

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z4d
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, LINbus, SCI, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	57
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.63V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc564l60l3bcoqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Device comparison

	Feature	SPC56EL60	SPC56EL54				
	Туре		200z4 coupled operation)				
	Architecture	Har	vard				
	Execution speed	0–120 MHz	z (+2% FM)				
	DMIPS intrinsic performance	>240	MIPS				
	SIMD (DSP + FPU)	Ye	es				
CPU	MMU	16 e	entry				
	Instruction set PPC	Yes					
	Instruction set VLE	Ye	es				
	Instruction cache	4 KB, EDC					
	MPU-16 regions	Yes, replicated module					
	Semaphore unit (SEMA4)	Yes					
Duese	Core bus	AHB, 32-bit add	ress, 64-bit data				
Buses	Internal periphery bus	32-bit addres	s, 32-bit data				
Crossbar	Master × slave ports		Mode: 4 × 3 allel Mode: 6 × 3				
	Flash	1 MB, ECC, RWW	768 KB, ECC, RWW				
Memory	Static RAM (SRAM)	128 KB, ECC	96 KB, ECC				

exceptions, etc.), allowing the development tool to interpolate what transpires between the discontinuities. Thus, static code may be traced.

- Watchpoint messaging (WPM) via the auxiliary port
- Watchpoint trigger enable of program and/or data trace messaging
- Data tracing of instruction fetches via private opcodes

1.5.39 IEEE 1149.1 JTAG Controller (JTAGC)

The JTAGC block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

The JTAG controller provides the following features:

- IEEE Test Access Port (TAP) interface with 5 pins:
 - TDI
 - TMS
 - TCK
 - TDO
 - JCOMP
- Selectable modes of operation include JTAGC/debug or normal system operation
- 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:
 - BYPASS
 - IDCODE
 - EXTEST
 - SAMPLE
 - SAMPLE/PRELOAD
- 3 test data registers: a bypass register, a boundary scan register, and a device identification register. The size of the boundary scan register is parameterized to support a variety of boundary scan chain lengths.
- TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry

	Table 4. LQ	(FP144 pin function	n summary (continu	ed)
Pin #	Port/function	Peripheral	Output function	Input function
		SIUL	GPIO[54]	GPIO[54]
24	DIG	DSPI_0	CS2	—
34	D[6]	FlexPWM_0	X[3]	X[3]
		FlexPWM_0	_	FAULT[1]
35	V _{SS_LV_PLL0_PLL1}			
36	V _{DD_LV_PLL0_PLL1}		_	
		SIUL	GPIO[55]	GPIO[55]
07		DSPI_1	CS3	
37	D[7] -	DSPI_0	CS4	
	-	SWG	analog output	
38	FCCU_F[0]	FCCU	F[0]	F[0]
39	V _{DD_LV_COR}		—	
40	V _{SS_LV_COR}		_	
		SIUL	—	GPIO[33]
41	C[1]	ADC_0	_	AN[2]
		SIUL	_	GPIO[68]
42	E[4] -	ADC_0	_	AN[7]
		SIUL	_	GPIO[23]
43	B[7]	LINFlexD_0	_	RXD
		ADC_0	_	AN[0]
		SIUL	_	GPIO[69]
44	E[5] -	ADC_0	—	AN[8]
		SIUL	_	GPIO[34]
45	C[2]	ADC_0	_	AN[3]
		SIUL	—	GPIO[70]
46	E[6]	ADC_0	_	AN[4]
		SIUL	_	GPIO[24]
47	B[8]	eTimer_0		ETC[5]
	-	ADC_0		AN[1]
40		SIUL	—	GPIO[71]
48	E[7] -	ADC_0	—	AN[6]
10	FIG	SIUL	_	GPIO[66]
49	E[2] -	ADC_0	—	AN[5]
50	V _{DD_HV_ADR0}			1
51	V _{SS_HV_ADR0}		_	

Table 4. LQFP144 pin function summary (continued)

		2FP144 pin function	n summary (continu	ea)
Pin #	Port/function	Peripheral	Output function	Input function
		SIUL	—	GPIO[25]
52	B[9]	ADC_0 ADC_1	_	AN[11]
		SIUL	—	GPIO[26]
53	B[10]	ADC_0 ADC_1	_	AN[12]
		SIUL	—	GPIO[27]
54	B[11]	ADC_0 ADC_1	_	AN[13]
		SIUL	—	GPIO[28]
55	B[12]	ADC_0 ADC_1	_	AN[14]
56	V _{DD_HV_ADR1}		—	
57	V _{SS_HV_ADR1}		—	
58	V _{DD_HV_ADV}		—	
59	V _{SS_HV_ADV}		—	
		SIUL	—	GPIO[29]
60	B[13]	LINFlexD_1	—	RXD
		ADC_1	—	AN[0]
61	E[9]	SIUL	—	GPIO[73]
01	L[9]	ADC_1	—	AN[7]
		SIUL	—	GPIO[31]
62	B[15]	SIUL	—	EIRQ[20]
		ADC_1	—	AN[2]
63	E[10]	SIUL	—	GPIO[74]
03	E[10]	ADC_1	—	AN[8]
		SIUL	—	GPIO[30]
64	D[14]	eTimer_0	—	ETC[4]
64	B[14]	SIUL	—	EIRQ[19]
		ADC_1	—	AN[1]
6F	E[14]	SIUL	—	GPIO[75]
65	E[11]	ADC_1	—	AN[4]
66	0101	SIUL	—	GPIO[32]
66	C[0]	ADC_1	—	AN[3]
67	E[12]	SIUL	—	GPIO[76]
07	E[12]	ADC_1	_	AN[6]

Table 4. LQFP144 pin function summary (continued)

		GAZ57 pin function	on summary (continu	•
Pin #	Port/function	Peripheral	Output function	Input function
		SIUL	GPIO[128]	GPIO[128]
C9	1(0)	eTimer_2	ETC[0]	ETC[0]
Ca	I[0]	DSPI_0	CS4	_
		FlexPWM_1	—	FAULT[0]
C10	JCOMP	_	—	JCOMP
011	11[44]	SIUL	GPIO[123]	GPIO[123]
C11	H[11] -	FlexPWM_1	A[2]	A[2]
		SIUL	GPIO[129]	GPIO[129]
040	1541	eTimer_2	ETC[1]	ETC[1]
C12	I[1] -	DSPI_0	CS5	_
		FlexPWM_1	_	FAULT[1]
040	F [4,4]	SIUL	GPIO[94]	GPIO[94]
C13	F[14]	LINFlexD_1	TXD	
		SIUL	GPIO[17]	GPI0[17]
		eTimer_1	ETC[3]	ETC[3]
014	D[4]	SSCM	DEBUG[1]	—
C14	B[1] -	FlexCAN_0	_	RXD
		FlexCAN_1	—	RXD
		SIUL	—	EIRQ[16]
C15	V _{SS_HV_IO_RING}			
		SIUL	GPIO[4]	GPIO[4]
		eTimer_1	ETC[0]	ETC[0]
C16	0[4]	DSPI_2	CS1	_
010	A[4]	eTimer_0	ETC[4]	ETC[4]
		MC_RGM	—	FAB
		SIUL	—	EIRQ[4]
		SIUL	GPIO[92]	GPI0[92]
C17	F[12]	eTimer_1	ETC[3]	ETC[3]
		SIUL	—	EIRQ[30]
D4	FIEL	SIUL	GPIO[85]	GPIO[85]
D1	F[5] -	NPC	MDO[2]	_
20	E[4]	SIUL	GPIO[84]	GPIO[84]
D2	F[4] -	NPC	MDO[3]	_

Table 5. LFBGA257 pin function summary (continued)

D'. "			n summary (continu	-
Pin #	Port/function	Peripheral	Output function	Input function
N14	Not connected		—	
		SIUL	GPIO[44]	GPIO[44]
N15	C[12]	eTimer_0	ETC[5]	ETC[5]
		DSPI_2	CS3	—
		SIUL	GPIO[2]	GPIO[2]
		eTimer_0	ETC[2]	ETC[2]
N16	1010	FlexPWM_0	A[3]	A[3]
NIO	A[2] —	DSPI_2	—	SIN
		MC_RGM	—	ABS[0]
		SIUL	—	EIRQ[2]
		SIUL	GPIO[101]	GPIO[101]
N17	G[5]	FlexPWM_0	X[3]	X[3]
		DSPI_2	CS3	
P1	V _{SS_HV_OSC}		—	
P2	RESET		—	
		SIUL	GPIO[54]	GPIO[54]
P3	D[6]	DSPI_0	CS2	—
15	D[0]	FlexPWM_0	X[3]	X[3]
		FlexPWM_0	—	FAULT[1]
P4	V _{DD_LV_PLL0_PLL1}			
P5	$V_{\text{DD}_\text{LV}_\text{CORE}_\text{RING}}$		—	
P6	$V_{SS_LV_CORE_RING}$		—	
		SIUL	_	GPIO[24]
P7	B[8]	eTimer_0	_	ETC[5]
		ADC_0	—	AN[1]
P8	Not connected		_	
P9	V _{SS_HV_IO_RING}		_	
P10	V _{DD_HV_IO_RING}		—	
		SIUL	—	GPIO[30]
P11	B[14] —	eTimer_0	—	ETC[4]
	נדיןס	SIUL	—	EIRQ[19]
		ADC_1		AN[1]
P12	V _{DD_LV_CORE_RING}		_	
P13	V _{SS_LV_CORE_RING}			
P14	V _{DD_HV_IO_RING}		_	

 Table 5. LFBGA257 pin function summary (continued)

- 2. This pad contains a weak pull-up.
- 3. EXTAL is an "Output" in "crystal" mode, and is an "Input" in "ext clock" mode.
- 4. In XOSC Bypass Mode, the analog portion of crystal oscillator (amplifier) is disabled. An external clock can be applied at EXTAL as an input. In XOSC Normal Mode, EXTAL is an output
- 5. This pad contains a weak pull-down.
- 6. RESET output shall be considered valid only after the 3.3V supply reaches its stable value.

Note: None of system pins (except RESET) provides an open drain output.

2.4 Pin muxing

Table 8 defines the pin list and muxing for this device.

Each entry of *Table 8* shows all the possible configurations for each pin, via the alternate functions. The default function assigned to each pin after reset is indicated by ALT0.

- Note: Pins labeled "NC" are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage.
- Note: Pins labeled "Reserved" are to be tied to ground. Not doing so may cause unpredictable device behavior.

	Port			Alternate	Output	Input	Input mux	Weak pull	Pa spe	Pad eed ⁽¹⁾ Pir		Pin #	in #	
	name	PCR	Peripheral	output function	mux sel	functions	select	config during reset	SRC = 1	SRC = 0	100 pkg	144 pkg	25 pk	
l			SIUL	GPIO[42]	ALT0	GPIO[42]								
			DSPI_2	CS2	ALT1	_								
	C[10]	PCR[42]	FlexPWM_0	A[3]	ALT3	A[3]	PSMI[23]; PADSEL=1		М	S	78	111	A15	
			FlexPWM_0	_	_	FAULT[1]	PSMI[17]; PADSEL=0							
Ì		PCR[43]	SIUL	GPIO[43]	ALT0	GPIO[43]								
	C[11]		eTimer_0	ETC[4]	ALT1	ETC[4]	PSMI[7]; PADSEL=1		М	s	55	80	M1	
			DSPI_2	CS2	ALT2	_								
		2] PCR[44]	SIUL	GPIO[44]	ALT0	GPIO[44]	_							
	C[12]		eTimer_0	ETC[5]	ALT1	ETC[5]	PSMI[8]; PADSEL=0		_	М	S	56	82	N1
			DSPI_2	CS3	ALT2	—	_							
			SIUL	GPIO[45]	ALT0	GPIO[45]	—							
			eTimer_1	ETC[1]	ALT1	ETC[1]	PSMI[10]; PADSEL=0						F15	
	C[13]	PCR[45]	CTU_0	—	—	EXT_IN	PSMI[0]; PADSEL=0	_	М	S	71	101		
			FlexPWM_0	_	_	EXT_SYNC	PSMI[15]; PADSEL=0							
Ì			SIUL	GPIO[46]	ALT0	GPIO[46]								
	C[14]	PCR[46]	eTimer_1	ETC[2]	ALT1	ETC[2]	PSMI[11]; PADSEL=1		М	S	72	103	E15	
			CTU_0	EXT_TGR	ALT2		_	1						

Package pinouts and signal descriptions

SPC56ELx, SPC564Lx

				Table 8. Pi	n muxing (cor	tinued)						
Port	PCR	Peripheral	Alternate	Output	Input	Input mux	Weak pull config during	Pa spe	ad ed ⁽¹⁾		Pin #	
name	FUR	Felipileiai	output function	mux sel	functions	select	reset	SRC = 1	SRC = 0	100 pkg	144 pkg	257 pkg
		SIUL	GPIO[50]	ALT0	GPIO[50]							
D[2]	DCD[50]	eTimer_1	ETC[3]	ALT2	ETC[3]	PSMI[12]; PADSEL=1		М	S		140	C5
D[2]	PCR[50]	FlexPWM_0	X[3]	ALT3	X[3]	PSMI[30]; PADSEL=0		IVI	5		140	05
		FlexRay	—	—	CB_RX	—						
		SIUL	GPIO[51]	ALT0	GPIO[51]	—						
		FlexRay	CB_TX	ALT1	_	—						
D[3]	PCR[51]	eTimer_1	ETC[4]	ALT2	ETC[4]	PSMI[13]; PADSEL=1	-1 ;	SYM	S	89	128	A7
		FlexPWM_0	A[3]	ALT3	A[3]	PSMI[23]; PADSEL=2						
		SIUL	GPIO[52]	ALT0	GPIO[52]	—						
		FlexRay	CB_TR_EN	ALT1	_	—						В7
D[4]	PCR[52]	eTimer_1	ETC[5]	ALT2	ETC[5]	PSMI[14]; PADSEL=2	_	SYM	S	90	129	
		FlexPWM_0	B[3]	ALT3	B[3]	PSMI[27]; PADSEL=2						
		SIUL	GPIO[53]	ALT0	GPIO[53]	_						1
D[5]	PCR[53]	DSPI_0	CS3	ALT1	_	_		М	S	22	33	N3
		FlexPWM_0		_	FAULT[2]	PSMI[18]; PADSEL=0						IND

Package pinouts and signal descriptions

SPC56ELx, SPC564Lx

86/165

DocID15457 Rev 12

5

_					Table 8. Pi	n muxing (cor	tinued)						
	Port	PCR	Peripheral	Alternate output	Output	Input	Input mux	Weak pull config during	Pa spee	ad ed ⁽¹⁾	Pin #		
	name	FOR	renpheral	function	mux sel	functions	select	reset	SRC = 1	SRC = 0	100 pkg	144 pkg	257 pkg
Γ			SIUL	GPIO[54]	ALT0	GPIO[54]	—						
			DSPI_0	CS2	ALT1	_	_						
	D[6]	PCR[54]	FlexPWM_0	X[3]	ALT3	X[3]	PSMI[30]; PADSEL=1		М	S	23	34	P3
			FlexPWM_0	_	_	FAULT[1]	PSMI[17]; PADSEL=1						
Ī			SIUL	GPIO[55]	ALT0	GPIO[55]	_						
	ודוס	PCR[55]	DSPI_1	CS3	ALT1	_	_			S	26	37	R4
	D[7]	FCR[55]	DSPI_0	CS4	ALT3	_	_		М	3	20	57	κ4
			SWG	analog output		_	_						
Ī			SIUL	GPIO[56]	ALT0	GPIO[56]	_						
			DSPI_1	CS2	ALT1	_	_]					
	D[8]	PCR[56]	eTimer_1	ETC[4]	ALT2	ETC[4]	PSMI[13]; PADSEL=2		М	S	21	32	М3
			DSPI_0	CS5	ALT3	_							
			FlexPWM_0	—	_	FAULT[3]	PSMI[19]; PADSEL=1						
Ī			SIUL	GPIO[57]	ALT0	GPIO[57]	_						1
	D[9]	PCR[57]	FlexPWM_0	X[0]	ALT1	X[0]			М	S	15	26	L3
			LINFlexD_1	TXD	ALT2		_	1					

87/165

Package pinouts and signal descriptions

96/165

DocID15457 Rev 12

				Table 8. Pi	n muxing (cor	ntinued)							
Port	PCR	Peripheral	Alternate	Output	Input	Input mux	Weak pull config during	Pad speed ⁽¹⁾		Pin #			
name	FCK	Peripheral	output function	mux sel	functions	select	reset	SRC = 1	SRC = 0	100 pkg	144 pkg	257 pkg	
H[11]	PCR[123]	SIUL	GPIO[123]	ALT0	GPIO[123]	_		М	S		_	C11	
п[т	PCR[123]	FlexPWM_1	A[2]	ALT1	A[2]	_		IVI	5		_		
H[12]	PCR[124]	SIUL	GPIO[124]	ALT0	GPIO[124]	_		М	S		_	B10	
п[12]	PCR[124]	FlexPWM_1	B[2]	ALT1	B[2]	_		IVI	5		_	ы	
		SIUL	GPIO[125]	ALT0	GPIO[125]	_							
H[13]	PCR[125]	FlexPWM_1	X[3]	ALT1	X[3]	_		М	s		_	G1	
[]		eTimer_2	ETC[3]	ALT2	ETC[3]	PSMI[42]; PADSEL=0			_				
		SIUL	GPIO[126]	ALT0	GPIO[126]	_		_		S	_	_	
H[14]	PCR[126]	FlexPWM_1	A[3]	ALT1	A[3]	_			М				A12
		eTimer_2	ETC[4]	ALT2	ETC[4]	_							
		SIUL	GPIO[127]	ALT0	GPIO[127]	_							
H[15]	PCR[127]	FlexPWM_1	B[3]	ALT1	B[3]	_	—	М	S	—	-	J17	
		eTimer_2	ETC[5]	ALT2	ETC[5]	_							
					Port I		·					•	
		SIUL	GPIO[128]	ALT0	GPIO[128]	_							
I[0]	PCR[128]	eTimer_2	ETC[0]	ALT1	ETC[0]	PSMI[39]; PADSEL=1] _	М	S	_		C9	
		DSPI_0	CS4	ALT2	_	_							
		FlexPWM_1	_	—	FAULT[0]	_]						

Package pinouts and signal descriptions

				,	1	1
Symbol		Parameter	Conditions	Min	Max	Unit
V _{SS_HV_ADR0} V _{SS_HV_ADR1}	SR	ADC_0 ground and low reference voltage ADC_1 ground and low reference voltage	—	-0.1	0.1	٧
V _{DD_HV_ADV}	SR	3.3 V ADC supply voltage	_	-0.3	4.5 ^{(4), (3)}	V
$V_{SS_HV_ADV}$	SR	3.3 V ADC supply ground		-0.1	0.1	V
TV _{DD}	SR	Supply ramp rate	_	3.0 × 10-6 (3.0 V/sec)	0.5 V/µs	V/µs
V _{IN}	SR	Voltage on any pin with respect to ground	Valid only for ADC pins	-0.3	6.0 ⁽⁴⁾	v
V IN		(V _{SS_HV_IOx}) or V _{ss_HV_ADRx}	Relative to V_{DD}	-0.3	V _{DD} + 0.3 ^{(4),} (5)	v
I _{INJPAD}	SR	Injected input current on any pin during overload condition	—	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
T _{STG}	SR	Storage temperature	_	-55	150	°C

Table 9. Absolute	e maximum	ratings ⁽¹⁾	(continued)
-------------------	-----------	------------------------	-------------

1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Exposure to absolute maximum rating conditions for extended periods may affect device reliability or cause permanent damage to the device.

2. Any voltage between operating condition and absolute max rating can be sustained for maximum cumulative time of 10 hours.

3. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.

4. Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the maximum injection current specification is met and VDDE is within the operating voltage specifications.

5. V_{DD} has to be considered equal to $V_{DD_HV_ADRx}$ in case of ADC pins, whilst it is $V_{DD_HV_IOx}$ for any other pin.

3.3 Recommended operating conditions

Table 10	. Recommended	operating	conditions	(3.3	V)
----------	---------------	-----------	------------	------	----

Symbol		Parameter	Conditions	Min ⁽¹⁾	Max	Unit
V _{DD_HV_REG}	SR	3.3 V voltage regulator supply voltage	—	3.0	3.63	V
V _{DD_HV_IOx}	SR	3.3 V input/output supply voltage	—	3.0	3.63	V
V _{SS_HV_IOx}	SR	Input/output ground voltage	—	0	0	V
V _{DD_HV_FLA}	SR	3.3 V flash supply voltage	—	3.0	3.63	V
V _{SS_HV_FLA}	SR	Flash memory ground	—	0	0	V
V _{DD_HV_OSC}	SR	3.3 V crystal oscillator amplifier supply voltage	—	3.0	3.63	V
V _{SS_HV_OSC}	SR	3.3 V crystal oscillator amplifier reference voltage	_	0	0	V
V _{DD_HV_ADR0} ⁽²⁾ , (3) V _{DD_HV_ADR1}	SR	3.3 V / 5.0 V ADC_0 high reference voltage 3.3 V / 5.0 V ADC_1 high reference voltage	_	4.5 to 3.0 to	5.5 or 3.63	V

Symbol		Parameter	Conditions	Min ⁽¹⁾	Мах	Unit
V _{DD_HV_ADV}	SR	3.3 V ADC supply voltage	—	3.0	3.63	V
V _{SS_HV_AD0} V _{SS_HV_AD1}	SR	ADC_0 ground and low reference voltage ADC_1 ground and low reference voltage	_	0	0	V
V _{SS_HV_ADV}	SR	3.3 V ADC supply ground	—	0	0	V
V _{DD_LV, REGCOR}	SR	Internal supply voltage	_	_	—	~
V _{SS_LV_REGCOR}	SR	Internal reference voltage	_	0	0	V
V _{DD_LV_CORx} ⁽²⁾	SR	Internal supply voltage	—		—	V
V _{SS_LV_CORx} ⁽³⁾	SR	Internal reference voltage	—	0	0	V
V _{DD_LV_PLL} ⁽²⁾	SR	Internal supply voltage	—		—	V
V _{SS_LV_PLL} ⁽³⁾	SR	Internal reference voltage	—	0	0	V
T _A	SR	Ambient temperature under bias	$f_{CPU} \leq 120 \text{ MHz}$	-40	125	°C
TJ	SR	Junction temperature under bias	—	-40	150	°C

Table 10. Recommended operating conditions (3.3 V) (continued)

1. Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.

2. $V_{DD_HV_ADR0}$ and $V_{DD_HV_ADR1}$ cannot be operated at different voltages, and need to be supplied by the same voltage source.

3. VDD_HV_ADRx must always be applied and should be stable before LBIST starts. If this supply is not above its absolute minimum level, LBIST operations can fail.

4. Can be connected to emitter of external NPN. Low voltage supplies are not under user control. They are produced by an onchip voltage regulator.

For the device to function properly, the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter, if one is used.

3.4 Decoupling capacitors

The internal voltage regulator requires an external NPN ballast and some additional decoupling capacitors. These capacitors shall be placed on the board as close as possible to the associated pin.

Symbol		Parameter	Conditions ⁽¹⁾		Value		
Symbo	1			Min	Тур	Max	Unit
C _{COL}	SR	External decoupling / stability capacitor	Accuracy -50%/+35%. Max ESR = 100 mΩ.		20		μF
C _{LV1}	SR	External decoupling / stability capacitor	Sum of C_{LV1} placed close to $V_{DD}/V_{SS_LV_CORy}$ pairs ⁽²⁾ .	12µF		40µF	μF
C _{LV2}	SR	External decoupling / stability capacitor	Sum of C _{LV2} placed close to V _{DD} /V _{SS_LV_CORy} pairs shall be between 300 nF and 900 nF.		100 ⁽²⁾		nF

Table	11.	Decoupling	capacitors
-------	-----	------------	------------

SPC56XL60/54 makes a transition from HPREG1 to HPREG2. This transition is dynamic. Once HPREG2 is fully operational, the controller part of HPREG1 is switched off.

The following bipolar transistors are supported:

- BCP68 from ON Semiconductor
- BCX68 from Infineon

Symbol	Parameter	Value	Unit
-			
h _{FE} (β)	DC current gain (Beta)	85 - 375	—
P _D	Maximum power dissipation @ T_A =25°C ⁽¹⁾	1.5	W
I _{CMaxDC}	Maximum peak collector current	1.0	А
VCE _{SAT}	Collector-to-emitter saturation voltage (Max)	600 ⁽²⁾	mV
V _{BE}	Base-to-emitter voltage (Max)	1.0	V

Table 19. Characteristics

1. Derating factor 12mW/degC.

2. Adjust resistor at bipolar transistor collector for 3.3V to avoid VCE<VCE_{SAT}.

The recommended external ballast transistor is the bipolar transistor BCP68 with the gain range of 85 up to 375 (for IC=500mA, VCE=1V) provided by several suppliers. This includes the gain variations BCP68-10, BCP68-16 and BCP68-25. The most important parameters for the interoperability with the integrated voltage regulator are the DC current gain (hFE) and the temperature coefficient of the gain (XTB). While the specified gain range of most BCP68 vendors is the same, there are slight variations in the temperature coefficient parameter. SPC56XL60/54 Voltage regulator operation was simulated against the typical variation on temperature coefficient and against the specified gain range to have a robust design.

Sym	bol	Parameter	Conditions	Min	Тур	Max	Unit
C _{ext}		External decoupling/ stability capacitor	Min, max values shall be granted with respect to tolerance, voltage, temperature, and aging variations.	12	_	40	μF
	SR	Combined ESR of external capacitor	_	1	_	100	mΩ
	SR	Number of pins for external decoupling/ stability capacitor	_	5	_	_	_
C _{V1V2}	SR	Total capacitance on 1.2 V pins	Ceramic capacitors, taking into account tolerance, aging, voltage and temperature variation	300	_	900	nF
t _{SU}		Start-up time after main supply stabilization	C_{load} = 10 µF × 4	_	_	2.5	ms

Table 20. \	Voltage regulator	electrical	specifications
-------------	-------------------	------------	----------------

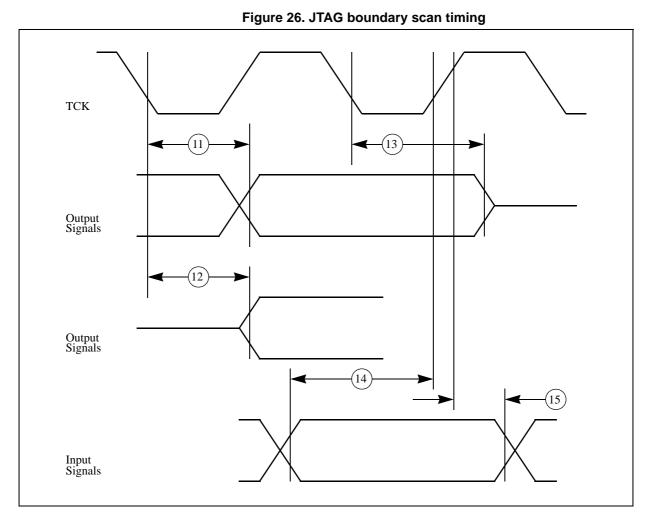
twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S, so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive *Equation 11* between the ideal and real sampled voltage on C_S :

Equation 11

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:


Equation 12

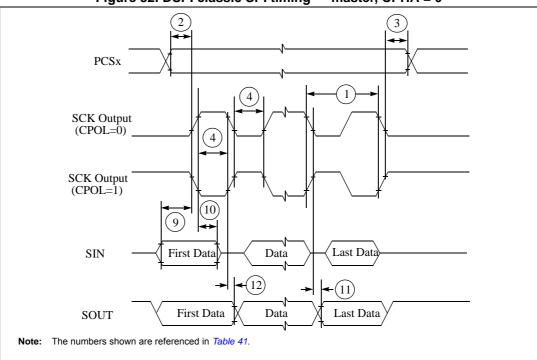
$$C_F > 8192 \bullet C_S$$

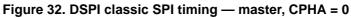
Table 27. ADC conversion characteristics

Symbol		Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
f _{CK}	S R	ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_CK ⁽²⁾ frequency)	_	3	_	60	MHz
f _s	S R	Sampling frequency		_	_	983. 6 ⁽³⁾	KHz
t _{sample}	D	Sample time ⁽⁴⁾	60 MHz	383	-		ns
t _{eval}	D	Evaluation time ⁽⁵⁾	60 MHz	600	—	_	ns
C _S ⁽⁶⁾	D	ADC input sampling capacitance	_	_	—	7.32	pF
C _{P1} ⁽⁶⁾	D	ADC input pin capacitance 1	_	—	—	5 ⁽⁷⁾	pF
C _{P2} ⁽⁶⁾	D	ADC input pin capacitance 2	_	_	—	0.8	pF
R _{SW1} ⁽⁶⁾	D	Internal resistance of analog source	V _{REF} range = 4.5 to 5.5 V	_	—	0.3	kΩ
rsw1` ′			V _{REF} range = 3.0 to 3.6 V	_	—	875	W
R _{AD} ⁽⁶⁾	D	Internal resistance of analog source	—	_	—	825	W
INL	Ρ	Integral non linearity	—	-3	—	3	LSB
DNL	Ρ	Differential non linearity ⁽⁸⁾	—	-1	—	2	LSB
OFS	Т	Offset error	—	-6	—	6	LSB
GNE	Т	Gain error	—	-6	—	6	LSB
IS1WINJ			(single ADC channel)		•		
	С	Max positive/negative injection		-3	_	3	mA

3.21.4 Nexus timing

Table 39	. Nexus	debug	port timing ⁽¹⁾
----------	---------	-------	----------------------------


No.	Symbol		Parameter	Conditions	Min	Max	Unit
1	t _{MCYC}	D	MCKO Cycle Time	—	15.6		ns
2	t _{MDC}	D	MCKO Duty Cycle	—	40	60	%
3	t _{MDOV}	D	MCKO Low to MDO, $\overline{\text{MSEO}}$, $\overline{\text{EVTO}}$ Data Valid ⁽²⁾	—	-0.1	0.25	t _{MCYC}
4	t _{EVTIPW}	D	EVTI Pulse Width	—	4.0	—	t _{TCYC}
5	t _{EVTOPW}	D	EVTO Pulse Width	—	1		t _{MCYC}
6	t _{TCYC}	D	TCK Cycle Time ⁽³⁾	—	62.5	—	ns
7	t _{TDC}	D	TCK Duty Cycle	—	40	60	%
8	t _{NTDIS,} t _{NTMSS}	D	TDI, TMS Data Setup Time	_	8	_	ns



No.	Symb	ol	Parameter	Conditions	Min	Мах	Unit
				Master (MTFE = 0)	-2	—	
12	t _{HO}	_{HO} D	D Data hold time for outputs	Slave	6	—	ns
				Master (MTFE = 1, CPHA = 0)	6	—	
				Master (MTFE = 1, CPHA = 1)	-2	—	

Table 41. DSPI timing (continued)

1. Slave Receive Only Mode can operate at a maximum frequency of 60 MHz. In this mode, the DSPI can receive data on SIN, but no valid data is transmitted on SOUT.

Date	Revision	Changes	
23-Mar-2011	6 (continued)	 In the "Supply current characteristics (cut2)" table: Changed "I_{DD_LV_MAX}" to "I_{DD_LV_MAX}"; Removed all "40-120 MHz" frequency ranges from the "Conditions" column; Updated the "Max" values column; Added parameter "I_{DD_LV_TYP} + I_{DD_LV_PLL}" with "P" classification and special footnote; Changed all "25°C" temperature conditions to "ambient"; Added "T_J = 150 °C" condition to parameters I_{DD_HV_ADC}, I_{DD_HV_AREF}, I_{DD_HV_OSC}, and I_{DD_HV_FLASH}. Changed the timing diagram in the "Main oscillator electrical characteristics" section to reference MTRANS assertion instead of V_{DDMIN}. Updated the jitter specs in the "FMPLL electrical characteristics" table. In the "ADC conversion characteristics" table, changed all parameters with units of "counts" to units of "LSB" and updated Min/Max values. Changed I_{DD_LV_BIST} + I_{DD_LV_PLL} operating current (for both cases) to TBD. In the "ADC conversion characteristics" table. In the "ADC conversion characteristics" table. In the "ADC conversion characteristics" table. In the "Supply current characteristics (cut2)" section, added a footnote that I_{DD_HV_ADC} and I_{DD_HV_AREF} represent the total current of both ADCs in the "Current consumption characteristics" table. In the "ADC conversion characteristics" table. Changed OFS max from 2 to -6. Changed GNE max from 2 to 6. Changed GNE max from 2 to 6. Changed GNE max from 2 to 6. Changed SNR min from 69 to 67. Changed TUE max (without current injection) from -6 to -8. Changed TUE max (without current injection) from 8 to -10. Chang	

Table 45. Document revision history

Date Revision		Changes	
01-Aug-2012	8 (cont.)	 In <i>Table 20: Voltage regulator electrical specifications</i>, changed the "Digital supply high voltage detector upper threshold low limit (After a destructive reset initialization phase completion)" from 1.43V to 1.38V. Added <i>Table 20: Voltage regulator electrical specifications</i>. Updated the IDD values in <i>Table 22: Current consumption characteristics</i>. Changed conditions text from "1.2 supplies during LBIST (full LBIST configuration)" to "1.2 V supplies" for all the IDD parameters except IDD_LV_BIST+IDD_LV_PLL. Added footnote in "Conditions" for the DPM mode. Removed Cut references from the whole document. In <i>Table 27: ADC conversion characteristics</i>, changed the sampling frequency value from '1 MHz' to '983.6 KHz'. 	
31-Jul-2013	9	 Updated Table 20: Voltage regulator electrical specifications (Voltage regulator electrical specifications) Added Digital supply low voltage detector lower threshold and Digital supply low voltage detector upper threshold Updated Main High Voltage Power-Low Voltage Detection value to 2.93 V Replaced IEC with ISO26262 in <i>Section 1.1: Document overview</i>, Table 1 (SPC56XL60/54 device summary)-removed KGD Table 26 (16 MHz RC oscillator electrical characteristics) modified fRC values Updated Table 28 (Flash memory program and erase electrical specifications) Updated Table 27 (ADC conversion characteristics)-tconv to teval and associated footnote Updated Table 21 (DC electrical characteristics) added VIH footnote Updated Table 20 (Voltage regulator electrical specifications)-combined ESR of external capacitor values Updated Table 20 (Voltage regulator electrical specifications)-combined ESR of external capacitor values Updated Isole 20 (Voltage regulator electrical specifications)-combined ESR of external capacitor values Updated Injection current information in Table 21 (DC electrical characteristics)-linu), Table 9 (Absolute maximum ratings)-footnote 4 Updated Table 22 (current consumption characteristics) for the following: specified oscillator bypass mode and crystal oscillator mode Updated STOP and HALT mode values Added IDD_HV_PMU footnote 2, footnote 3 Added footnote to Section 5: Ordering information Edit changes to Section 3: 6: Electromagnetic Interference (EMI) characteristics Updated Equation 11. 	

Date Revision		Changes	
18-Sep-2013 10		– Updated Disclaimer.	
()/-Feb-2014 11		 Removed "TBC" symbol in <i>Table 9</i> and <i>Table 22</i> Resolved some cross references. 	
08-Jul-2015	12	 Editorial and formatting changes throughout document. <i>Chapter 1: Introduction:</i> In <i>Table 1: SPC56ELx/SPC564Lx device summary</i> added the column for SPC56EL54 device <i>Chapter 3: Electrical characteristics:</i> In <i>Table 9: Absolute maximum ratings</i>, added condition "Valid only for ADC pins" for V_{IN} Symbol. Added Section 3.4: Decoupling capacitors. <i>Figure 10: Input Equivalent Circuit:</i> changed "V_{DD}" to "V_{REF}" in Internal circuit scheme In <i>Table 32: Pad AC specifications (3.3 V, IPP_HVE = 0)</i> updated footnote 1 and footnote 2. Updated <i>Figure 13: Pad output delay</i> 	

Table 45. Document revision history	Table 4	45.	Document	revision	history
-------------------------------------	---------	-----	----------	----------	---------

