

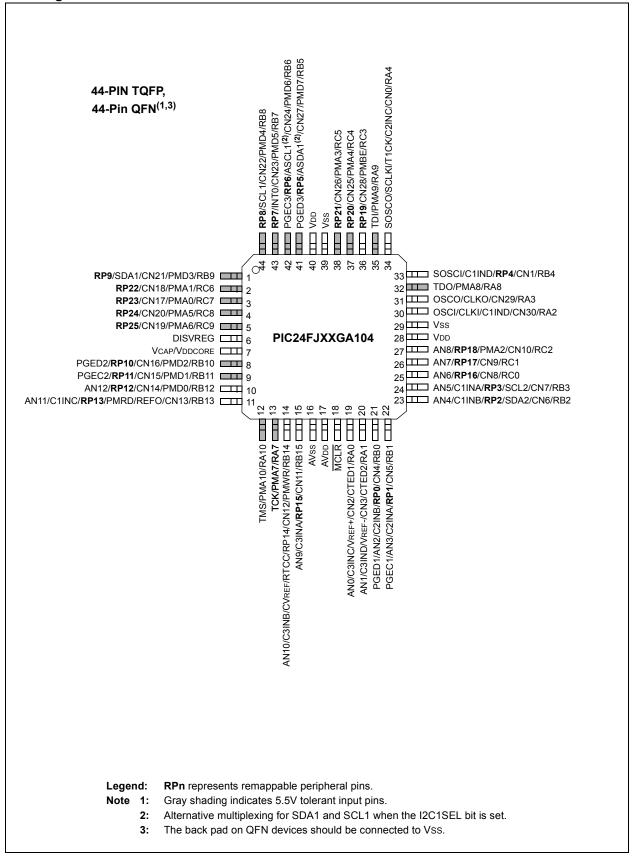
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga104-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

3.0 CPU

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information, refer to the
	"PIC24F Family Reference Manual",
	Section 2. "CPU" (DS39703).

The PIC24F CPU has a 16-bit (data), modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported either directly or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete, but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 **Programmer's Model**

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory mapped.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	—	_	_	—		_	_	_	_	-	_	_	_	RTSECSEL1	RTSECSEL0	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: ADC REGISTER MAP

IADLE 4-	10.									-								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Dat	a Buffer 0								xxxx
ADC1BUF1	0302								ADC Dat	a Buffer 1								xxxx
ADC1BUF2	0304								ADC Dat	a Buffer 2								xxxx
ADC1BUF3	0306								ADC Dat	a Buffer 3								xxxx
ADC1BUF4	0308								ADC Dat	a Buffer 4								xxxx
ADC1BUF5	030A								ADC Dat	a Buffer 5								xxxx
ADC1BUF6	030C								ADC Dat	a Buffer 6								xxxx
ADC1BUF7	030E								ADC Dat	a Buffer 7								xxxx
ADC1BUF8	0310								ADC Dat	a Buffer 8								xxxx
ADC1BUF9	0312								ADC Dat	a Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	a Buffer 10								xxxx
ADC1BUFB	0316								ADC Data	a Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	a Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	a Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	a Buffer 14								xxxx
ADC1BUFF	031E							1		a Buffer 15	1	1			1	1	1	xxxx
AD1CON1	0320	ADON	—	ADSIDL	—	_	—	FORM1	FORM0	SSRC2	SSRC1	SSRC0	—	—	ASAM	SAMP	DONE	0000
AD1CON2	0322	VCFG2	VCFG1	VCFG0	r	_	CSCNA	_	—	BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0324	ADRC	r	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0328	CH0NB	—	—	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CHONA	—	—	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1PCFG	032C	PCFG15			PCFG12 ⁽¹⁾	PCFG11	PCFG10	PCFG9		PCFG7 ⁽¹⁾		PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	CSSL15	CSSL14	CSSL13	CSSL12 ⁽¹⁾	CSSL11	CSSL10	CSSL9	CSSL8 ⁽¹⁾	CSSL7 ⁽¹⁾	CSSL6 ⁽¹⁾	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000

Legend: — = unimplemented, read as '0', r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

Note 1: Bits are not available on 28-pin devices; read as '0'.

TABLE 4-17: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON	033C	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		_	-	-	-	_			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	٥'				
	MI2C2IP<2:0	>: Master I2C2	Event Interrup				
bit 15-11 bit 10-8	MI2C2IP<2:0		Event Interrup				
	MI2C2IP<2:0	>: Master I2C2	Event Interrup				
	MI2C2IP<2:0	>: Master I2C2	Event Interrup				
	MI2C2IP<2:0 111 = Interrup	>: Master I2C2 ot is priority 7 (I	Event Interrup highest priority				
	MI2C2IP<2:0 111 = Interrup • • • • • • • • • • • • •	>: Master I2C2 ot is priority 7 (I ot is priority 1	Event Interrup highest priority abled				
bit 10-8	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis	Event Interrup highest priority abled	interrupt)			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis ted: Read as '(Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis ted: Read as '(>: Slave I2C2 E	Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	>: Master I2C2 ot is priority 7 (I ot is priority 1 ot source is dis ted: Read as '(>: Slave I2C2 E	Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0	 Master I2C2 tis priority 7 (I tis priority 1 source is dis ted: Read as '(Slave I2C2 E tis priority 7 (I 	Event Interrup highest priority abled D' Event Interrupt	interrupt) Priority bits			
bit 10-8 bit 7	MI2C2IP<2:0 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen SI2C2IP<2:0 111 = Interrup 001 = Interrup	 Master I2C2 tis priority 7 (I tis priority 1 source is dis ted: Read as '(Slave I2C2 E tis priority 7 (I 	Event Interrup highest priority abled o' Event Interrupt highest priority	interrupt) Priority bits			

REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CRCIP2	CRCIP1	CRCIP0		U2ERIP2	U2ERIP1	U2ERIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	U1ERIP2	U1ERIP1	U1ERIP0	—		—	—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	CRCIP<2:0>	CRC Generate	or Error Interru	pt Priority bits			
		pt is priority 7 (I					
	•		5 , ,	1 /			
	•						
	• 001 = Interru	ntin muinuitud					
		pt is priority i pt source is dis	abled				
bit 11		ted: Read as '					
bit 10-8	-	-: UART2 Error		ritv bits			
		pt is priority 7 (I		•			
	•						
	•						
	•	at is priority d					
	• 001 = Interru 000 = Interru		abled				
bit 7	000 = Interru	pt source is dis					
	000 = Interru Unimplemen	pt source is dis ted: Read as '()'	ritv bits			
bit 7 bit 6-4	000 = Interru Unimplemen U1ERIP<2:0>	pt source is dis ted: Read as '(>: UART1 Error)' Interrupt Prio				
	000 = Interru Unimplemen U1ERIP<2:0>	pt source is dis ted: Read as '()' Interrupt Prio				
	000 = Interru Unimplemen U1ERIP<2:0>	pt source is dis ted: Read as '(>: UART1 Error)' Interrupt Prio				
	000 = Interru Unimplemen U1ERIP<2:03 111 = Interru • •	pt source is dis ted: Read as '(>: UART1 Error pt is priority 7 (I)' Interrupt Prio				
	000 = Interru Unimplemen U1ERIP<2:0> 111 = Interru • • 001 = Interru	pt source is dis ted: Read as '(>: UART1 Error pt is priority 7 (I	^{)'} Interrupt Prio nighest priority				

REGISTER 7-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are										
	initialized, such that all user interrupt										
	sources are assigned to priority level 4.										

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7	÷	•			•		bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-6	Unimplemen	ted: Read as '	o'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	ximum frequer	ncy deviation				
	011110 =						
	•						
	•						
	• 000001 =						
		nter frequency	oscillator is ru	inning at factory	/ calibrated free	nuency	
	111111 =	inter inequency,		in ing at labters		lacitoy	
	•						
	•						
	•						

REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

8.4 Clock Switching Operation

100001 =

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

100000 = Minimum frequency deviation

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM Configuration bits in CW2 must be programmed to '00'. (Refer to **Section 25.1 "Configuration Bits"** for further details.) If the FCKSM Configuration bits are unprogrammed ('1x'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

REGISTER 8-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

REGISTER	0-4. KEFC						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15		ence Oscillator e oscillator is ei	-				
	0 = Reference	e oscillator is di	sabled				
bit 14	Unimplemen	ted: Read as ')'				
bit 13	ROSSLP: Re	ference Oscilla	tor Output Sto	p in Sleep bit			
	1 = Reference	e oscillator con	tinues to run ir	n Sleep			
	0 = Reference	e oscillator is di	sabled in Slee	p			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sele	ect bit			
				clock. Note that			enabled using
				ains the operation k; base clock re			the device
bit 11-8	-	Reference Os				K SWITCHING OF	
DIL I I-8							
		clock value div clock value div	-				
		clock value div	•				
		clock value div	•				
	1011 = Base	clock value div	ided by 2,048				
		clock value div					
		clock value div	•				
		clock value div clock value div					
		clock value div	•				
		clock value div	•				
		clock value div	•				
	0011 = Base	clock value div	ided by 8				
		clock value div					
		clock value div	ided by 2				
	0000 = Base	clock value					
bit 7-0	Unimplemen	ted: Read as ')'				

NOTES:

REGISTER 10-9: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—		U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—		U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	U1RXR<4:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 10-10: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

bit 12-8 U2CTSR<4:0>: Assign UART2 Clear to Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-5 Unimplemented: Read as '0'

bit 4-0 U2RXR<4:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	—		_	_	—				
bit 15					•		bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	_				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15	TON: Timer1										
	1 = Starts 16 0 = Stops 16										
bit 14	-	ted: Read as '	י)								
bit 13	-	in Idle Mode bit									
	•			evice enters Idle	e mode						
		module operati									
bit 12-7	Unimplemen	ted: Read as ')'								
bit 6	TGATE: Time	GATE: Timer1 Gated Time Accumulation Enable bit									
	When $TCS = 1$:										
	This bit is ign When TCS =										
		<u>o.</u> ne accumulatio	n enabled								
		ne accumulatio									
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits							
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	00 = 1:1										
bit 3	Unimplemen	ted: Read as ')'								
bit 2	-			hronization Sel	ect bit						
	When TCS =										
		nize external clo									
	-	ynchronize exte	ernal clock inp	ut							
	When TCS = This bit is ign										
bit 1	-	Clock Source S	Select hit								
		clock from T1C		risina edae)							
		clock (Fosc/2)									
bit 0	Unimplemen	ted: Read as ')'								
Note 1: C	hanging the value	ue of TxCON w	hile the timer	is running (TON	l = 1) causes t	he timer prescal	e counter to				

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER⁽¹⁾

Note 1: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0
SPIEN ⁽¹⁾	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0
bit 15							bit 8
R-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF
bit 7							bit 0
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit		
R = Readable	e bit	W = Writable b	pit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	SPIEN: SPIX	Enable bit ⁽¹⁾					
	1 = Enables r 0 = Disables r	nodule and con module	figures SCKx,	SDOx, SDIx a	nd SSx as seria	al port pins	
bit 14	Unimplemen	ted: Read as 'o	,				
bit 13	SPISIDL: Sto	p in Idle Mode I	pit				
		ue module oper module operati			e mode		
bit 12-11	Unimplemen	ted: Read as 'o	'				
bit 10-8	SPIBEC<2:0	>: SPIx Buffer E	lement Count	bits (valid in E	nhanced Buffer	mode)	
	Master mode: Number of SF	<u>:</u> PI transfers that	are pending.				
	<u>Slave mode:</u> Number of SF	PI transfers that	are unread.				
bit 7	SRMPT: Shift	Register (SPIx	SR) Empty bit	(valid in Enhar	nced Buffer mo	de)	
		ft register is em ft register is not		to send or rece	eive		
bit 6	SPIROV: Rec	eive Overflow F	lag bit				
	•	te/word is comp e SPIxBUF regi	•	and discarded	. The user softw	vare has not rea	ad the previous
	0 = No overfl	ow has occurre	d				
bit 5		ceive FIFO Em		Enhanced But	ffer mode)		
		FIFO is empty FIFO is not emp					
bit 4-2	SISEL<2:0>:	SPIx Buffer Inte	errupt Mode bi	its (valid in Enh	anced Buffer m	node)	
		pt when SPIx t					
		pt when last bit pt when the las					
		ipt when one da					one open spot
	011 = Interru	pt when SPIx re	eceive buffer is	s full (SPIRBF	bit is set)		
		ipt when SPIx re ipt when data is				a aat)	
	000 = Interru	ipt when the la IPT bit set)			•	,	uffer is empty
	SPIEN = 1, the Peripheral Pin \$	se functions mu Select (PPS)" f			Pn pins before	use. See Sect	ion 10.4

REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0		UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA

Legend:	C = Clearable bit	HC = Hardware Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x =	Bit is unknown

bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits

11 = Reserved; do not use

bit 7

- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾

DIL 14	
	IREN = 0:
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: Transmit Break bit
	 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: Transmit Enable bit ⁽²⁾
	1 = Transmit is enabled, UxTX pin is controlled by UARTx
	 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by port
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full; at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters

- Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).
 - If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

bit 0

REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	U-0	U-0
VCFG2	VCFG1	VCFG0	r	—	CSCNA	—	—
bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	—	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13

VCFG<2:0>: Voltage Reference Configuration bits

VCFG<2:0>	VR+	VR-
000	AVdd	AVss
001	External VREF+ pin	AVss
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1xx	AVDD	AVss

- bit 12 **Reserved:** Maintain as '0'
- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit 1 = Scan inputs 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 **BUFS:** Buffer Fill Status bit (valid only when BUFM = 1)
 - 1 = A/D is currently filling buffer 08-0F; user should access data in 00-07
 - 0 = A/D is currently filling buffer 00-07; user should access data in 08-0F
- bit 6 Unimplemented: Read as '0'
- bit 5-2
 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence

 1100 = Interrupts at the completion of conversion for each 15th sample/convert sequence

 0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence

 0000 = Interrupts at the completion of conversion for each 2nd sample/convert sequence

 0000 = Interrupts at the completion of conversion for each sample/convert sequence

 0000 = Interrupts at the completion of conversion for each sample/convert sequence

 0000 = Interrupts at the completion of conversion for each sample/convert sequence

 bit 1
 BUFM: Buffer Mode Select bit

 Definite each formed as the source buffers (ADO4DUEs 45.0) and ADO4DUEs (700)
 - 1 = Buffer is configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
 - 0 = Buffer is configured as one 16-word buffer (ADC1BUFn<15:0>)
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and MUX A input multiplexer settings for all subsequent samples
 - 0 = Always uses MUX A input multiplexer settings

-	R/W-0 PCFG13 R/W-0 PCFG5 V = Writable 1' = Bit is set			R/W-0 PCFG10 R/W-0 PCFG2	R/W-0 PCFG9 R/W-0 PCFG1 as '0'	R/W-0 ⁽¹⁾ PCFG8 bit 8 R/W-0 PCFG0 bit 0		
W-0 ⁽¹⁾ CFG6	R/W-0 PCFG5 V = Writable I	R/W-0 PCFG4 bit	R/W-0 PCFG3 U = Unimplem	R/W-0 PCFG2	R/W-0 PCFG1	bit 8 R/W-0 PCFG0		
CFG6	PCFG5	PCFG4	PCFG3 U = Unimplem	PCFG2	PCFG1	R/W-0 PCFG0		
CFG6	PCFG5	PCFG4	PCFG3 U = Unimplem	PCFG2	PCFG1	PCFG0		
V	V = Writable	bit	U = Unimplem					
-				nented bit, read	as '0'	bit (
-				nented bit, read	as '0'			
-				nented bit, read	as '0'			
-				nented bit, read	as '0'			
	1' = Bit is set			U = Unimplemented bit, read as '0'				
			'0' = Bit is clear	ared	x = Bit is unkr	nown		
nternal bar nternal bar G14: A/D Ir nternal hal	nd gap (VBG) nd gap refere nput Half Ban f band gap (\	ence channel is nd Gap Refere /BG/2) referen	annel is disablec s enabled nce Enable bit ce channel is di					
G13: A/D Ir nternal voli nternal voli G<12:0>: A Pin for corre	nput Voltage tage regulato tage regulato Analog Input I esponding ar	Regulator Out or output (VDDo or output refere Pin Configurat nalog channel	put Reference E CORE) reference ence channel is ion Control bits ⁽ is configured in	e channel is disa enabled (1) Digital mode; I	/O port read is			
	G13: A/D In Internal vol Internal vol G<12:0>: A Pin for corr	G13: A/D Input Voltage Internal voltage regulato Internal voltage regulato G<12:0>: Analog Input Pin for corresponding an	G13: A/D Input Voltage Regulator Out nternal voltage regulator output (VDD nternal voltage regulator output refere G<12:0>: Analog Input Pin Configurat Pin for corresponding analog channel	nternal voltage regulator output (VDDCORE) reference nternal voltage regulator output reference channel is G<12:0>: Analog Input Pin Configuration Control bits Pin for corresponding analog channel is configured in Pin is configured in Analog mode; I/O port read is disa	G13: A/D Input Voltage Regulator Output Reference Enable bit internal voltage regulator output (VDDCORE) reference channel is disa internal voltage regulator output reference channel is enabled G<12:0>: Analog Input Pin Configuration Control bits ⁽¹⁾ Pin for corresponding analog channel is configured in Digital mode; I Pin is configured in Analog mode; I/O port read is disabled, A/D sam	G13: A/D Input Voltage Regulator Output Reference Enable bit nternal voltage regulator output (VDDCORE) reference channel is disabled nternal voltage regulator output reference channel is enabled		

REGISTER 21-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER

Note 1: Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; leave these corresponding bits set.

25.6 JTAG Interface

PIC24FJ64GA104 family devices implement a JTAG interface, which supports boundary scan device testing.

25.7 In-Circuit Serial Programming

PIC24FJ64GA104 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

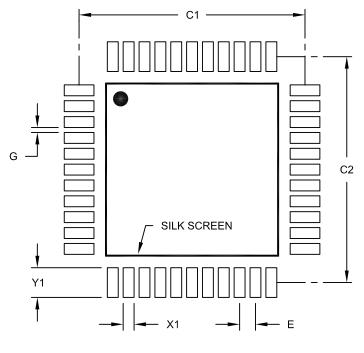
To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 28-7: DC CHARACTERISTICS: POWER-DOWN PERIPHERAL MODULE \triangle CURRENT (IPD) (CONTINUED)

DC CHARACT	ERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			+85°C for Industrial		
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions				
Δ Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is '0' ⁽²⁾								
DC63	1.8	2.3	μΑ	-40°C				
DC63a	1.8	2.7	μΑ	+25°C				
DC63i	1.8	3.0	μA	+60°C	2.0V ⁽³⁾			
DC63b	1.8	3.0	μΑ	+85°C				
DC63m	2.2	3.3	μΑ	+125°C				
DC63c	2	2.7	μΑ	-40°C				
DC63d	2	2.9	μA	+25°C		32 kHz Crystal with RTCC,		
DC63j	2	3.2	μA	+60°C	2.5V ⁽³⁾	DSWDT or Timer1: ∆Isosc;		
DC63e	2	3.5	μA	+85°C		SOSCSEL = 11 ⁽⁵⁾		
DC63n	2.5	3.8	μA	+125°C		_		
DC63f	2.25	3.0	μA	-40°C				
DC63g	2.25	3.0	μA	+25°C				
DC63k	2.25	3.3	μA	+60°C	3.3V ⁽⁴⁾			
DC63h	2.25	3.5	μA	+85°C				
DC63p	2.8	4.0	μA	+125°C				
DC71c	0.001	0.25	μA	-40°C				
DC71d	0.03	0.25	μA	+25°C				
DC71j	0.05	0.60	μA	+60°C	2.5V ⁽⁴⁾			
DC71e	0.08	2.0	μA	+85°C				
DC71a	3.9	10	μA	+125°C		– Deep Sleep BOR: ∆IDsbor		
DC71f	0.001	0.50	μA	-40°C		Deep Sleep BOR. AIDSBOR		
DC71g	0.03	0.50	μA	+25°C				
DC71k	0.05	0.75	μA	+60°C	3.3V ⁽⁴⁾			
DC71h	0.08	2.5	μA	+85°C				
DC71b	3.9	12.5	μA	+125°C				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Peripheral IPD deltas are measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are configured as inputs and pulled high. Only the peripheral or clock being measured is enabled. PMSLP bit is clear and the Peripheral Module Disable bits (PMD) for all unused peripherals are set.


3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).

4: On-chip voltage regulator is enabled (DISVREG is tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	-
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

NOTES:

۷

VDDCORE/VCAP Pin	
Voltage Regulator (On-Chip)	
and BOR	
and POR	
Power-up Requirements	
Standby Mode	
Tracking Mode	

W

Watchdog Timer (WDT)	
Control Register	
Windowed Operation	
WWW Address	
WWW, On-Line Support	