted: Read as	0'				
bit 13	•			t Flag Status bit			
		request has oc	• •				
	0 = Interrupt r	request has no	t occurred				
bit 12			r Interrupt Flag	Status bit			
		request has oc					
bit 11	=	request has no	nterrupt Flag S	tatua hit			
		request has oc					
		request has no					
bit 10	SPI1IF: SPI1	Event Interrup	t Flag Status b	it			
		request has oc					
	=	request has no					
bit 9		•	t Flag Status b	it			
		request has oc request has no					
bit 8	-	Interrupt Flag					
		request has oc					
	0 = Interrupt r	request has no	t occurred				
bit 7		Interrupt Flag					
		request has oc					
bit 6		request has no		pt Flag Status b	.it		
		request has oc		ipt hay status b	ni -		
	-	request has no					
bit 5	IC2IF: Input C	Capture Chann	el 2 Interrupt F	lag Status bit			
		request has oc					
1.11.4		request has no					
bit 4	•	ted: Read as					
bit 3		Interrupt Flag request has oc					
		request has oc					
bit 2		•		pt Flag Status b	oit		
		equest has oc					
	•	request has no					
bit 1	-	-	el 1 Interrupt F	lag Status bit			
		request has oc request has no					
bit 0		-	Flag Status bit				
		request has oc	-				
		request has no					

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

PIC24FJ64GA104 FAMILY

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-7 bit 6-4	AD1IP<2	nented: Read as '0' : 0>: A/D Conversion Comple errupt is priority 7 (highest pr		

	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled

© 2010 Microchip Technology Inc.

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—	INT1IP2	INT1IP1	INT1IP0
bit 7					•		bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplem	nented bit, read	d as '0'	

••			•		
-n =	Value at POR	'1' = Bit is set	'0' =	Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is priority 7 (highest priority interrupt)
 - •

bit 2-0

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

PIC24FJ64GA104 FAMILY

REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	PMPIP2	PMPIP1	PMPIP0	_	—	—	—
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4	<pre>PMPIP<2:0>: Parallel Master Port Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	001 = Interrupt is priority 1 000 = Interrupt source is disabled
hit 2 0	Unimplemented, Dood op (o)

bit 3-0 Unimplemented: Read as '0'

٦

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0		
CPUIRQ	—	VHOLD	_	ILR3	ILR2	ILR1	ILR0		
bit 15		•		•			bit 8		
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUMO		
bit 7							bit (
Legend:									
R = Readab		W = Writable	DIT	-	nented bit, read				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15				Controller CPU has not yet bee		od by the CPU	this hannon		
	when the		higher than th	e interrupt prior					
bit 14		ed: Read as '0'	naonnomeage	u					
bit 13	•	or Number Car	oture Configura	ation bit					
			•	the highest pri	oritv pendina ir	nterrupt			
	0 = The VEC	NUM bits conta	ain the value of	the last Ackno he CPU, even i	wledged interru	upt (i.e., the las			
bit 12	Unimplemente	ed: Read as '0'							
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Leve	l bits					
	1111 = CPU I •	Interrupt Priorit	y Level is 15						
	•								
	• 0001 = CPU I	Interrupt Priorit	v Level is 1						
		Interrupt Priorit							
bit 7	Unimplemente	ed: Read as '0'							
bit 6-0	VECNUM<6:0>: Pending Interrupt Vector ID bits (pending vector number is VECNUM + 8)								
	0111111 = In	terrupt Vector	pending is num	nber 135					
	•								
	•								
		terrupt Vector terrupt Vector							

REGISTER 7-32: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

9.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	Section 39. "Power-Saving Features
	with Deep Sleep" (DS39727).

The PIC24FJ64GA104 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep, Idle and Deep Sleep modes
- · Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals except RTCC and DSWDT. It also freezes I/O states and removes power to SRAM and Flash memory. The assembly syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

9.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC with LPRC as clock source is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1:	PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	; Put the device into SLEEP mode
PWRSAV	#IDLE_MODE	; Put the device into IDLE mode
BSET	DSCON, #DSEN	; Enable Deep Sleep
PWRSAV	#SLEEP_MODE	; Put the device into Deep SLEEP mode

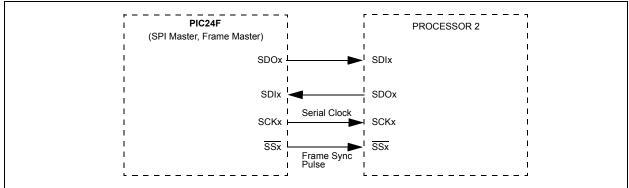
9.2.4.10 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in **Section 9.2.4.9** "**Checking and Clearing the Status of Deep Sleep**" should be used to distinguish between Deep Sleep and a true POR event.

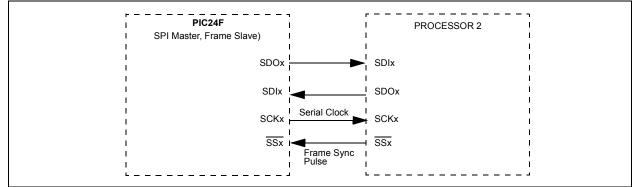
When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) is reset.

9.2.4.11 Summary of Deep Sleep Sequence

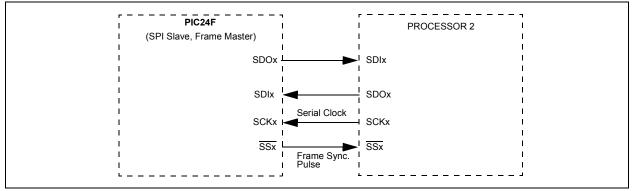
To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

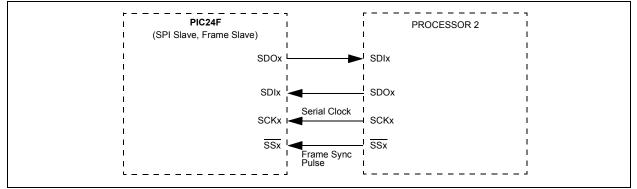

- 1. Device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the RTCC (optional).
- 5. Write context data to the DSGPRx registers (optional).
- 6. Enable the INT0 interrupt (optional).
- 7. Set the DSEN bit in the DSCON register.
- 8. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 9. Device exits Deep Sleep when a wake-up event occurs.
- 10. The DSEN bit is automatically cleared.
- 11. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 12. Read the DSGPRx registers (optional).
- 13. Once all state related configurations are complete, clear the RELEASE bit.
- 14. Application resumes normal operation.

PIC24FJ64GA104 FAMILY


R/W-0, HC	U-0	U-0	U-0	U-0	U-0	U-0	U-0
DSEN ⁽¹⁾	_	—	—	—	—	_	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HCS	R/C-0, HS
—	—	—	—	_	_	DSBOR ^(1,2,3)	RELEASE ^(1,2)
bit 7							bit 0
Legend:	L :4		.:.	0 01	bla b:4		
R = Readable		W = Writable k	DIT	C = Cleara		U = Unimplemer	
-n = Value at P		'1' = Bit is set		'0' = Bit is o		x = Bit is unknow	/n
HC = Hardwar	e Clearable bit	HS = Hardwar	e Settable bit	HCS = Har	dware Clear	rable/Settable bit	
bit 15	DSEN: Deep S	Sloop Enable b	; ₊ (1)				
DIL 15		•		₩0 is ev	acuted in th	e next instruction	
		ers normal Sle					
bit 14-2	Unimplement						
bit 1	DSBOR: Deep	Sleep BOR E	vent Status bit ⁽	(1,2,3)			
	1 = The DSBC	R was active a	and a BOR eve	nt was dete			
					t detect a B	OR event during I	Deep Sleep
bit 0	RELEASE: I/C	Pin State Dee	ep Sleep Relea	se bit ^(1,2)			
			ntain their state	s following	exit from De	eep Sleep, regard	less of their LAT
		configuration	closed from t	hair Daan S		. The pin state is	controlled by the
		RIS configurat					
Note 1: The	ese bits are rese	- ot only in the ca	se of a POR e	vent outside	of Deen SI	een mode	
	set value is '0' fo				•	•	
_ . RC.			on i or only d			014.	

3: This is a status bit only; a DSBOR event will NOT cause a wake-up from Deep Sleep.





REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (When operating as I ² C master. Applicable during master receive.)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
DIL 4	(When operating as I ² C master. Applicable during master receive.)
	1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clear at end of master Acknowledge sequence.
	0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enabled bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enabled bit (when operating as I ² C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition is not in progress

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware-controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support the external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

17.7.1 IRDA CLOCK OUTPUT FOR EXTERNAL IRDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IRDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

19.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device; the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

Divide the number of error clocks per minute by 4 to get the correct calibration value and load the RCFGCAL register with the correct value. (Each 1-bit increment in the calibration adds or subtracts 4 pulses.)

EQUATION 19-1:

(Ideal Frequency[†] – Measured Frequency) * 60 = Clocks per Minute

† Ideal Frequency = 32,768 Hz

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note:	It is up to the user to include, in the error
	value, the initial error of the crystal drift
	due to temperature and drift due to crystal
	aging.

19.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

19.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As displayed in Figure 19-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—
bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13

VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVdd	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVDD	AVss

- bit 12 **Reserved:** Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer 08-0F; user should access data in 00-07
 - 0 = A/D is currently filling buffer 00-07; user should access data in 08-0F
- bit 6 Unimplemented: Read as '0'
- bit 5-2
 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence

 1100 = Interrupts at the completion of conversion for each 15th sample/convert sequence

 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence

 0000 = Interrupts at the completion of conversion for each 2nd sample/convert sequence

 0000 = Interrupts at the completion of conversion for each sample/convert sequence

 0000 = Interrupts at the completion of conversion for each sample/convert sequence

 0000 = Interrupts at the completion of conversion for each sample/convert sequence

 bit 1
 BUFM: Buffer Mode Select bit

 Definite each formed as the source buffers (ADO4DUEs 45.0) and ADO4DUEs (700)
 - 1 = Buffer is configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
 - 0 = Buffer is configured as one 16-word buffer (ADC1BUFn<15:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses MUX A input multiplexer settings

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	CVREFP	CVREFM1	CVREFM0
oit 15	·	·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7							bit (
Legend:							
R = Readab	ole bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-11	Unimplemen	ted: Read as 'd)'				
bit 10	CVREFP: CV	REF+ Reference	e Output Selec	t bit			
		F+ input pin as		•	•		
	0 = Use con compara	nparator voltage itors	e reference m	odule's genera	ted output as	CVREF+ refere	nce output to
bit 9-8	CVREFM<1:	0>: CVREF- Ref	erence Output	Select bits			
		REF+ input pin a					
		BG/6 as CVREF- BG as CVREF- re					
		BG/2 as CVREF-					
bit 7	CVREN: Con	nparator Voltage	e Reference E	nable bit			
		ircuit is powered					
	0 = CVREF C	ircuit is powered	l down				
bit 6		nparator VREF C	-				
		oltage level is o	•	•			
L:1 F		oltage level is d		-			
מווי			CVRR: Comparator VREF Range Selection bit 1 = CVRsRc range should be 0 to 0.625 CVRsRc with CVRsRc/24 step size				
				Vood with CV	nono/91 aton a		
		range should be					
bit 5 bit 4	0 = CVRSRC		e 0.25 to 0.719	OVRSRC with			
	0 = CVRSRC CVRSS: Con 1 = Compara	range should be	e 0.25 to 0.719 ource Selectio ource, CVRSR) CVRSRC with (on bit C = VREF+ – VRI	CVRSRC/32 ste		
	0 = CVRSRC CVRSS: Con 1 = Compara 0 = Compara	range should be nparator VREF S ator reference se	e 0.25 to 0.719 ource Selectio ource, CVRSR0 ource, CVRSR0) CVRSRC with (on bit C = VREF+ – VRI C = AVDD – AVS	CVRSRC/32 ste		
bit 4	0 = CVRSRC CVRSS : Con 1 = Compara 0 = Compara CVR<3:0>: C <u>When CVRR</u>	range should be nparator VREF S ator reference se ator reference se Comparator VRE = 1:	e 0.25 to 0.715 ource Selectio ource, CVRSRO ource, CVRSRO F Value Select) CVRSRC with (on bit C = VREF+ – VRI C = AVDD – AVS	CVRSRC/32 ste		
bit 4	0 = CVRSRC CVRSS : Con 1 = Compara 0 = Compara CVR<3:0>: C <u>When CVRR</u>	range should be nparator VREF S ator reference se ator reference se Comparator VRE = 1: R<3:0>/24) • (C	e 0.25 to 0.715 ource Selectio ource, CVRSRO ource, CVRSRO F Value Select) CVRSRC with (on bit C = VREF+ – VRI C = AVDD – AVS	CVRSRC/32 ste		

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

REGISTER 25-4: CW4: FLASH CONFIGURATION WORD 4

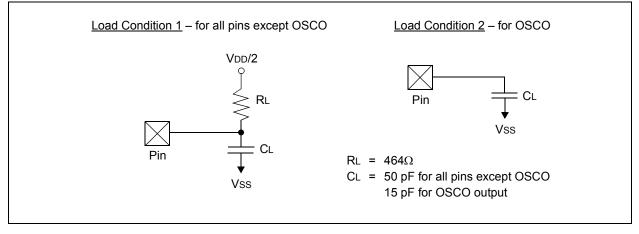
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	_	—	—	—	-
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1

—		—	—	—	—	—	—
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
DSWDTEN	DSBOREN	RTCOSC	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0
bit 7							bit 0

Legend:			
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, rea	d as '0'
-n = Value when device is unprogrammed		'1' = Bit is set	'0' = Bit is cleared

bit 23-8	Unimplemented: Read as '1'
bit 7	DSWDTEN: Deep Sleep Watchdog Timer Enable bit 1 = DSWDT is enabled 0 = DSWDT is disabled
bit 6	DSBOREN: Deep Sleep BOR Enable bit 1 = BOR is enabled in Deep Sleep 0 = BOR is disabled in Deep Sleep (does not affect Sleep mode)
bit 5	RTCOSC: RTCC Reference Clock Select bit 1 = RTCC uses SOSC as reference clock 0 = RTCC uses LPRC as reference clock
bit 4	DSWDTOSC: DSWDT Reference Clock Select bit 1 = DSWDT uses LPRC as reference clock 0 = DSWDT uses SOSC as reference clock
bit 3-0	DSWDTPS<3:0>: DSWDT Postscale select bits The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms. 1111 = 1:2,147,483,648 (25.7 days) 1110 = 1:536,870,912 (6.4 days) 1101 = 1:134,217,728 (38.5 hours) 1001 = 1:33,554,432 (9.6 hours) 1010 = 1:33,554,432 (9.6 hours) 1011 = 1:8,388,608 (2.4 hours) 1010 = 1:2,097,152 (36 minutes) 1001 = 1:524,288 (9 minutes) 1000 = 1:131,072 (135 seconds) 0111 = 1:32,768 (34 seconds) 0110 = 1:8,192 (8.5 seconds) 0101 = 1:2,048 (2.1 seconds) 0101 = 1:212 (528 ms) 0011 = 1:128 (132 ms) 0011 = 1:32 (33 ms) 0001 = 1:8 (8.3 ms) 0000 = 1:2 (2.1 ms)


28.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ64GA104 family AC characteristics and timing parameters.

TABLE 28-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial and $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 28.1 "DC Characteristics" .				
	operating volage vob range as described in Section 20.1 De Characteristics .				

FIGURE 28-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 28-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_		15	pF	In XT and HS modes when external clock is used to drive OSCI.
DO56	Сю	All I/O Pins and OSCO	—	_	50	pF	EC mode.
DO58	Св	SCLx, SDAx	—	_	400	pF	In l ² C™ mode.

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

NOTES: