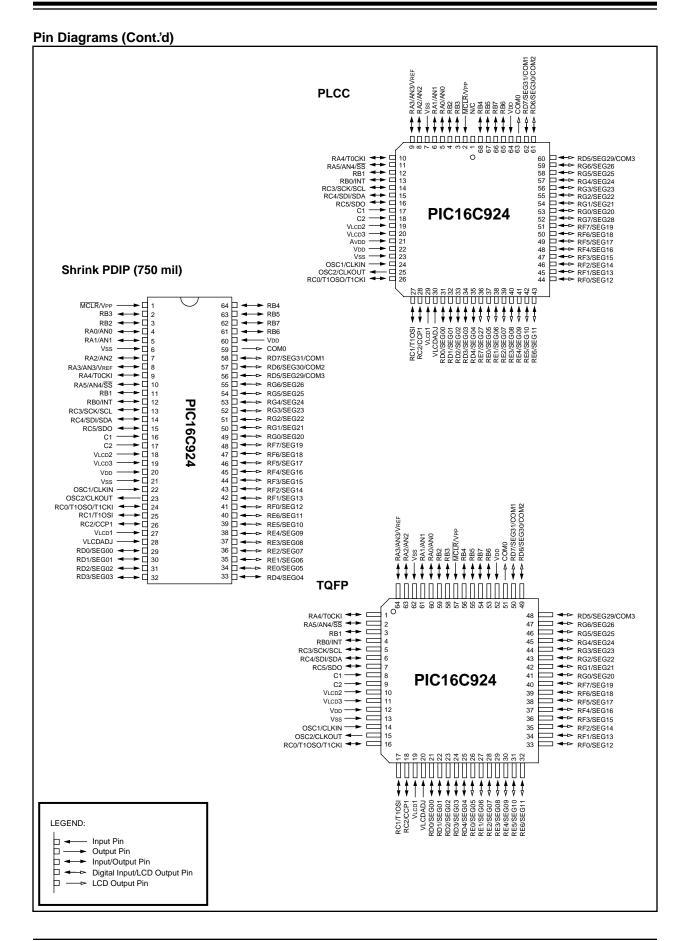


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c923-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C9XX DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C9XX Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C9XX family, there are two device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**924. These devices have EPROM type memory and operate over the standard voltage range.
- 2. **LC**, as in PIC16**LC**924. These devices have EPROM type memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERQUAD package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support the PIC16C9XX. Third party programmers also are available; refer to the *Microchip Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
Bank 1	·	•					·			•	
80h	INDF	Addressing	this location	uses conten	ts of FSR to	address data	memory (no	t a physical r	egister)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect data	a memory ad	dress pointe	r					XXXX XXXX	uuuu uuuu
85h	TRISA	—	_	PORTA Dat	a Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	a Direction R	legister						1111 1111	1111 1111
87h	TRISC	—	_	PORTC Da	ta Direction F	Register				11 1111	11 1111
88h	TRISD	PORTD Dat	a Direction F	Register						1111 1111	1111 1111
89h	TRISE	PORTE Dat	a Direction R	legister						1111 1111	1111 1111
8Ah	PCLATH	—	_	—	Write Buffer	for the uppe	er 5 bits of the	e PC		0 0000	0 0000
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	LCDIE	ADIE ⁽²⁾	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	—	_	—	_	_	_	POR	—	0-	u-
8Fh	_	Unimpleme	nted							_	_
90h	—	Unimpleme	nted							—	—
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Reg	ister				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	—	Unimpleme	nted							_	—
96h	—	Unimpleme	nted							_	—
97h	—	Unimpleme	nted							_	—
98h	—	Unimpleme	nted							_	—
99h	—	Unimpleme	nted							_	—
9Ah	_	Unimpleme	nted							_	_
9Bh	—	Unimpleme	nted							-	—
9Ch	—	Unimpleme	nted							-	—
9Dh	_	Unimpleme	nted							—	—
9Eh	_	Unimpleme	nted							_	—
9Fh ⁽¹⁾	ADCON1		—	_		_	PCFG2	PCFG1	PCFG0	000	000

Legend: ${\rm x}$ = unknown, ${\rm u}$ = unchanged, ${\rm q}$ = value depends on condition, - = unimplemented read as '0',

Note

shaded locations are unimplemented, read as '0'. 1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.

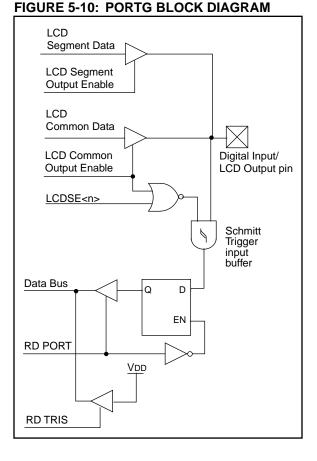
These bits are reserved on the PIC16C923, always maintain these bits clear.
 These pixels do not display, but can be used as general purpose RAM.
 PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --0x 0000 when read.
 Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.

4.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and external RB0/INT pin interrupts. **Note:** Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-5: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x				
GIE bit7	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset			
bit 7:											
bit 6:	 PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts 										
bit 5:	TOIE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt										
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt										
bit 3:	1 = Enabl	les the RE	port char	upt Enable nge interru nge interru	pt						
bit 2:	TOIF : TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow										
bit 1:											
bit 0:	 RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear interrupt) 0 = None of the RB7:RB4 pins have changed state 										
globa	Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.										


5.7 PORTG and TRISG Register

PORTG is an digital input only port. Each pin is multiplexed with an LCD segment driver. These pins have Schmitt Trigger input buffers.

- Note 1: On a Power-on Reset these pins are configured as LCD segment drivers.
- Note 2: To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

EXAMPLE 5-7: INITIALIZING PORTG

BCF STATUS,RP0 ;Select Bank2 BSF STATUS,RP1 ; BCF LCDSE,SE27 ;Make all PORTG BCF LCDSE,SE20 ;and PORTE<7> ;digital inputs

TABLE 5-13: PORTG FUNCTIONS

Bit#	Buffer Type	Function					
bit0	ST	Digital input or Segment Driver20					
bit1	ST	Digital input or Segment Driver21					
bit2	ST	Digital input or Segment Driver22					
bit3	ST	Digital input or Segment Driver23					
bit4	ST	Digital input or Segment Driver24					
bit5	ST	Digital input or Segment Driver25					
bit6	ST	Digital input or Segment Driver26					
bit7	ST	Digital input or Segment Driver28 (not available on 64-pin devices)					
	bit0 bit1 bit2 bit3 bit4 bit5 bit6	bit0STbit1STbit2STbit3STbit4STbit5STbit6ST					

Legend: ST = Schmitt Trigger input

TABLE 5-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

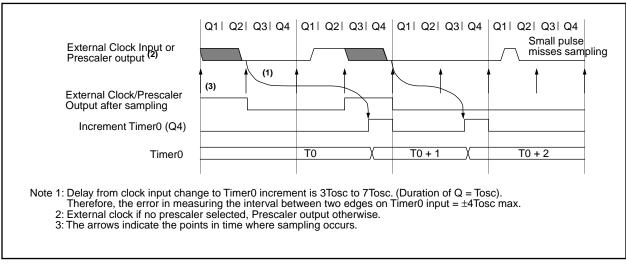
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
108h	PORTG	RG7	RG6	RG5	RG4	RG3	RG2	RG1	RG0	0000 0000	0000 0000
188h	TRISG	PORTG	ORTG Data Direction Control Register							1111 1111	1111 1111
10Dh	LCDSE	SE29	SE29 SE27 SE20 SE16 SE12 SE9 SE5 SE0							1111 1111	1111 1111

Legend: Shaded cells are not used by PORTG.

7.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

9.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for the PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16 (selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>)).

The Timer2 module has an 8-bit period register, PR2. TMR2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is set during RESET.

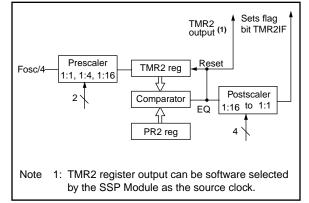
The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

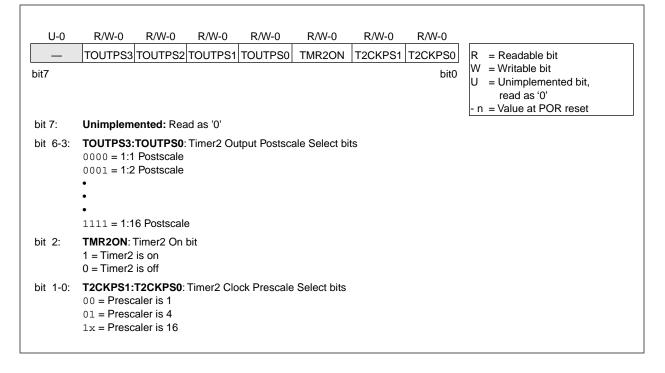
Figure 9-2 shows the Timer2 control register.

9.1 <u>Timer2 Prescaler and Postscaler</u>

The prescaler and postscaler counters are cleared when any of the following occurs:


- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR Reset, or Watchdog Timer Reset)

TMR2 will not clear when T2CON is written.


9.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

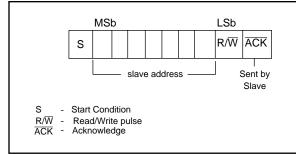
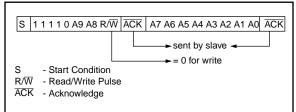
FIGURE 9-1:	TIMER2 BL	OCK DIAGRAM

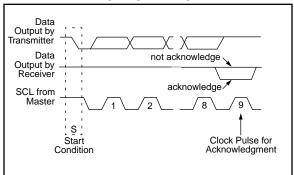
FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

11.2.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/W bit (Figure 11-9). The more complex is the 10-bit address with a R/W bit (Figure 11-10). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-9: 7-BIT ADDRESS FORMAT


FIGURE 11-10: I²C 10-BIT ADDRESS FORMAT

11.2.3 TRANSFER ACKNOWLEDGE

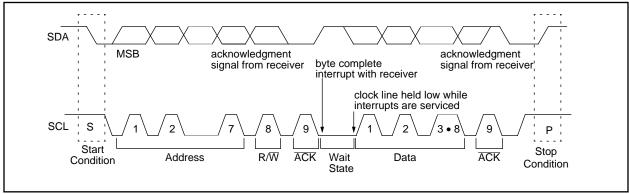

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-11). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave SDA high so that the master can generate the STOP condition (Figure 11-8).

FIGURE 11-11: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-12. The slave will inherently stretch the clock, when it is a transmitter, but will not when it is a receiver. The slave will have to clear the SSPCON<4> bit to enable clock stretching when it is a receiver.

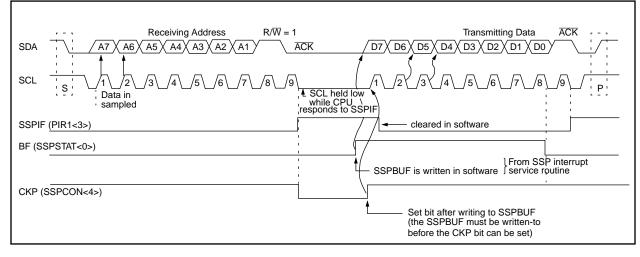
FIGURE 11-12: DATA TRANSFER WAIT STATE

٦

11.3.1.2 RECEPTION

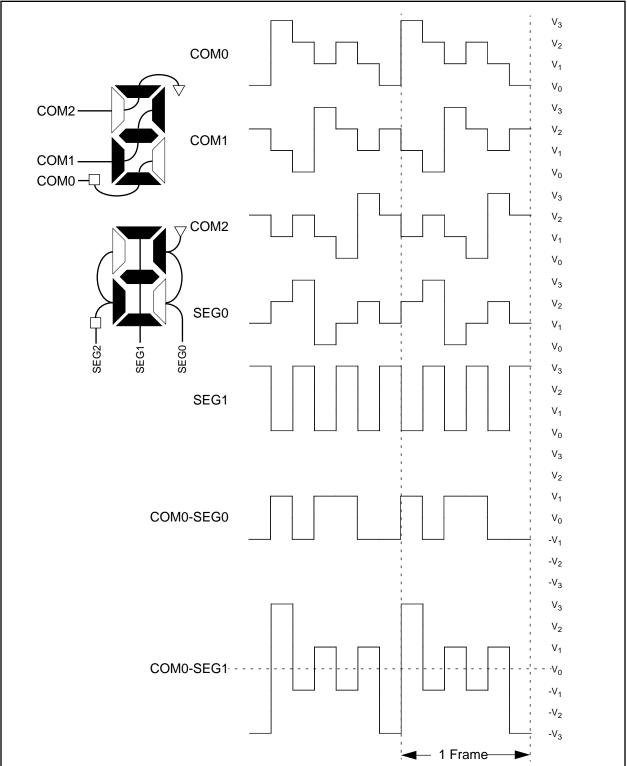
When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set. An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.


FIGURE 11-19: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W=0 Receiving Data ACK Receiving Data SDA AT_XA6_XA5_XA4_XA3_XA2_XA1 ACK_D7_XD6_XD5_XD4_XD3_XD2_XD1_XD0	
SSPIF (PIR1<3>) Cleared in software BF (SSPSTAT<0>) SSPBUF register is read	Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u> Bit SSPOV is set because the SSPBUF register is still full. ACK is not sent	

11.3.1.3 TRANSMISSION


When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-20). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 11-20: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

13.3 Pixel Control

13.3.1 LCDD (PIXEL DATA) REGISTERS

The pixel registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

Table 13-4 shows the correlation of each bit in the LCDD registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

FIGURE 13-10:GENERIC LCDD REGISTER LAYOUT

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	SEGs COMc	R =Readable bit W =Writable bit		
bit7 bit0 U =Unimplemented bit, Read as '0'										
bit 7-0: SEGsCOMc : Pixel Data Bit for segment s and common c 1 = Pixel on (dark) 0 = Pixel off (clear)										

13.4.1 SEGMENT ENABLES

The LCDSE register is used to select the pin function for groups of pins. The selection allows each group of pins to operate as either LCD drivers or digital only pins. To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared.

If the pin is a digital I/O the corresponding TRIS bit controls the data direction. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

- **Note 1:** On a Power-on Reset these pins are configured as LCD drivers.
- Note 2: The LMUX1:LMUX0 takes precedence over the LCDSE bit settings for pins RD7, RD6 and RD5.

EXAMPLE 13-1: STATIC MUX WITH 32 SEGMENTS

BCF	STATUS, RPO	;Select Bank 2
BSF	STATUS, RP1	;
BCF	LCDCON,LMUX1	;Select Static MUX
BCF	LCDCON,LMUX0	;
MOVLW	OxFF	;Make PortD,E,F,G
MOVWF	LCDSE	;LCD pins
		; configure rest of LCD

EXAMPLE 13-2: 1/3 MUX WITH 13 SEGMENTS

BCF	STATUS, RPO	;Select Bank 2
BSF	STATUS, RP1	;
BSF	LCDCON,LMUX1	;Select 1/3 MUX
BCF	LCDCON,LMUX0	;
MOVLW	0x87	;Make PORTD<7:0> &
MOVWF	LCDSE	;PORTE<6:0> LCD pins
		;configure rest of LCD
MOVLW	0x87	;Make PORTD<7:0> & ;PORTE<6:0> LCD pins

FIGURE 13-12:LCDSE REGISTER (ADDRESS 10Dh)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
SE29	SE27	SE20	SE16	SE12	SE9	SE5	SE0	R =Readable bit W =Writable bit		
bit7							bit0	U = Unimplemented bit,		
								Read as '0'		
bit 7:	SE29 : Pin f	unation and	laat DD7				/8F.000	-n =Value at POR reset		
DIL 7.	1 = pins har				EG31 - K		/3EG29			
	0 = pins har	ve digital Ir	nput functi	on						
	The LMUX?						SE register.			
bit 6:	SE27 : Pin f 1 = pins hav				and RE7/	SEG27				
	0 = pins has									
bit 5:	SE20: Pin f	unction se	lect RG6	SEG26 ·	- RG0/SE	G20				
	1 = pins ha									
	0 = pins ha	•	•							
bit 4:	SE16 : Pin f 1 = pins ha				RF4/SEC	516				
	0 = pins ha									
bit 3:	SE12: Pin f	unction se	lect RF3	/SEG15 -	RF0/SEC	G12				
	1 = pins har									
	0 = pins har	•	•			200				
bit 2:	SE9 : Pin f 1 = pins ha				RE4/SE	309				
	0 = pins har									
bit 1:	SE5: Pin f				RE0/SE	G05				
	 1 = pins have LCD drive function 0 = pins have digital Input function 									
bit 0:	SE0 : Pin f	•	•			600				
DIL U.	1 = pins har					600				
	0 = pins ha									

Register	Applicable Devices		Power-on Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
LCDSE	923	924	1111 1111	1111 1111	uuuu uuuu
LCDPS	923	924	0000	0000	uuuu
LCDCON	923	924	00-0 0000	00-0 0000	uu-u uuuu
LCDD00 to LCDD15	923	924	XXXX XXXX	นนนน นนนน	սսսս սսսս
TRISF	923	924	1111 1111	1111 1111	uuuu uuuu
TRISG	923	924	1111 1111	1111 1111	นนนน นนนน

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-5 for reset value for specific condition.

4: Bits PIE1<6> and PIR1<6> are reserved on the PIC16C923, always maintain these bits clear.

5: PORTA values when read.

17.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †	
Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into Vod pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	10 mA
Maximum output current sourced by any I/O pin	10 mA
Maximum current sunk by all Ports combined	200 mA
Maximum current sourced by all Ports combined	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - \sum IOH} + \sum {(VDD	- VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C923-04 PIC16C924-04	PIC16C923-08 PIC16C924-08	PIC16LC923-04 PIC16LC924-04	CL Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 3.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 7 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 8 MHz max.	Do not use in HS mode	VDD: 4.5V to 5.5V IDD: 7 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 8 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 22.5 μA typ. at 32 kHz, 4.0V IPD: 1.5 μA typ. at 4.0V Freq: 200 kHz max.	Do not use in LP mode	VDD: 2.5V to 6.0V IDD: 30 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 30 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

17.1 DC Characteristics:

PIC16C923/924-04 (Commercial, Industrial) PIC16C923/924-08 (Commercial, Industrial)

DC	CHARACTERISTICS	

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and

 $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See Power-on Reset section for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	(Note 6) See Power-on Reset section for details
D010	Supply Current (Note 2)	Idd	-	2.7	5	mA	XT and RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D011			-	22.5	48	μA	LP osc configuration, Fosc = 32 kHz , VDD = 4.0V
D012			-	3.5	7	mA	HS osc configuration Fosc = 8 MHz, VDD = 5.5V
D020	Power-down Current (Note 3)	IPD	-	1.5	21	μΑ	VDD = 4.0V
	Module Differential Cur- rent (Note 5)						
D021	Watchdog Timer	∆IWDT	-	6.0	20	μA	VDD = 4.0V
D022*	LCD Voltage Generation w/internal RC osc enabled	∆ILCDRC	-	40	55	μA	VDD = 4.0V (Note 7)
D024*	LCD Voltage Generation w/Timer1 @ 32.768 kHz	∆ILCDT1	-	33	60	μA	VDD = 4.0V (Note 7)
D025*	Timer1 oscillator	∆IT1osc	-	10.6	17	μA	VDD = 4.0V
D026*	A/D Converter	ΔIAD	-	1.0	-	μA	A/D on, not converting

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD \overline{MCLR} = VDD.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

6: PWRT must be enabled for slow ramps.

7: Δ ILCDT1 and Δ ILCDRC includes the current consumed by the LCD Module and the voltage generation circuitry. This does not include current dissipated by the LCD panel.

TABLE 17-12:A/D CONVERTER CHARACTERISTICS: PIC16C924-04 (COMMERCIAL, INDUSTRIAL) PIC16LC924-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	-	_	8-bits	bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$	
A02	EABS	Total Absolute error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A03	EIL	Integral linearity error		_	—	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A04	EDL	Differential linearity error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A05	EFS	Full scale error		_	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A06	EOFF	Offset error		-	_	<±1	LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD = 5.12V,\\ VSS \leq VAIN \leq VREF \end{array}$
A10	—	Monotonicity			guaranteed	—	—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		3.0V	—	Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	—	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source		_	_	10.0	kΩ	
A40	IAD	A/D conversion current	PIC16 C 924	_	180	—	μΑ	Average current consump-
		(VDD)	PIC16 LC 924	-	90	—	μΑ	tion when A/D is on. (Note 1)
A50	A50 IREF VREF input current (Note 2)		10	_	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN to charge CHOLD, see Section 12.1.	
				_	—	10	μA	During A/D Conversion cycle

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

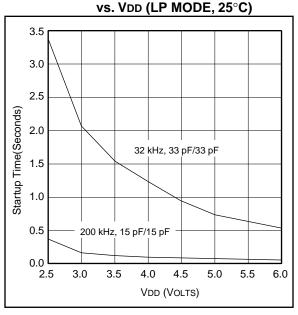


FIGURE 18-23: TYPICAL XTAL STARTUP TIME

FIGURE 18-24:TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

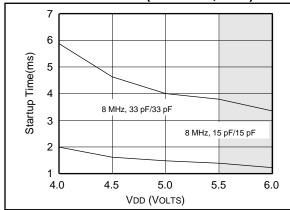
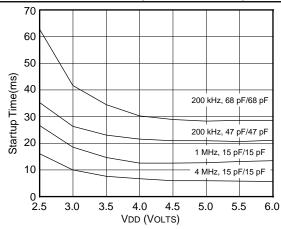



FIGURE 18-25:TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)

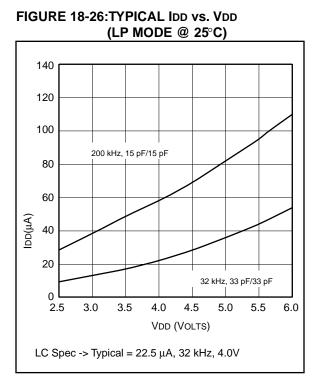
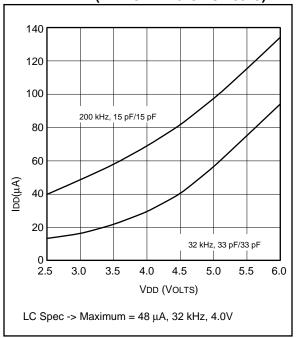
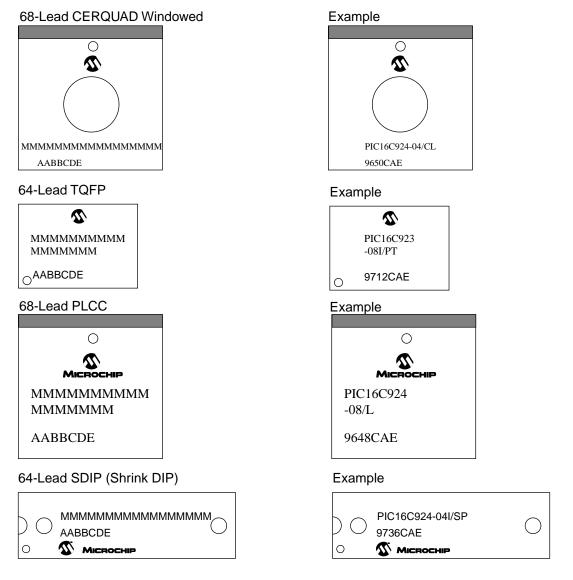




FIGURE 18-27:MAXIMUM IDD vs. VDD (LP MODE -40°C TO +85°C)

19.4 Package Marking Information

Legend:	MMM XXX AA BB C	Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A.		
	D1	S = Tempe, Arizona, U.S.A. Mask revision number for microcontroller		
	E	Assembly code of the plant or country of origin in which part was assembled.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.			

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELoq® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.