

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga102t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24FJ64GA104 FAMILY

28/44-Pin, 16-Bit General Purpose Flash Microcontrollers with nanoWatt XLP Technology

Power Management Modes:

- Selectable Power Management modes with nanoWatt XLP Technology for Extremely Low Power:
 - Deep Sleep mode allows near total power-down (20 nA typical and 500 nA with RTCC or WDT), along with the ability to wake-up on external triggers, or self-wake on programmable WDT or RTCC alarm
 - Extreme low-power DSBOR for Deep Sleep, LPBOR for all other modes
 - Sleep mode shuts down peripherals and core for
 - substantial power reduction, fast wake-up - Idle mode shuts down the CPU and peripherals for
 - significant power reduction, down to 4.5 μA typical Doze mode enables CPU clock to run slower than
 - peripherals
 Alternate Clock modes allow on-the-fly switching to a lower clock speed for selective power reduction during Run mode, down to 15 μA typical

High-Performance CPU:

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Internal Oscillator with:
 - 4x PLL option
 - Multiple divide options
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/integer Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture:
- 76 base instructions
- Flexible addressing modes
- Linear Program Memory Addressing, up to 12 Mbytes
- Linear Data Memory Addressing, up to 64 Kbytes
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Special Microcontroller Features:

- Operating Voltage Range of 2.0V to 3.6V
- Self-Reprogrammable under Software Control
- 5.5V Tolerant Input (digital pins only)
- High-Current Sink/Source (18 mA/18 mA) on All I/O pins

Special Microcontroller Features (continued):

- Flash Program Memory:
 - 10,000 erase/write cycle endurance (minimum)
 - 20-year data retention minimum
 - Selectable write protection boundary
- Fail-Safe Clock Monitor Operation:
 - Detects clock failure and switches to on-chip FRC Oscillator
- On-Chip 2.5V Regulator
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Two Flexible Watchdog Timers (WDT) for Reliable Operation:
- Standard programmable WDT for normal operation
 Extreme low-power WDT with programmable
- period of 2 ms to 26 days for Deep Sleep mode • In-Circuit Serial Programming™ (ICSP™) and
- In-Circuit Debug (ICD) via 2 Pins
- JTAG Boundary Scan Support

Analog Features:

- 10-Bit, up to 13-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Three Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
- Supports capacitive touch sensing for touch screens and capacitive switches
- Provides high-resolution time measurement and simple temperature sensing

		ory	-	Remappable Peripherals											
PIC24FJ Device	Pins	Program Memo (Bytes)	SRAM (Bytes)	Remappable Pins	Timers 16-Bit	Capture Input	Compare/PWM Output	UART w/ IrDA [®]	IdS	I²C™	10-Bit A/D (ch)	Comparators	PMP/PSP	RTCC	CTMU
32GA102	28	32K	8K	16	5	5	5	2	2	2	10	3	Y	Y	Y
64GA102	28	64K	8K	16	5	5	5	2	2	2	10	3	Y	Y	Y
32GA104	44	32K	8K	26	5	5	5	2	2	2	13	3	Y	Y	Y
64GA104	44	64K	8K	26	5	5	5	2	2	2	13	3	Y	Y	Y

PIC24FJ64GA104 FAMILY

Pin Diagrams

	F	in Number				
Function	28-Pin SPDIP/ SOIC/SSOP	28-Pin QFN	44-Pin QFN/ TQFP	I/O	Input Buffer	Description
RA0	2	27	19	I/O	ST	PORTA Digital I/O.
RA1	3	28	20	I/O	ST	
RA2	9	6	30	I/O	ST	
RA3	10	7	31	I/O	ST	
RA4	12	9	34	I/O	ST	
RA7	_		13	I/O	ST	
RA8	_		32	I/O	ST	
RA9	_	_	35	I/O	ST	
RA10	_	_	12	I/O	ST	
RB0	4	1	21	I/O	ST	PORTB Digital I/O.
RB1	5	2	22	I/O	ST	
RB2	6	3	23	I/O	ST	
RB3	7	4	24	I/O	ST	
RB4	11	8	33	I/O	ST	
RB5	14	11	41	I/O	ST	
RB6	15	12	42	I/O	ST	
RB7	16	13	43	I/O	ST	
RB8	17	14	44	I/O	ST	
RB9	18	15	1	I/O	ST	
RB10	21	18	8	I/O	ST	
RB11	22	19	9	I/O	ST	
RB12	23	20	10	I/O	ST	
RB13	24	21	11	I/O	ST	
RB14	25	22	14	I/O	ST	
RB15	26	23	15	I/O	ST	
RC0	_	—	25	I/O	ST	PORTC Digital I/O.
RC1	_	—	26	I/O	ST	
RC2	—	—	27	I/O	ST	
RC3	_	—	36	I/O	ST	
RC4	_	—	37	I/O	ST	
RC5	—	_	38	I/O	ST	
RC6	—	_	2	I/O	ST	
RC7	—	_	3	I/O	ST	
RC8	—	_	4	I/O	ST	
RC9	—	_	5	I/O	ST	
REFO	24	21	11	0	—	Reference Clock Output.
Legend:	TTL = TTL inp	ut buffer			ST =	Schmitt Trigger input buffer

TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog level input/output

I²C[™] = I²C/SMBus input buffer

DS39951C-page 16

TABLE 4-3: CPU CORE REGISTERS MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working	Register 0								0000
WREG1	0002								Working	Register 1								0000
WREG2	0004								Working	Register 2								0000
WREG3	0006								Working	Register 3								0000
WREG4	0008								Working	Register 4								0000
WREG5	000A								Working	Register 5								0000
WREG6	000C								Working	Register 6								0000
WREG7	000E								Working	Register 7								0000
WREG8	0010								Working	Register 8								0000
WREG9	0012					Working Register 9 00											0000	
WREG10	0014								Working F	Register 10								0000
WREG11	0016								Working F	Register 11								0000
WREG12	0018								Working F	Register 12								0000
WREG13	001A								Working F	Register 13								0000
WREG14	001C								Working F	Register 14								0000
WREG15	001E								Working F	Register 15								0800
SPLIM	0020							Stack	Pointer Lin	nit Value Re	egister							xxxx
PCL	002E							Progra	m Counter	Low Word F	Register							0000
PCH	0030	_		_	_	_		—	—			Progra	m Counter	Register High	gh Byte			0000
TBLPAG	0032	_	_	_	_	_	_	_	_			Table N	lemory Pag	je Address I	Register			0000
PSVPAG	0034	_	_	_	_	_	_	_	_		F	rogram Spa	ace Visibility	y Page Add	ress Regist	er		0000
RCOUNT	0036							Rep	beat Loop C	ounter Reg	ister							xxxx
SR	0042	—	—	—	—	—	—	_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	_	_	_	_	_	—	—	—	—	—	IPL3	PSV	—	_	0000
DISICNT	0052	_	_		Disable Interrupts Counter Register xxxx													

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	_	_	—	—	—	—				Receive	Register				0000
I2C1TRN	0202	_	_	—	_	—	—	_	_				Transmit	Register				00FF
I2C1BRG	0204		_	—	_	—	_	_				Baud Rat	e Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF								0000	
I2C1ADD	020A	_	_	—	_	—	—					Address	Register					0000
I2C1MSK	020C	_	_	—	_	—	—					Address Ma	ask Registe	r				0000
I2C2RCV	0210	_	_	_	_	-	_	_	_				Receive	Register				0000
I2C2TRN	0212		_	_	_	—	—	_	_				Transmit	Register				00FF
I2C2BRG	0214		_	_	_	—	—	_				Baud Rat	e Generato	r Register				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF							0000			
I2C2ADD	021A		—	—	_	—	_					Address	Register					0000
I2C2MSK	021C		_	_		_						Address Ma	ask Registe	r				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: UART REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_		_				Trar	smit Regist	er				xxxx
U1RXREG	0226	_	—	—	<u> </u>									0000				
U1BRG	0228		Baud Rate Generator Prescaler Register 0000									0000						
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	—	_	—	_	—				Trar	ismit Regist	er				xxxx
U2RXREG	0236	_	0000															
U2BRG	0238							Baud R	ate Genera	tor Prescaler	Register							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PIC24FJ64GA104 FAMILY

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
h:+ 45			Internuet Elec	Ctatura hit			
DIUTS	1 = Interrunt r	request has occ	Interrupt Flag	Status bit			
	0 = Interrupt r	request has not	occurred				
bit 14	U2RXIF: UAF	RT2 Receiver In	terrupt Flag S	tatus bit			
	1 = Interrupt r	equest has occ	urred				
1:140	0 = Interrupt r	request has not					
DIT 13	INIZIF: Exter	nal Interrupt 2 P	-lag Status bit				
	0 = Interrupt r	request has not	occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	tatus bit				
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	equest has not	occurred				
bit 11	T4IF: Timer4	Interrupt Flag S	tatus bit				
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	occurred				
bit 10	OC4IF: Outpu	ut Compare Cha	annel 4 Interru	ipt Flag Status b	bit		
	1 = Interrupt r	equest has occ	urred				
	0 = Interrupt r	request has not	occurred				
bit 9	OC3IF: Output	ut Compare Cha	annel 3 Interru	ipt Flag Status b	bit		
	0 = Interrupt r	request has not	occurred				
bit 8-5	Unimplemen	ted: Read as '0	,				
bit 4	INT1IF: Exter	nal Interrupt 1 F	-lag Status bit				
	1 = Interrupt r	equest has occ	urred				
h # 0	0 = Interrupt r	request has not	occurred				
DIL S	1 = Interrunt r	request has occ	urred	Tay Status Dit			
	0 = Interrupt r	request has not	occurred				
bit 2	CMIF: Compa	arator Interrupt	Flag Status bit	t			
	1 = Interrupt r	request has occ	urred				
1.11.4	0 = Interrupt r	request has not	occurred				
DIT 1	MIZC1IF: Mas	ster 12C1 Event	Interrupt Flag	Status bit			
	0 = Interrupt r	request has not	occurred				
bit 0	SI2C1IF: Slav	ve I2C1 Event li	nterrupt Flag S	Status bit			
	1 = Interrupt r	request has occ	urred				
	0 = Interrupt r	request has not	occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

U-0	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
		D (1) (D 4 4 4	D 444 A	D # • • •
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	OC2IE	IC2IE	—	ITIE	OCTIE	ICTIE	INTUE
DIL 7							DILL
Leaend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	AD1IE: A/D (Conversion Cor	nplete Interrup	t Enable bit			
	1 = Interrupt	request enable	d abled				
hit 12		RT1 Transmitte	r Interrunt Enal	ole hit			
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 11	U1RXIE: UAI	RT1 Receiver I	nterrupt Enable	e bit			
	1 = Interrupt	request enable	d				
hit 10		Transfor Com	iDieu	-nabla bit			
	1 = Interrunt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 9	SPF1IE: SPI	1 Fault Interrup	t Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 8	T3IE: Timer3	Interrupt Enab	le bit				
	1 = Interrupt	request enable	0 abled				
bit 7	T2IF: Timer2	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 6	OC2IE: Outp	ut Compare Ch	annel 2 Interru	pt Enable bit			
	1 = Interrupt	request enable	d				
L:1 C		request not ena					
DIT 5	1 = Interrupt	capture Chann	ei ∠ interrupt ⊢ d	nable bit			
	0 = Interrupt	request enable	abled				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 2	OC1IE: Outp	ut Compare Ch	annel 1 Interru	pt Enable bit			
	1 = Interrupt 0 = Interrupt	request enable	0 abled				
bit 1	IC1IE: Input (Capture Chann	el 1 Interrunt F	nable bit			
~	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				
bit 0	INTOIE: Exte	rnal Interrupt 0	Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not ena	abled				

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0
CPUIRQ		VHOLD		ILR3	ILR2	ILR1	ILR0
bit 15				•			bit 8
L							
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown
bit 15	CPUIRQ: Inte	errupt Request f	rom Interrupt (Controller CPU	bit		
	1 = An interru	upt request has	occurred but I	has not yet bee	en Acknowledg	ed by the CPU	; this happens
	0 = No interru	upt request is u	nigher than th nacknowledge	d de interrupt prio	nty		
bit 14	Unimplemente	ed: Read as '0'		-			
bit 13	VHOLD: Vect	or Number Car	ture Configura	ation bit			
	1 = The VEC	NUM bits conta	in the value of	the highest pri	ority pending ir	nterrupt	
	0 = The VEC has occu	NUM bits conta rred with higher	iin the value of r priority than tl	the last Ackno he CPU, even i	wledged interru	upt (i.e., the las ts are pending	st interrupt that
bit 12	Unimplemente	ed: Read as '0'					
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Leve	l bits			
	1111 = CPU	Interrupt Priority	y Level is 15				
	•						
	•						
	0001 = CPU 0000 = CPU	Interrupt Priority Interrupt Priority	y Level is 1 y Level is 0				
bit 7	Unimplemente	ed: Read as '0'					
bit 6-0	VECNUM<6:0	0>: Pending Int	errupt Vector II	D bits (pending	vector number	r is VECNUM +	- 8)
	0111111 = In	iterrupt Vector p	pending is num	ber 135			
	•						
	•						
	0000001 = In	iterrupt Vector r	pending is num	ıber 9			
	0000000 = In	iterrupt Vector	pending is num	iber 8			

REGISTER 7-32: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>), to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or SOSC (if SOSCEN remains set).
 - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- 2. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 8-1.

EXAMPLE 8-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator ;OSCCONH (high byte) Unloc	selection in WO k Sequence
MOV #OSCCONH, w1	-
MOV #0x78, w2	
MOV #0x9A, w3	
MOV.b w2, [w1]	
MOV.b w3, [w1]	
;Set new oscillator select	ion
MOV.b WREG, OSCCONH	
;OSCCONL (low byte) unlock	sequence
MOV #OSCCONL, w1	
MOV #0x46, w2	
MOV #0x57, w3	
MOV.b w2, [w1]	
MOV.b w3, [w1]	
;Start oscillator switch o	operation
BSET OSCCON,#0	

PIC24FJ64GA104 FAMILY

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13Unimplemented: Read as '0'bit 12-8T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to Corresponding RPn or RPIn Pin bitsbit 7-5Unimplemented: Read as '0'bit 4-0T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to Corresponding RPn or RPIn Pin bits

REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGIST	ER ⁽³)
--	------------------	---

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER ⁽³⁾							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽¹⁾	_		_	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	_	TCS ^(1,2)	—
bit 7							bit 0
Logondi							
R = Readab	le hit	M = M/ritable	hit	II – I Inimplen	nented hit re	ad as '0'	
n – Neluo a		'1' = Rit is set	DIL	$0^{\circ} = \text{Bit is closed}$	arod	au as u v - Ritic unkno	
	IFUR	I – DILIS SEL			aleu		
bit 15	TON: Timerv	On bit ⁽¹⁾					
	1 = Starts 16	5-bit Timery					
	0 = Stops 16	bit Timery					
bit 14	Unimplemen	nted: Read as 'o)'				
bit 13	TSIDL: Stop	in Idle Mode bit	(1)				
	1 = Discontin	ue module oper	ration when de	vice enters Idle	e mode		
h:+ 40 7		module operati	on in idle mod	e			
DIT 12-7				– (1)			
DIT 6	IGAIE: IIme	ated Time	Accumulation	Enable bit			
	This bit is ign	<u>⊥.</u> ored.					
	When TCS =	0:					
	1 = Gated tir	ne accumulatio	n is enabled				
	0 = Gated tir	me accumulation	n is disabled				
bit 5-4	TCKPS<1:0>	: Timery Input (Clock Prescale	e Select bits ⁽¹⁾			
	11 = 1:256						
	10 - 1.04 01 = 1:8						
	00 = 1:1						
bit 3-2	Unimplemen	ted: Read as ')'				
bit 1	TCS: Timery	Clock Source S	elect bit ^(1,2)				
	1 = External	clock from pin	ГуСК (on the r	ising edge)			
	0 = Internal o	clock (Fosc/2)					
bit 0	Unimplemen	nted: Read as 'o)′				
Note 1: V	Vhen 32-bit oper	ration is enabled	d (T2CON<3>	or T4CON<3>	= 1), these bi	its have no effect o	on Timery
0	peration; all time	er functions are	set through T2	2CON and T4C	ON.		(Devin 1 1
2: It	10S = 1, RPIN	NKX (TXCK) MU	st be configure	ed to an availab	ie RPh pin. S	ee Section 10.4 '	reripheral

Pin Select (PPS)" for more information. 3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from the slave 0 = Write – indicates data transfer is input to the slave Hardware set or clear after reception of I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission
	Haruware set when soltware whiles izok intra. Haruware ciedi at completion of uata transmission.

© 2010 Microchip Technology Inc.

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock

- frequency (Fosc/2). 2: Based on FcY = Fosc/2, Doze mode
 - and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UxBRG = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

		Baud Rate =	$\frac{\text{FCY}}{4 \cdot (\text{UxBRG} + 1)}$
		UxBRG =	$\frac{FCY}{4 \bullet Baud Rate} - 1$
Note	1:	FCY denote frequency.	es the instruction cycle clock

2: Based on Fcy = Fosc/2, Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	=	FCY/(16 (UxBRG + 1))
Solving for UxBRG	Val	ue:
UxBRG UxBRG UxBRG	= = =	((FCY/Desired Baud Rate)/16) – 1 ((4000000/9600)/16) – 1 25
Calculated Baud Rate	=	4000000/(16 (25 + 1)) 9615
Error	=	(Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate (9615 – 9600)/9600 0.16%
Note 1: Based of	on F	FCY = FOSC/2, Doze mode and PLL are disabled.

-									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0		
bit 15							bit 8		
D/M/ 0									
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0		
bit 7	744 10	744 10	744 11	744 10	70012	/	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN		
bit 15	AI RMEN: Ala	arm Enable bit							
	1 = Alarm is	enabled (clear	ed automatica	lly after an ala	arm event whe	never ARPT<7	':0> = 00h and		
	CHIME =	0)							
bit 14		disabled							
DIL 14			「<7·∩> hite are	allowed to roll	over from 00h	to FFb			
	0 = Chime is	disabled; ARP	T < 7:0> bits are	p once they re	ach 00h				
bit 13-10	AMASK<3:0>	: Alarm Mask	Configuration b	oits					
	0000 = Ever	y half second							
	0001 = Ever	y second							
	0010 = Ever	y 10 seconds							
	0100 = Ever	y 10 minutes							
	0101 = Ever	y hour							
	0110 = Once	e a day							
	1000 = Once	e a month							
	1001 = Once	e a year (excep	t when configu	ired for Februa	ıry 29 th , once e	every 4 years)			
	101x = Rese	erved; do not u	se						
hit 0.8	AL DMDTD-1		se 10 Pogistor Wi	ndow Pointor h	vite				
Dit 9-0	Points to the co	orresponding Al	arm Value regis	ters when read	ling the AI RMV	ALH and ALRM	VALL registers		
	The ALRMPTI	R<1:0> value d	ecrements on e	every read or wi	rite of ALRMVA	LH until it reach	es '00'.		
	ALRMVAL<15	<u>5:8>:</u>							
		IN							
	11 = Unimple	mented							
	ALRMVAL<7:	<u>0>:</u>							
		EC							
	10 = ALRMH	≺ 4Y							
	11 = Unimple	mented							
bit 7-0	ARPT<7:0>: /	Alarm Repeat (Counter Value	bits					
	11111111 =	Alarm will rep	eat 255 more ti	mes					
	•								
	•								
	00000000 =	Alarm will not	repeat						
	The counter d	lecrements on	any alarm eve	nt; it is prevent	ted from rolling	over from 00h	to FFh unless		

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

20.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729). The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- · Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 20-1. A simple version of the CRC shift engine is shown in Figure 20-2.

FIGURE 20-2: CRC SHIFT ENGINE DETAIL

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 **CREF:** Comparator Reference Select bits (non-inverting input)
 - 1 = Non-inverting input connects to internal CVREF+ input reference voltage
 - 0 = Non-inverting input connects to CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of comparator connects to CVREF- input reference voltage
 - 10 = Inverting input of comparator connects to CxIND pin
 - 01 = Inverting input of comparator connects to CxINC pin
 - 00 = Inverting input of comparator connects to CxINB pin

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
CMIDL		—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
	_	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0
Legend:							

- J				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	CMIDL: Comparator Stop in Idle Mode bit				
	 1 = Discontinue operation of all comparators when device enters Idle mode 0 = Continue operation of all enabled comparators in Idle mode 				
bit 14-11	Unimplemented: Read as '0'				
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)				
	Shows the current event status of Comparator 3 (CM3CON<9>).				
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)				
	Shows the current event status of Comparator 2 (CM2CON<9>).				
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)				
	Shows the current event status of Comparator 1 (CM1CON<9>).				
bit 7-3	Unimplemented: Read as '0'				
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)				
	Shows the current output of Comparator 3 (CM3CON<8>).				
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)				
	Shows the current output of Comparator 2 (CM2CON<8>).				
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)				
	Shows the current output of Comparator 1 (CM1CON<8>).				

REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—	—	—	—	—	—	—	—	
bit 23 bit								
r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	
r	JTAGEN ⁽¹⁾	GCP	GWRP	DEBUG	—	ICS1	ICS0	
bit 15	bit 15 bit 8							
R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	
FWDTEN	WINDIS	_	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0	
bit 7	bit 7 bit 0							

Legend:	r = Reserved bit				
R = Readable bit	PO = Program Once bit	U = Unimplemented bit, read as '0'			
-n = Value when device is u	nprogrammed	'1' = Bit is set	'0' = Bit is cleared		

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit ⁽¹⁾
	1 = JTAG port is enabled 0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	1 = Code protection is disabled0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	Unimplemented: Read as '1'
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 = Watchdog Timer is enabled0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	Unimplemented: Read as '1'
bit 4	FWPSA: WDT Prescaler Ratio Select bit 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming[™] (ICSP[™]). It cannot be modified while connected through the JTAG interface.

REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits

1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 **= 1:128** 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 **= 1:8** 0010 = 1:4 0001 = 1:2 0000 = 1:1

Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming[™] (ICSP[™]). It cannot be modified while connected through the JTAG interface.

AC CHARACTERISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
	Device Supply							
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.0	_	Lesser of VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
		·	Referenc	e Inputs		•		
AD05	VREFH	Reference Voltage High	AVss + 1.7	—	AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD - 1.7	V		
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	-	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	-	-	1.25	mA	(Note 3)	
AD09	ZVREF	Reference Input Impedance	_	10K	—	Ω	(Note 4)	
			Analog	Input				
AD10	VINH-VINL	Full-Scale Input Span	VREFL	—	VREFH	V	(Note 2)	
AD11	VIN	Absolute Input Voltage	AVss - 0.3	—	AVDD + 0.3	V		
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	—	AVDD/2	V		
AD13	_	Leakage Current	_	±0.001	±0.610	μΑ	$V_{INL} = AV_{SS} = V_{REFL} = 0V,$ AVDD = VREFH = 3V, Source Impedance = 2.5 k\Omega	
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	—	2.5K	Ω	10-bit	
			ADC Ac	curacy				
AD20b	NR	Resolution	_	10	_	bits		
AD21b	INL	Integral Nonlinearity	_	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD22b	DNL	Differential Nonlinearity	—	±0.5	<±1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD23b	Gerr	Gain Error	—	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD24b	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V	
AD25b	_	Monotonicity ⁽¹⁾	—	I —	—	—	Guaranteed	

TABLE 28-22: ADC MODULE SPECIFICATIONS

Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements taken with external VREF+ and VREF- are used as the ADC voltage reference.

3: External reference voltage is applied to the VREF+/- pins. IVREF is current during conversion at 3.3V, 25°C. Parameter is for design guidance only and is not tested.

4: Impedance during sampling at 3.3V, 25°C. Parameter is for design guidance only and is not tested.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com