E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga102-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Oscillator Configuration	101
9.0	Power-Saving Features	111
10.0	I/O Ports	121
11.0	Timer1	
12.0		
13.0	Input Capture with Dedicated Timers	151
14.0	Output Compare with Dedicated Timers	
15.0	Serial Peripheral Interface (SPI)	
16.0		
17.0		
18.0	Parallel Master Port (PMP)	191
19.0	Real-Time Clock and Calendar (RTCC)	
20.0		
21.0		
22.0		
23.0	Comparator Voltage Reference	
24.0	Charge Time Measurement Unit (CTMU)	
25.0	Special Features	
26.0	Development Support	
27.0	Instruction Set Summary	
28.0	Electrical Characteristics	
29.0	Packaging Information	
Appe	endix A: Revision History	
Index	Χ	
The I	Microchip Web Site	
	omer Change Notification Service	
Custo	omer Support	
Read	der Response	
Prod	uct Identification System	

	F	Pin Number				
Function	28-Pin SPDIP/ SOIC/SSOP	28-Pin QFN	44-Pin QFN/ TQFP	I/O	Input Buffer	Description
CN0	12	9	34	Ι	ST	Interrupt-on-Change Inputs.
CN1	11	8	33	I	ST	
CN2	2	27	19	I	ST	
CN3	3	28	20	Ι	ST	
CN4	4	1	21	I	ST	
CN5	5	2	22	I	ST	
CN6	6	3	23	I	ST	
CN7	7	4	24	I	ST	
CN8	_		25	I	ST	
CN9	_	-	26	I	ST	
CN10	_		27	I	ST	
CN11	26	23	15	I	ST	
CN12	25	22	14	I	ST	
CN13	24	21	11	I	ST	
CN14	23	20	10	I	ST	
CN15	22	19	9	I	ST	
CN16	21	18	8	I	ST	
CN17	_	_	3	I	ST	
CN18	_	_	2	Ι	ST	
CN19	_	_	5	I	ST	
CN20	_	_	4	I	ST	
CN21	18	15	1	I	ST	
CN22	17	14	44	I	ST	
CN23	16	13	43	I	ST	
CN24	15	12	42	I	ST	
CN25	_		37	I	ST	
CN26	_		38	I	ST	
CN27	14	11	41	I	ST	
CN28	_	—	36	Ι	ST]
CN29	10	7	31	I	ST]
CN30	9	6	30	I	ST	1
CTED1	2	27	19	Ι	ANA	CTMU External Edge Input 1.
CTED2	3	28	20	Ι	ANA	CTMU External Edge Input 2.
CVREF	25	22	14	0	—	Comparator Voltage Reference Output.
DISVREG	19	16	6	I	ST	Voltage Regulator Disable.
	19 TTL = TTL inp		6	I		Voltage Regulator Disable. Schmitt Trigger input buffer

TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

FIGURE 3-2:	PROGRAMMER'S MODEL
-------------	---------------------------

4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the program space visibility area (see **Section 4.3.3 "Reading Data from Program Memory Using Program Space Visibility"**). PIC24FJ64GA104 family devices implement a total of 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	_	_	—		_	_	_	_	-	_	_	_	RTSECSEL1	RTSECSEL0	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: ADC REGISTER MAP

IADLE 4-	10.									-								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Dat	a Buffer 0								xxxx
ADC1BUF1	0302								ADC Dat	a Buffer 1								xxxx
ADC1BUF2	0304								ADC Dat	a Buffer 2								xxxx
ADC1BUF3	0306								ADC Dat	a Buffer 3								xxxx
ADC1BUF4	0308								ADC Dat	a Buffer 4								xxxx
ADC1BUF5	030A								ADC Dat	a Buffer 5								xxxx
ADC1BUF6	030C								ADC Dat	a Buffer 6								xxxx
ADC1BUF7	030E								ADC Dat	a Buffer 7								xxxx
ADC1BUF8	0310								ADC Dat	a Buffer 8								xxxx
ADC1BUF9	0312								ADC Dat	a Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	a Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	a Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	a Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	a Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	a Buffer 14								xxxx
ADC1BUFF	031E							1		a Buffer 15	1	1			1	1	1	xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	r	_	CSCNA	_	—	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	r	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	—	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CHONA	—	—	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	PCFG15			PCFG12 ⁽¹⁾	PCFG11	PCFG10	PCFG9		PCFG7 ⁽¹⁾		PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12 ⁽¹⁾	CSSL11	CSSL10	CSSL9	CSSL8 ⁽¹⁾	CSSL7 ⁽¹⁾	CSSL6 ⁽¹⁾	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000

Legend: — = unimplemented, read as '0', r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

Note 1: Bits are not available on 28-pin devices; read as '0'.

TABLE 4-17: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON	033C	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		_	-	-	-	_			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.3 Interrupt Control and Status Registers

The PIC24FJ64GA104 family of devices implements the following registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- · IEC0 through IEC4
- IPC0 through IPC20 (except IPC13, IPC14 and IPC17)
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit which is set by the respective peripherals, or an external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>); these indicate the current CPU interrupt priority level. The user may change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit, which, together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

The interrupt controller has the Interrupt Controller Test Register (INTTREG) that displays the status of the interrupt controller. When an interrupt request occurs, its associated vector number and the new interrupt priority level are latched into INTTREG.

This information can be used to determine a specific interrupt source if a generic ISR is used for multiple vectors – such as when ISR remapping is used in bootloader applications. It also could be used to check if another interrupt is pending while in an ISR.

All interrupt registers are described in Register 7-1 through Register 7-32, on the following pages.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	٥'				
	MI2C2IP<2:0	>: Master I2C2	Event Interrup				
bit 15-11 bit 10-8	MI2C2IP<2:0		Event Interrup				
	MI2C2IP<2:0	>: Master I2C2	Event Interrup				
	MI2C2IP<2:0	>: Master I2C2	Event Interrup				
	MI2C2IP<2:0 111 = Interrup	>: Master I2C2 ot is priority 7 (I	Event Interrup highest priority				
	MI2C2IP<2:0 111 = Interrup • • • • • • • • • • • • •	>: Master I2C2 ot is priority 7 (I ot is priority 1	Event Interrup highest priority abled				
bit 10-8	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis	Event Interrup highest priority abled	interrupt)			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis ted: Read as '(Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis ted: Read as '(>: Slave I2C2 E	Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis ted: Read as '(>: Slave I2C2 E	Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	 Master I2C2 tis priority 7 (I tis priority 1 source is dis ted: Read as '(Slave I2C2 E tis priority 7 (I 	Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0 111 = Interrup 001 = Interrup	 Master I2C2 tis priority 7 (I tis priority 1 source is dis ted: Read as '(Slave I2C2 E tis priority 7 (I 	Event Interrup highest priority abled o' Event Interrupt highest priority	interrupt) Priority bits			

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

EXAMPLE 10-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS IN ASSEMBLY O
--

<pre>push w1; push w2; push w3; mov #OSCCON, w1; mov #0x46, w2; mov #0x57, w3; mov.b w2, [w1]; mov.b w3, [w1]; bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign U1CTS To Pin RP1, U1RX To Pin RP0 mov #0x0100, w1; mov w1, RPINR18; ; Configure Output Functions (Table 10-3) ; Assign U1RTS To Pin RP3, U1TX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1; mov #0x46, w2;</pre>
<pre>push w3; mov #OSCCON, w1; mov #Ox46, w2; mov #Ox57, w3; mov.b w2, [w1]; mov.b w3, [w1]; bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign U1CTS To Pin RP1, U1RX To Pin RP0 mov #0x0100, w1; mov w1, RPINR18; ; Configure Output Functions (Table 10-3) ; Assign U1RTS To Pin RP3, U1TX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>mov #OSCCON, w1; mov #Ox46, w2; mov #Ox57, w3; mov.b w2, [w1]; mov.b w3, [w1]; bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign U1CTS To Pin RP1, U1RX To Pin RP0 mov #OxO100, w1; mov w1, RPINR18; ; Configure Output Functions (Table 10-3) ; Assign U1RTS To Pin RP3, U1TX To Pin RP2 mov #OxO403, w1; mov w1, RPOR1; ;lock registers mov #OSCCON, w1;</pre>
<pre>mov #0x46, w2; mov #0x57, w3; mov.b w2, [w1]; mov.b w3, [w1]; bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1, RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>mov #0x57, w3; mov.b w2, [w1]; mov.b w3, [w1]; bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1, RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>mov.b w2, [w1]; mov.b w3, [w1]; bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1, RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>mov.b w3, [w1]; bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1, RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>bclr OSCCON, #6; ; Configure Input Functions (Table10-2) ; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1,RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>; Configure Input Functions (Table10-2) ; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1,RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1,RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>; Assign UlCTS To Pin RP1, UlRX To Pin RP0 mov #0x0100, w1; mov w1,RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>mov #0x0100, w1; mov w1,RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>mov w1,RPINR18; ; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>; Configure Output Functions (Table 10-3) ; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>; Assign UlRTS To Pin RP3, UlTX To Pin RP2 mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #0SCCON, w1;</pre>
<pre>mov #0x0403, w1; mov w1, RPOR1; ;lock registers mov #OSCCON, w1;</pre>
<pre>mov w1, RPOR1; ;lock registers mov #OSCCON, w1;</pre>
;lock registers mov #OSCCON, w1;
mov #OSCCON, w1;
mov #OSCCON, w1;
· · · · · · · · · · · · · · · · · · ·
110V $#0X46, WZ$
mov #0x57, w3;
mov.b w2, [w1];
mov.b w3, [w1];
bset OSCCON, #6;
pop w3;
pop w2;
pop w1;

EXAMPLE 10-3: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS IN C

```
//unlock registers
__builtin_write_OSCCONL(OSCCON & 0xBF);
// Configure Input Functions (Table 9-1)
// Assign UIRX To Pin RP0
RPINR18bits.UIRXR = 0;
// Assign UICTS To Pin RP1
RPINR18bits.UICTSR = 1;
// Configure Output Functions (Table 9-2)
// Assign UITX To Pin RP2
RPOR1bits.RP2R = 3;
// Assign UIRTS To Pin RP3
RPOR1bits.RP3R = 4;
//lock registers
__builtin_write_OSCCONL(OSCCON | 0x40);
```

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13Unimplemented: Read as '0'bit 12-8T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to Corresponding RPn or RPIn Pin bitsbit 7-5Unimplemented: Read as '0'bit 4-0T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to Corresponding RPn or RPIn Pin bits

REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits

REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	ead as '0'	
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

- bit 12-8
 RP9R<4:0>: RP9 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP9 (see Table 10-3 for peripheral function numbers).

 bit 7-5
 Unimplemented: Read as '0'
- bit 4-0 **RP8R<4:0>:** RP8 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP8 (see Table 10-3 for peripheral function numbers).

REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0
Logond							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** RP11 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP11 (see Table 10-3 for peripheral function numbers).

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** RP10 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP10 (see Table 10-3 for peripheral function numbers).

REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0								
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_								
bit 15							bit 8								
U-0	R/W-0	R/W-0			R/W-0	R/W-0	R/W-0								
0-0	-		R-0, HCS	R-0, HCS	ICM2 ⁽¹⁾	ICM1 ⁽¹⁾	ICM0 ⁽¹⁾								
 bit 7	ICI1	ICI0	ICOV	ICBNE			bit								
							Dit								
Legend:		HCS = Hardv	vare Clearable/S	Settable bit											
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'									
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own								
bit 15-14	-	nted: Read as '													
bit 13	-	-	dule Stop in Idle												
		 1 = Input capture module halts in CPU Idle mode 0 = Input capture module continues to operate in CPU Idle mode 													
bit 12-10					mode										
	ICTSEL<2:0>: Input Capture Timer Select bits 111 = System clock (Fosc/2)														
	110 = Reserved														
	101 = Reser														
	100 = Timer 011 = Timer														
	011 = Timer	-													
	001 = Timer2														
	000 = Timer	3													
bit 9-7	Unimplemer	nted: Read as '	0'												
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits														
	11 = Interrupt on every fourth capture event														
	 10 = Interrupt on every third capture event 01 = Interrupt on every second capture event 														
	00 = Interrupt on every capture event														
bit 4	-			bit (read-only)	1										
	ICOV: Input Capture x Overflow Status Flag bit (read-only) 1 = Input capture overflow occurred														
	0 = No input capture overflow occurred														
bit 3	ICBNE: Input Capture x Buffer Empty Status bit (read-only)														
	-				-		 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty 								
bit 5	1 = Input cap		ot empty, at leas		-	n be read									
bit 3	1 = Input cap 0 = Input cap	oture buffer is e	ot empty, at leas mpty	st one more ca	-	h be read									
	1 = Input cap 0 = Input cap ICM<2:0>: In	oture buffer is en oput Capture Me	ot empty, at leas	st one more ca	pture value car		p or Idle mod								
	1 = Input cap 0 = Input cap ICM<2:0>: In 111 = Intern (rising	oture buffer is en nput Capture Mo upt mode: input g edge detect o	ot empty, at lease mpty ode Select bits ^{(*} capture function nly, all other cor	st one more ca I) ns as interrupt p	pture value car pin only when d		p or Idle mod								
	1 = Input cap 0 = Input cap ICM<2:0>: Ir 111 = Interro (rising 110 = Unuse	oture buffer is en oput Capture Mo upt mode: input g edge detect o ed (module disa	ot empty, at leas mpty ode Select bits ^{(*} capture function nly, all other cor abled)	st one more ca I) ns as interrupt p ntrol bits are no	pture value car pin only when d t applicable)		p or Idle mod								
	1 = Input cap 0 = Input cap ICM<2:0>: In 111 = Intern (rising 110 = Unuse 101 = Presc	oture buffer is en oput Capture Mo upt mode: input g edge detect o ed (module disa caler Capture m	ot empty, at leas mpty ode Select bits ⁽ capture function nly, all other cor abled) ode: capture or	st one more ca I) ns as interrupt p ntrol bits are no every 16th risi	pture value car pin only when d t applicable) ing edge		p or Idle mod								
	1 = Input cap 0 = Input cap ICM<2:0>: In 111 = Intern (rising 110 = Unuse 101 = Presc 100 = Presc	oture buffer is en oput Capture Mo upt mode: input g edge detect o ed (module disa caler Capture mo caler Capture mo	ot empty, at leas mpty ode Select bits ⁽⁾ capture function nly, all other cor abled) ode: capture or ode: capture or	st one more ca) ns as interrupt p ntrol bits are no every 16th risi every 4th risin	pture value car bin only when d t applicable) ing edge ig edge		p or Idle moo								
	1 = Input cap 0 = Input cap ICM<2:0>: In 111 = Intern (rising 110 = Unuse 101 = Presc 100 = Presc 011 = Simpl 010 = Simpl	oture buffer is en oput Capture Me upt mode: input g edge detect o ed (module disa caler Capture m caler Capture mod e Capture mod e Capture mod	ot empty, at lease mpty ode Select bits ⁽¹⁾ capture function nly, all other cor abled) ode: capture or ode: capture or e: capture on eve e: capture on eve	st one more ca) hs as interrupt p trol bits are no every 16th risi every 4th risin very rising edge very falling edge	pture value car bin only when d t applicable) ing edge g edge e e	levice is in Slee									
	1 = Input cap 0 = Input cap ICM<2:0>: In 111 = Intern (rising 110 = Unuse 101 = Presc 011 = Simpl 010 = Simpl 001 = Edge	oture buffer is en oput Capture Me upt mode: input g edge detect o ed (module disa caler Capture m caler Capture mod e Capture mod e Capture mod	ot empty, at lease mpty ode Select bits capture function nly, all other cor abled) ode: capture or ode: capture or e: capture on eve e: capture on eve mode: capture	st one more ca) hs as interrupt p trol bits are no every 16th risi every 4th risin very rising edge very falling edge	pture value car bin only when d t applicable) ing edge g edge e e	levice is in Slee									

Note 1: The ICx input must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

14.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for edge-aligned PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired on-time and load it into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and '0' to OCTRIG (OCxCON2<7>).

- 5. Select a clock source by writing to the OCTSEL2<2:0> (OCxCON1<12:10>) bits.
- Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- 8. If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.
- Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: compare events continuously toggle OCx pin
 - 010 = Single Compare Single-Shot mode: initialize OCx pin high, compare event forces OCx pin low
 - 001 = Single Compare Single-Shot mode: initialize OCx pin low, compare event forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
 - **2:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware-controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support the external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

17.7.1 IRDA CLOCK OUTPUT FOR EXTERNAL IRDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IRDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

FIGURE 18-2: LEGACY PARALLEL SLAVE PORT EXAMPLE

FIGURE 18-3: ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE

TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION

PMA<1:0>	Output Register (Buffer)	Input Register (Buffer)
00	PMDOUT1<7:0> (0)	PMDIN1<7:0> (0)
01	PMDOUT1<15:8> (1)	PMDIN1<15:8> (1)
10	PMDOUT2<7:0> (2)	PMDIN2<7:0> (2)
11	PMDOUT2<15:8> (3)	PMDIN2<15:8> (3)

FIGURE 18-4: MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND WRITE STROBES, SINGLE CHIP SELECT)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
ADON ⁽¹⁾	—	ADSIDL	_	—	—	FORM1	FORM0			
bit 15							bit 8			
				11.0						
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0, HCS	R/C-0, HCS			
SSRC2 bit 7	SSRC1	SSRC0		_	ASAM	SAMP	DONE bit			
							DI			
Legend:		C = Clearable	bit	HCS = Hardw	vare Clearable	/Settable bit				
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15		Operating Mode	. bit(1)							
	ADON: A/D Operating Mode bit ⁽¹⁾ 1 = A/D Converter module is operating 0 = A/D Converter is off									
bit 14	Unimplemer	nted: Read as '	כי							
bit 13	ADSIDL: Sto	p in Idle Mode	oit							
		nue module ope e module opera		device enters Idl ode	le mode					
bit 12-10	Unimplemer	nted: Read as '	D'							
bit 9-8	FORM<1:0>	FORM<1:0>: Data Output Format bits								
	10 = Fractior 01 = Signed	fractional (sddd nal (dddd dddd integer (ssss (0000 00dd d	l dd00 0000 sssd dddd ())						
bit 7-5	SSRC<2:0>: Conversion Trigger Source Select bits									
	110 = CTML 101 = Reser 100 = Timer 011 = Reser 010 = Timer 001 = Active	J event ends sa ved 5 compare ends ved 3 compare ends transition on IN	mpling and sta sampling and sampling and IT0 pin ends s	l starts conversion arts conversion d starts conversi d starts conversion sampling and starts con ng and starts co	ion ion arts conversion					
bit 4-3	Unimplemer	nted: Read as '	יכ'							
bit 2	1 = Samplin	Sample Auto-St g begins immeo g begins when t	liately after the		n completes; S	SAMP bit is auto	-set			
bit 1	SAMP: A/D S	Sample Enable	bit							
	1 = A/D sam	ple/hold amplifie	er is sampling	input						
bit 0	DONE: A/D (1 = A/D conv	Conversion Stat version is done version is NOT o	us bit							
				U						
NOTE 1. V2	aides of ADCT	SUEX redisters \	viii not retain i	men values onc	е ше арол р	it is cleared. Rea	au our me			

REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the conversion values from the buffer before disabling the module.

TABLE 27-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description			
#text	Means literal defined by "text"			
(text)	Means "content of text"			
[text]	Means "the location addressed by text"			
{ }	Optional field or operation			
<n:m></n:m>	Register bit field			
.b	Byte mode selection			
.d	Double-Word mode selection			
.S	Shadow register select			
.W	Word mode selection (default)			
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$			
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero			
Expr	Absolute address, label or expression (resolved by the linker)			
f	File register address ∈ {0000h1FFFh}			
lit1	1-bit unsigned literal $\in \{0,1\}$			
lit4	4-bit unsigned literal ∈ {015}			
lit5	5-bit unsigned literal ∈ {031}			
lit8	8-bit unsigned literal ∈ {0255}			
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode			
lit14	14-bit unsigned literal ∈ {016383}			
lit16	16-bit unsigned literal \in {065535}			
lit23	23-bit unsigned literal ∈ {08388607}; LSB must be '0'			
None	Field does not require an entry, may be blank			
PC	Program Counter			
Slit10	10-bit signed literal \in {-512511}			
Slit16	16-bit signed literal ∈ {-3276832767}			
Slit6	6-bit signed literal ∈ {-1616}			
Wb	Base W register ∈ {W0W15}			
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }			
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }			
Wm,Wn	Dividend, Divisor working register pair (direct addressing)			
Wn	One of 16 working registers ∈ {W0W15}			
Wnd	One of 16 destination working registers ∈ {W0W15}			
Wns	One of 16 source working registers ∈ {W0W15}			
WREG	W0 (working register used in file register instructions)			
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }			
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }			

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions		
Operating Cur	rent (IDD) ⁽²⁾					
DC21	0.24	0.395	mA	-40°C		
DC21a	0.25	0.395	mA	+25°C	2.0V ⁽³⁾	0.5 MIPS
DC21b	0.25	0.395	mA	+85°C		
DC21f	0.3	0.395	mA	+125°C		
DC21c	0.44	0.78	mA	-40°C	3.3\/(4)	
DC21d	0.41	0.78	mA	+25°C		
DC21e	0.41	0.78	mA	+85°C		
DC21g	0.6	0.78	mA	+125°C		
DC20	0.5	0.75	mA	-40°C	2.0V ⁽³⁾	- 1 MIPS
DC20a	0.5	0.75	mA	+25°C		
DC20b	0.5	0.75	mA	+85°C		
DC20c	0.6	0.75	mA	+125°C		
DC20d	0.75	1.4	mA	-40°C	3.3\/ ⁽⁴⁾	
DC20e	0.75	1.4	mA	+25°C		
DC20f	0.75	1.4	mA	+85°C		
DC20g	1.0	1.4	mA	+125°C		
DC23	2.0	3.0	mA	-40°C		4 MIPS
DC23a	2.0	3.0	mA	+25°C	2.0V ⁽³⁾	
DC23b	2.0	3.0	mA	+85°C		
DC23c	2.4	3.0	mA	+125°C		
DC23d	2.9	4.2	mA	-40°C		
DC23e	2.9	4.2	mA	+25°C		
DC23f	2.9	4.2	mA	+85°C	3.30 '	
DC23g	3.5	4.2	mA	+125°C		

TABLE 28-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

- **3:** On-chip voltage regulator is disabled (DISVREG is tied to VDD).
- 4: On-chip voltage regulator is enabled (DISVREG is tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

Ν

Near Data Space
0
Oscillator Configuration
Bit Values for Clock Selection
Clock Switching106
Sequence107
Control Registers 103
CPU Clocking Scheme 102
Initial Configuration on POR102
Reference Clock Output108
Secondary Oscillator (SOSC) 108
Output Compare
32-Bit Mode155
Operations157
Subcycle Resolution
Synchronous and Trigger Modes
Output Compare with Dedicated Timers

Ρ

Packaging	
Details	
Marking	
Parallel Master Port. See PMP.	
Peripheral Module Disable Bits	
Peripheral Pin Select (PPS)	
Available Peripherals and Pins	
Configuration Control Changes	
Considerations for Use	
Function Priority	
Input Mapping	
Output Mapping	
Pinout Descriptions	
Power-Saving Features	
Clock Frequency and Clock Switching	
Product Identification System	
Program Memory	
Access Using Table Instructions	49
Address Space	
Addressing Space	
Flash Configuration Words	
Memory Maps	
Organization	
Program Space Visibility	
Program Space Visibility (PSV)	
Program Verification	
Pulse-Width Modulation (PWM) Mode	
Pulse-Width Modulation, See PWM.	
PWM	
Duty Cycle and Period	159
R	
••	204
Reader Response	
Register Maps	40
A/D Converter	
Comparators	
CPU Core	
CRC	
CTMU	
Deep Sleep	
I ² C	
ICN	
Input Capture	

NVM	46
Output Compare	40
Pad Configuration	43
Parallel Master/Slave Port	
Peripheral Pin Select	
PMD	46
PORTA	
PORTB	42
PORTC	42
RTCC	
SPI	42
System	46
Timers	38
UART	41
Registers	
AD1CHS (A/D Input Select)	224
AD1CON1 (A/D Control 1)	221
AD1CON2 (A/D Control 2)	222
AD1CON3 (A/D Control 3)	223
AD1CSSL (A/D Input Scan Select)	226
AD1PCFG (A/D Port Configuration)	225
ALCFGRPT (Alarm Configuration)	205
ALMINSEC (Alarm Minutes and	
Seconds Value)	209
ALMTHDY (Alarm Month and Day Value)	
ALWDHR (Alarm Weekday and Hours Value)	
CLKDIV (Clock Divider)	
CMSTAT (Comparator Module Status)	
CMxCON (Comparator x Control)	
CORCON (CPU Control)	
CORCON (CPU Core Control)	
CRCCON1 (CRC Control 1)	
CRCCON2 (CRC Control 2)	
CRCXORH (CRC XOR Polynomial, High Byte)	
CRCXORL (CRC XOR Polynomial, Low Byte)	
CTMUCON (CTMU Control)	
CTMUICON (CTMU Current Control)	
CVRCON (Comparator Voltage	
Reference Control)	234
CW1 (Flash Configuration Word 1)	
CW2 (Flash Configuration Word 2)	
CW3 (Flash Configuration Word 3)	
DEVID (Device ID)	
DEVREV (Device Revision)	
DSCON (Deep Sleep Control)	
DSWAKE (Deep Sleep Wake-up Source)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	
ICxCON2 (Input Capture x Control 2)	
IEC0 (Interrupt Enable Control 0)	
IEC1 (Interrupt Enable Control 1)	
IEC2 (Interrupt Enable Control 2)	
IEC3 (Interrupt Enable Control 3)	
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFSZ (Interrupt Flag Status Z)	73
IFS2 (Interrupt Flag Status 2) IFS3 (Interrupt Flag Status 3)	73 74
IFS3 (Interrupt Flag Status 3)	73 74 75
IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4)	73 74 75 76
IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1)	73 74 75 76 70
IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1) INTCON2 (Interrupt Control 2)	73 74 75 76 70 71
IFS3 (Interrupt Flag Status 3) IFS4 (Interrupt Flag Status 4) INTCON1 (Interrupt Control 1)	73 74 75 76 70 71 98

NOTES: