

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga104t-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24FJ64GA104 FAMILY

Pin Diagrams

1.2 Other Special Features

- **Peripheral Pin Select:** The Peripheral Pin Select feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ64GA104 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are two independent I²C[™] modules that support both Master and Slave modes of operation. Devices also have, through the Peripheral Pin Select (PPS) feature, two independent UARTs with built-in IrDA[®] encoder/decoders and two SPI modules.
- Analog Features: All members of the PIC24FJ64GA104 family include a 10-bit A/D Converter module and a triple comparator module. The A/D module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, as well as faster sampling speeds. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** This module provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.
- Parallel Master/Enhanced Parallel Slave Port: One of the general purpose I/O ports can be reconfigured for enhanced parallel data communications. In this mode, the port can be configured for both master and slave operations, and supports 8-bit and 16-bit data transfers with up to 12 external address lines in Master modes.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for the use of the core application.

1.3 Details on Individual Family Members

Devices in the PIC24FJ64GA104 family are available in 28-pin and 44-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in several ways:

- Flash Program Memory:
 - PIC24FJ32GA1 devices 32 Kbytes
 - PIC24FJ64GA1 devices 64 Kbytes
- Available I/O Pins and Ports:
 - 28-pin devices 21 pins on two ports
 - 44-pin devices 35 pins on three ports
- Available Interrupt-on-Change Notification (ICN)
 Inputs:
 - 28-pin devices 21
 - 44-pin devices 31
- Available Remappable Pins:
 - 28-pin devices 16 pins
 - 44-pin devices 26 pins
- Available PMP Address Pins:
 - 28-pin devices 3 pins
 - 44-pin devices 12 pins
- Available A/D Input Channels:
 - 28-pin devices 10 pins
 - 44-pin devices 13 pins

All other features for devices in this family are identical. These are summarized in Table 1-1.

A list of the pin features available on the PIC24FJ64GA104 family devices, sorted by function, is shown in Table 1-2. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

NOTES:

IABLE	4-5:	INIE	RRUPI	CONTR	OLLER	REGIS	SIER M										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON1	0800	NSTDIS	_	_	—	—	_	—	—	_	—	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_
INTCON2	0082	ALTIVT	DISI	_	—	_	—	_	_	_	-	_	_	—	INT2EP	INT1EP	INT0EP
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_		_		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
IFS2	0088	-		PMPIF				OC5IF	_	IC5IF	IC4IF	IC3IF	_			SPI2IF	SPF2IF
IFS3	008A	_	RTCIF	_	—	_	—	_	_	_	-	_	_	—	MI2C2IF	SI2C2IF	_
IFS4	008C	_		CTMUIF		_	_	_	LVDIF		_		_	CRCIF	U2ERIF	U1ERIF	_
IEC0	0094	_	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	_	_	-	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
IEC2	0098	_	_	PMPIE	—	_	—	OC5IE	_	IC5IE	IC4IE	IC3IE	_	—	_	SPI2IE	SPF2IE
IEC3	009A	_	RTCIE	_	_	_	—	_	_	_	-	_	_	—	MI2C2IE	SI2C2IE	_
IEC4	009C	_	_	CTMUIE	_	_	_	_	LVDIE	_	_	_	_	CRCIE	U2ERIE	U1ERIE	_
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	—	_	_	_
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0
IPC3	00AA	_	_	_	—	_	—	_	_	_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0
IPC5	00AE	_	_	_	_	_	_	_	_	_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	_	_	_
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0
IPC8	00B4	_	_	_	_	_	_	_	_	_	SPI2IP2	SPI2IP1	SPI2IP0	_	SPF2IP2	SPF2IP1	SPF2IP0
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	—	_	_	_
IPC10	00B8	_	_	_	—	_	—	_	_	_	OC5IP2	OC5IP1	OC5IP0	—	_	_	_
IPC11	00BA	_	_	_	_	_	_	_	_	_	PMPIP2	PMPIP1	PMPIP0	_	_	_	_
IPC12	00BC	_	_	_	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	_	_	_
IPC15	00C2	_	_	_	_	_	RTCIP2	RTCIP1	RTCIP0	_	_	_	_	_	_	_	_
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_	_
IPC18	00C8	_	_	—	—	—	—	—	—	_	—	_	—	_	LVDIP2	LVDIP1	LVDIP0
IPC19	00CA	—	_	—	—	—	—		—	_	CTMUIP2	CTMUIP1	CTMUIP0	_	—	—	—
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All

Resets

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

4444

4440

4444

0044

4444

0004

4440

4444

0044

4440

0040 0040

0440

0400

4440

0004

0040

0000

INTTREG

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	_	_	—	—	—	—				Receive	Register				0000
I2C1TRN	0202	_	_	—	_	—	—	_	_				Transmit	Register				00FF
I2C1BRG	0204		_	—	_	—	_	_				Baud Rat	e Generato	r Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	020A	_	_	—	_	—	—					Address	Register					0000
I2C1MSK	020C	_	_	—	_	—	—					Address Ma	ask Registe	r				0000
I2C2RCV	0210	_	_	_	_	-	_	_	_				Receive	Register				0000
I2C2TRN	0212		_	_	_	—	—	_	_				Transmit	Register				00FF
I2C2BRG	0214		_	_	_	—	—	_				Baud Rat	e Generato	r Register				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A		—	—	_	—	_	Address Register 000							0000			
I2C2MSK	021C		_	_		_			Address Mask Register 00							0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: UART REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_		_				Trar	smit Regist	er				xxxx
U1RXREG	0226	_	—	—	—	—		—	Receive Register 00							0000		
U1BRG	0228							Baud R	ate Genera	tor Prescaler	Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	—	_	—				Trar	ismit Regist	er				xxxx
U2RXREG	0236	_	_	_	_	_		_	Receive Register 00							0000		
U2BRG	0238	Baud Rate Generator Prescaler Register 0000										0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it 1. maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'.

EIGHDE A G

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

		Program Sy	X5:03				
782,89465 []2						277 EAN (6.0) N	×
	23 15 6 0200 0300 0300 0300	2005 2005 2005 2005 2005 2005 2005 2005	Contraction of the page of the	23 000000 000000 000000 000000 000000	-16 		O Inte IIA veta Io

ACCESSING DROGRAM MEMORY WITH TARLE INSTRUCTIONS

EXAMPLE 5-4: LOADING THE WRITE BUFFERS (C LANGUAGE CODE)

```
// C example using MPLAB C30
   #define NUM_INSTRUCTION_PER_ROW 64
   unsigned int offset;
   unsigned int i;
   unsigned long progAddr = 0xXXXXXX; // Address of row to write
unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; // Buffer of data to write
//Set up NVMCON for row programming
   NVMCON = 0 \times 4001;
                                                             // Initialize NVMCON
//Set up pointer to the first memory location to be written
   TBLPAG = progAddr>>16;
                                                            // Initialize PM Page Boundary SFR
   offset = progAddr & 0xFFFF;
                                                             // Initialize lower word of address
//Perform TBLWT instructions to write necessary number of latches
for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
   {
       __builtin_tblwtl(offset, progData[i++]);
                                                            // Write to address low word
        __builtin_tblwth(offset, progData[i]);
                                                            // Write to upper byte
       offset = offset + 2;
                                                            // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE (ASSEMBLY LANGUAGE CODE)

DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	;
NOP	;
BTSC NVMCON, #15	; and wait for it to be
BRA \$-2	; completed

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE (C LANGUAGE CODE)

// C example using MPLAB (230
asm("DISI #5");	<pre>// Block all interrupts with priority < 7 // for next 5 instructions</pre>
builtin_write_NVM();	// Perform unlock sequence and set WR

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC bits in Flash Configuration Word 2 (CW2); see Table 6-2. The RCFGCAL and NVMCON registers are only affected by a POR.

6.4 Deep Sleep BOR (DSBOR)

Deep Sleep BOR is a very low-power BOR circuitry, used when the device is in Deep Sleep mode. Due to low-current consumption, accuracy may vary.

The DSBOR trip point is around 2.0V. DSBOR is enabled by configuring CW4 (DSBOREN) = 1. DSBOR will re-arm the POR to ensure the device will reset if VDD drops below the POR threshold.

REGISTER 7-8:	IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	RTCIF		_	_		—					
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0,	R/W-0	U-0				
—	—	—	_	—	MI2C2IF	SI2C2IF	—				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											
bit 15	Unimplemer	nted: Read as 'd)'								
bit 14	RTCIF: Real	-Time Clock/Cal	endar Interrup	ot Flag Status bi	t						
	1 = Interrupt	request has occ	urred								
	0 = Interrupt	request has not	occurred								
bit 13-3	Unimplemer	nted: Read as 'o)'								
bit 2	MI2C2IF: Ma	ster I2C2 Event	Interrupt Flag	status bit							
	1 = Interrupt	request has occ	urred								
	0 = Interrupt	request has not	occurred								
bit 1	SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit										
	1 = Interrupt	request has occ	urred								
	0 = Interrupt	request has not	occurred								
bit 0	Unimplemer	nted: Read as '0)'								

14.3.1 PWM PERIOD

In edge aligned PWM mode, the period is specified by the value of OCxRS register. In center aligned PWM mode, the period of the synchronization source such as Timer's PRy specifies the period. The period in both cases can be calculated using Equation 14-1.

EQUATION 14-1: CALCULATING THE PWM PERIOD⁽¹⁾

PWM Period = $[Value + 1] \times TCY \times (Prescaler Value)$

- Where: Value = OCxRS in Edge-Aligned PWM mode and can be PRy in Center-Aligned PWM mode (If TMRy is the sync source).
- **Note 1:** Based on TCY = TOSC * 2; Doze mode and PLL are disabled.

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a period is complete. This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- Edge-Aligned PWM
 - If OCxR and OCxRS are loaded with 0000h, the OCx pin will remain low (0% duty cycle).
 - If OCxRS is greater than OCxR, the pin will remain high (100% duty cycle).
- Center-Aligned PWM (with TMRy as the sync source)
 - If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
 - If OCxRS is greater than PRy, the pin will go high (100% duty cycle).

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

 Find the OCxRS register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a prescaler setting of 1:1 using Edge-Aligned PWM mode. TCY = 2 * Tosc = 62.5 ns PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μs PWM Period = (OCxRS + 1) • TCY • (OCx Prescale Value) 19.2 μs = (OCxRS + 1) • 62.5 ns • 1 OCxRS = 306
 Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate: PWM Resolution = log₁₀(FCY/FPWM)/log₁₀2) bits = (log₁₀(16 MHz/52.08 kHz)/log₁₀2) bits = 8.3 bits
 Note 1: Based on TCY = 2 * Tosc; Doze mode and PLL are disabled.

PIC24FJ64GA104 FAMILY

To set up the SPI module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1<8>) is set, then the SSEN bit (SPIxCON1<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

17.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UART:
 - a) Write appropriate values for data, parity and Stop bits.
 - b) Write appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt two cycles after being set).
- 4. Write data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

17.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UART (as described in **Section 17.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UART.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

17.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UART for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

17.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UART (as described in Section 17.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UART.
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

17.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear to Send (UxCTS) and Request to Send (UxRTS) are the two hardware-controlled pins that are associated with the UART module. These two pins allow the UART to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

17.7 Infrared Support

The UART module provides two types of infrared UART support: one is the IrDA clock output to support the external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

17.7.1 IRDA CLOCK OUTPUT FOR EXTERNAL IRDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UART module is enabled. It can be used to support the IrDA codec chip.

17.7.2 BUILT-IN IRDA ENCODER AND DECODER

The UART has full implementation of the IrDA encoder and decoder as part of the UART module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

PIC24FJ64GA104 FAMILY

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PMPEN		PSIDL	ADRMUX1 ⁽¹⁾	ADRMUX0 ⁽¹⁾	PTBEEN	PTWREN	PTRDEN					
bit 15				II			bit 8					
R/W-0	R/W-0	R/W-0 ⁽²⁾	U-0	R/W-0 ⁽²⁾	R/W-0	R/W-0	R/W-0					
CSF1	CSF0	ALP	—	CS1P	BEP	WRSP	RDSP					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	red	x = Bit is unkn	iown					
bit 15	PMPEN: Par 1 = PMP is 6 0 = PMP is 0	allel Master Po enabled disabled, no off	rt Enable bit -chip access pe	rformed								
bit 14	Unimplemer	nted: Read as	0'									
bit 13	PSIDL: Stop	in Idle Mode b	it									
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 											
bit 12-11	<pre>it 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on PMA<10:8></pre>											
bit 10	PTBEEN: By 1 = PMBE pc 0 = PMBE pc	rte Enable Port ort is enabled ort is disabled	Enable bit (16-	Bit Master mode	e)							
bit 9	PTWREN: W	/rite Enable Str	obe Port Enable	e bit								
	1 = PMWR/F 0 = PMWR/F	PMENB port is PMENB port is	enabled disabled									
bit 8	PTRDEN: Re 1 = PMRD/P 0 = PMRD/P	ead/Write Strob	e Port Enable b nabled isabled	bit								
bit 7-6	CSF<1:0>: C	hip Select Fun	ction bits									
	11 = Reserved 10 = PMCS1 functions as chip set 01 = Reserved 00 = Reserved											
bit 5	ALP: Addres 1 = Active-hi 0 = Active-lo	s Latch Polarit igh <u>(PMALL</u> an w (PMALL and	y bit ⁽²⁾ d <u>PMALH)</u> I PMALH)									
bit 4	Unimplemer	nted: Read as	0'									
bit 3	CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 0 = Active-low (PMCS1/PMCS1)											
Noto 1: DI	10-25 bite	aro not availab	lo on 28 nin do	lices								

REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER

- **Note 1:** PMA<10:2> bits are not available on 28-pin devices.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0, HSC	R/W-x, HSC	R/W-x, HSC	R/W-x, HSC				
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0, HSC	U-0, HSC	R/W-x, HSC					
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0, HSC	R/W-x, HSC						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0, HSC	R/W-x, HSC						
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

REGISTER 25-2: CW2: FLASH CONFIGURATION WORD 2

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
	_	—	—	_	—		—	
bit 23 bit 16								
	11.4	11.4	11.4	11.4				
IESO	0-1	0-1	0-1	0-1				
bit 15			_		110302	TNOSCI	hit 8	
bit 15							bit 0	
R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	
FCKSM1	FCKSM0	OSCIOFCN	IOL1WAY		I2C1SEL	POSCMD1	POSCMD0	
bit 7							bit 0	
Legend:			A 1.14			. , .		
R = Readable	e bit	PO = Program	Once bit	U = Unimplen	nented bit, read			
-n = value wh	ien device is un	programmed		"1" = Bit is set		$0^{\circ} = Bit is clea$	ared	
bit 23-16	Unimplement	ted: Read as '1	,					
bit 15	IESO: Interna	External Switc	hover bit					
	1 = IESO mod	de (Two-Speed	Start-up) is en	abled				
	0 = IESO mod	de (Two-Speed	Start-up) is dis	abled				
bit 14-11	Unimplement	ted: Read as '1	,					
bit 10-8	FNOSC<2:0>	: Initial Oscillato	or Select bits					
	111 = Fast R	C Oscillator with	n Postscaler (F	RCDIV)				
	110 = Reserv 101 = Low-Pc	'ed ower RC Oscilla	tor (LPRC)					
	100 = Second	dary Oscillator (SOSC)					
	011 = Primary	y Oscillator with	PLL module (XTPLL, HSPL	L, ECPLL)			
	010 = Primary	y Oscillator (XT,	HS, EC)					
	000 = Fast RC Oscillator (FRC)							
bit 7-6	FCKSM<1:0>	: Clock Switchin	ng and Fail-Sa	afe Clock Monit	tor Configuratio	n bits		
	1x = Clock switching and Fail-Safe Clock Monitor are disabled							
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled							
hit E	UU = Clock switching is enabled, Fall-Sate Clock Monitor is enabled							
DIL 5	If $POSCMD<1:0> = 11 \text{ or } 00:$							
	$\frac{11 + OSCMUSTUS = 11 \text{ of } 000}{1 = OSCO/CLKO/RA3 \text{ functions as CLKO (Fosc/2)}}$							
	0 = OSCO/CL	KO/RA3 functio	ons as port I/C	(RC15)				
	$\frac{ \text{fPOSCMD} < 1:0> = 10 \text{ or } 01:}{OSCUCENN}$							
bit 4	IOL1WAY: IO	LOCK One-Way	y Set Enable b	oit				
	1 = The IOL	OCK bit (OSC	CON<6>) can	be set once,	provided the	unlock sequer	nce has been	
	complete	d. Once set, the	e Peripheral P	in Select regist	ers cannot be v	written to a sec	ond time.	
	0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed							
bit 3	Unimplemented: Read as '1'							
bit 2	12C1SEL: 12C	1 Pin Select bit						
2	1 = Use defa	ult SCL1/SDA1	pins					
	0 = Use alter	nate SCL1/SDA	1 pins					
bit 1-0	POSCMD<1:0	0>: Primary Osc	cillator Configu	ration bits				
	11 = Primary	Oscillator is di	sabled					
	10 = HS Osci	sillator mode is s	selected					
	00 = EC Oscillator mode is selected							

26.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

26.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

26.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

26.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES		
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	—	—
Shoulder to Shoulder Width	Е	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

۷

	246
Voltage Regulator (On Chin)	240
and BOR	
and POR	
Power-up Requirements	
Standby Mode	
Tracking Mode	

W

Watchdog Timer (WDT)	247
Control Register	248
Windowed Operation	248
WWW Address	303
WWW, On-Line Support	8