

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c923-04i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1: PIC16C9XX PINOUT DESCRIPTION (Cont.'d)

Pin Name	DIP Pin#	PLCC Pin#	TQFP Pin#	Pin Type	Buffer Type	Description
VLCD3	19	20	11	Р	—	LCD Voltage.
Vdd	20, 60	22, 64	12, 52	Р	—	Digital power.
Vss	6, 21	7, 23	13, 62	Р	—	Ground reference.
NC	-	1	_	—		These pins are not internally connected. These pins should be left unconnected.
Legend: I = input O = output — = Not used			F	^D = pow FTL = T	er TL input	L = LCD Driver ST = Schmitt Trigger input

TABLE 5-1:PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0 ⁽¹⁾	bit0	TTL	Input/output or analog input
RA1/AN1 ⁽¹⁾	bit1	TTL	Input/output or analog input
RA2/AN2 ⁽¹⁾	bit2	TTL	Input/output or analog input
RA3/AN3/VREF ⁽¹⁾	bit3	TTL	Input/output or analog input or VREF
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/AN4/SS (1)	bit5	TTL	Input/output or analog input or slave select input for synchronous serial port

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The AN and VREF functions are for the A/D module and are only implemented on the PIC16C924.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	(2)	(2)
85h	TRISA	_	_	PORTA D	ata Directi	11 1111	11 1111				
9Fh ⁽¹⁾	ADCON1	_	—	—	—	—	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: The ADCON1 register is implemented on the PIC16C924 only.

2: PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --0x 0000 when read.

LCD Segment Data LCD Segment Output Enable LCD Common Data LCD Common Digital Input/ **Output Enable** LCD Output pin LCDSE<n> Schmitt 6 Trigger input buffer Data Bus Q D ΕN RD PORT Vdd **RD TRIS**

FIGURE 5-7: PORTD<7:5> BLOCK DIAGRAM

TABLE 5-7: PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function			
RD0/SEG00	bit0	ST	Input/output port pin or Segment Driver00			
RD1/SEG01	bit1	ST	Input/output port pin or Segment Driver01			
RD2/SEG02	bit2	ST	Input/output port pin or Segment Driver02			
RD3/SEG03	bit3	ST	Input/output port pin or Segment Driver03			
RD4/SEG04	bit4	ST	Input/output port pin or Segment Driver04			
RD5/SEG29/COM3	bit5	ST	Digital input pin or Segment Driver29 or Common Driver3			
RD6/SEG30/COM2	bit6	ST	Digital input pin or Segment Driver30 or Common Driver2			
RD7/SEG31/COM1	bit7	ST	Digital input pin or Segment Driver31 or Common Driver1			
Leave de OT Ocharité	Trimere					

Legend: ST = Schmitt Trigger input

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	0000 0000	0000 0000
88h	TRISD		1111 1111	1111 1111							
10Dh	LCDSE	SE29	SE27	SE20	SE16	SE12	SE9	SE5	SE0	1111 1111	1111 1111
Legend: Shaded cells are not used by PORTD											

Legend: Shaded cells are not used by PORTD.

7.0 TIMER0 MODULE

The Timer0 module has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION<4>). Clearing

bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note:	To avoid an unintended device RESET, the									
	following instruction sequence (shown in									
	Example 7-1) must be executed when									
	changing the prescaler assignment from									
	Timer0 to the WDT. This precaution must									
	be followed even if the WDT is disabled.									

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 → WDT)

	1)	BSF	STATUS, RPO	;Select Bankl
Lines 2 and 3 do NOT have to	2)	MOVLW	b'xx0x0xxx'	;Select clock source and prescale value of
be included if the final desired	3)	MOVWF	OPTION_REG	;other than 1:1
prescale value is other than 1:1.	4)	BCF	STATUS, RPO	;Select Bank0
a temporary prescale value is	5)	CLRF	TMR0	;Clear TMR0 and prescaler
set in lines 2 and 3 and the final	б)	BSF	STATUS, RP1	;Select Bank1
prescale value will be set in lines	7)	MOVLW	b'xxxx1xxx'	;Select WDT, do not change prescale value
10 and 11.	8)	MOVWF	OPTION_REG	;
	9)	CLRWDT		;Clears WDT and prescaler
	10)	MOVLW	b'xxxx1xxx'	;Select new prescale value and WDT
	11)	MOVWF	OPTION_REG	;
	12)	BCF	STATUS, RPO	;Select Bank0

To change prescaler from the WDT to the Timer0 module use the precaution shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow **TIMER0)**

CLRWDT		;Clear WDT and prescaler
BSF	STATUS, RPO	;Select Bank1
MOVLW	b'xxxx0xxx'	;Select TMR0, new prescale value and
MOVWF	OPTION_REG	;clock source
BCF	STATUS, RPO	;Select Bank0

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
01h, 101h	TMR0	Timer0	module's r	register						XXXX XXXX	uuuu uuuu
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	—	PORTA Da	ta Directio	11 1111	11 1111				

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

8.0 **TIMER1 MODULE**

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be turned on and off using the control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 10.0). Figure 8-1 shows the Timer1 control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	R	= Readable bit
bit7							bit0	W U - n	= Writable bit = Unimplemented bit, read as '0' = Value at POR reset
bit 7-6:	Unimple	mented: F	Read as '0'						
bit 5-4:	T1CKPS 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1	1:T1CKPS Prescale v Prescale v Prescale v Prescale v	60: Timer1 alue alue alue alue alue	Input Cloc	k Prescale	Select bit	S		
bit 3:	T1OSCE 1 = Oscill 0 = Oscill Note: The	N: Timer1 ator is ena ator is shu e oscillator	Oscillator abled it off inverter a	Enable Co nd feedbac	ntrol bit k resistor :	are turned	off to elimi	nate	e power drain
bit 2:	T1SYNC:	: Timer1 E	xternal Clo	ock Input S	ynchroniza	ation Contr	ol bit		
	<u>TMR1CS</u> 1 = Do no 0 = Synch	<u>= 1</u> ot synchroi hronize ex	nize exterr ternal cloc	nal clock in k input	put				
	<u>TMR1CS</u> This bit is	<u>= 0</u> ignored.	Fimer1 use	es the inter	nal clock w	vhen TMR [.]	1CS = 0.		
bit 1:	TMR1CS 1 = Exter 0 = Intern	: Timer1 C nal clock f nal clock (F	lock Sour rom pin T1 ⁻ osc/4)	ce Select b CKI (on th	it e rising ed	lge)			
bit 0:	TMR1ON 1 = Enabl 0 = Stops	l: Timer1 C les Timer1 s Timer1)n bit						

11.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-3 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-10). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Status Bits as Data Transfer is Received			Generate ACK	Set bit SSPIF (SSP Interrupt occurs
BF	SSPOV	$SSPSR \to SSPBUF$	Pulse	if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

TABLE 11-3: DATA TRANSFER RECEIVED BYTE ACTIONS

12.5 A/D Operation During Sleep

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

12.6 <u>A/D Accuracy/Error</u>

The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < \pm 1 LSb for VDD = VREF (over the device's specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF.

For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically \pm 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter.

Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input.

Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software.

Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code.

Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted.

The maximum pin leakage current is \pm 1 $\mu A.$

In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be $\leq 8 \ \mu s$ for preferred operation. This is because TAD, when derived from TOSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active.

In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy.

12.7 Effects of a RESET

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

13.4 Operation During Sleep

The LCD module can operate during sleep. The selection is controlled by bit SLPEN (LCDCON<6>). Setting the SLPEN bit allows the LCD module to go to sleep. Clearing the SLPEN bit allows the module to continue to operate during sleep.

If a SLEEP instruction is executed and SLPEN = '1', the LCD module will cease all functions and go into a very low current consumption mode. The module will stop operation immediately and drive the minimum LCD voltage on both segment and common lines. Figure 13-11 shows this operation. To ensure that the LCD completes the frame, the SLEEP instruction should be executed immediately after a LCD frame boundary.

The LCD interrupt can be used to determine the frame boundary. See Section 13.2 for the formulas to calculate the delay.

If a SLEEP instruction is executed and SLPEN = '0', the module will continue to display the current contents of the LCDD registers. To allow the module to continue operation while in sleep, the clock source must be either the internal RC oscillator or Timer1 external oscillator. While in sleep, the LCD data cannot be changed. The LCD module current consumption will not decrease in this mode, however the overall consumption of the device will be lower due to shutdown of the core and other peripheral functions.

Note: The internal RC oscillator or external Timer1 oscillator must be used to operate the LCD module during sleep.

FIGURE 13-11:SLEEP ENTRY/EXIT WHEN SLPEN = 1 OR CS1:CS0 = 00

13.5 Voltage Generation

There are two methods for LCD voltage generation, internal charge pump, or external resistor ladder.

13.5.1 CHARGE PUMP

The LCD charge pump is shown in Figure 13-13. The 1.0V - 2.3V regulator will establish a stable base voltage from the varying battery voltage. This regulator is adjustable through the range by connecting a variable external resistor from VLCDADJ to ground. The potentiometer provides contrast adjustment for the LCD. This base voltage is connected to VLCD1 on the charge pump. The charge pump boosts VLCD1 into VLCD2 =

 $2*V_{LCD1}$ and $V_{LCD3} = 3*V_{LCD1}$. When the charge pump is not operating, Vlcd3 will be internally tied to VDD. See the Electrical Specifications section for charge pump capacitor and potentiometer values.

13.5.2 EXTERNAL R-LADDER

The LCD module can also use an external resistor ladder (R-Ladder) to generate the LCD voltages. Figure 13-13 shows external connections for static and 1/3 bias. The VGEN (LCDCON<4>) bit must be cleared to use an external R-Ladder.

FIGURE 13-13:CHARGE PUMP AND RESISTOR LADDER

14.3 <u>Reset</u>

The PIC16CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, and on $\overline{\text{MCLR}}$ Reset during SLEEP. They are not affected by a WDT Wake-up, which is viewed as

the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 14-4. These bits are used in software to determine the nature of the reset. See Table 14-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 14-7.

The devices all have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 14-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

14.5 Interrupts

The PIC16C9XX family has up to 9 sources of interrupt:

Interrupt Sources	Applicable Devices		
External interrupt RB0/INT	923	924	
TMR0 overflow interrupt	923	924	
PORTB change interrupts (pins RB7:RB4)	923	924	
A/D Interrupt	923	924	
TMR1 overflow interrupt	923	924	
TMR2 matches period interrupt	923	924	
CCP1 interrupt	923	924	
Synchronous serial port interrupt	923	924	
LCD Module interrupt	923	924	

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function register PIR1. The corresponding interrupt enable bits are contained in special function register PIE1, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the RB0/INT pin or RB Port change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-15). The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

14.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if bit INTEDG (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 14.8 for details on SLEEP mode.

14.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 7.0)

14.5.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 5.2)

14.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 14-1 stores and restores the STATUS, W, and PCLATH registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the ISR code.
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

EXAMPLE 14-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF SWAPF CLRF MOVWF MOVWF CLRF BCF MOVF MOVF MOVWF : (ISR)	W_TEMP STATUS,W STATUS_TEMP PCLATH,W PCLATH_TEMP PCLATH STATUS, IRP FSR,W FSR_TEMP	<pre>;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0 ;Save status to bank zero STATUS_TEMP register ;Only required if using pages 1, 2 and/or 3 ;Save PCLATH into W ;Page zero, regardless of current page ;Return to Bank 0 ;Copy FSR to W ;Copy FSR from W to FSR_TEMP</pre>
: MOVF MOVWF SWAPF SWAPF SWAPF	PCLATH_TEMP, W PCLATH STATUS_TEMP,W STATUS W_TEMP,F W_TEMP,W	<pre>;Restore PCLATH ;Move W into PCLATH ;Swap STATUS_TEMP register into W ;(sets bank to original state) ;Move W into STATUS register ;Swap W_TEMP ;Swap W_TEMP into W</pre>

PIC16C9XX

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

HCS200 HCS300 HCS301										7	2					7
24CXX 25CXX 93CXX							7			7		2				
PIC17C75X	Available 3Q97		7	7					7	7						
PIC17C4X	2		7	7	7	2			7	7			7			
PIC16C9XX	2		7	7	7				7	7					7	
PIC16C8X	>	7	7	7	2	7		7	7	7			7			
PIC16C7XX	>	7	>	7	7	7		7	7	7				7		
PIC16C6X	>	7	>	7	7	7		2	7	7				7		
PIC16CXXX	7	7	7	7	7	7			7	7			7			
PIC16C5X	7	7	7	7	7	7		7	7	7			7			
PIC14000	7		7	7	7				7	7						
PIC12C5XX	2	7	7	7	7				7	7						
	g PICMASTER®/ PICMASTER-CE In-Circuit Emulator	ICEPIC Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C Ø Compiler	10 fuzzyTECH [®] -MP Explorer/Edition Fuzzy Logic Dev. Tool	MP-DriveWay™ Applications Code Generator	Total Endurance™ Software Model	PICSTART® Lite Ultra Low-Cost Dev. Kit	PICSTART® Plus Low-Cost Universal Dev. Kit	는 PRO MATE® II Duniversal Programmer	KEEL OQ [®] Programmer	SEEVAL [®] Designers Kit	PICDEM-1	ы PICDEM-2	PICDEM-3	KEELOQ [®] Evaluation Kit

FIGURE 17-1: LCD VOLTAGE WAVEFORM

TABLE 17-2: LCD MODULE ELECTRICAL SPECIFICATIONS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D200	VLCD3	LCD Voltage on pin VLCD3	Vdd - 0.3	-	Vss + 7.0	V	
D201	VLCD2	LCD Voltage on pin VLCD2	_	-	VLCD3	V	
D202	VLCD1	LCD Voltage on pin VLCD1		-	Vdd	V	
D220*	VOH	Output High Voltage	Max VLCDN - 0.1	-	Max VLCDN	V	COM outputs IOH = 25 μ A SEG outputs IOH = 3 μ A
D221*	VOL	Output Low Voltage	Min VLCDN	-	Min VLCDN + 0.1	V	COM outputs IOL = 25 μ A SEG outputs IOL = 3 μ A
D222*	FLCDRC	LCDRC Oscillator Fre- quency	5	15	50	kHz	VDD = 5V, -40°C to +85°C
D223*	TrLCD	Output Rise Time	_	_	200	μs	COM outputs Cload = 5,000 pF SEG outputs Cload = 500 pF VDD = 5.0V, T = 25°C
D224*	TfLCD	Output Fall Time (1)		_	200	μs	COM outputs Cload = 5,000 pF SEG outputs Cload = 500 pF VDD = 5.0V, T = 25°C

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

(1) 0 ohm source impedance at VLCD.

TABLE 17-3: VLCD CHARGE PUMP ELECTRICAL SPECIFICATIONS

Parameter No.	Symbol	Characteristic			Тур	Мах	Units	Conditions
D250*	IVADJ	VLCDADJ regulated current output			10	_	μA	
D252*	Δ Ivadj/ Δ Vdd	VLCDADJ current VDD Rejection		—	_	0.1/1	μA/V	
D265*	Vvadj	VLCDADJ voltage limits	PIC16 C 92X	1.0	—	2.3	V	
			PIC16 LC 92X	1.0		Vdd - 0.7V	V	Vdd < 3V

* These parameters are characterized but not tested.

Note 1: For design guidance only.

PIC16C9XX

FIGURE 18-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 20 pF, -40°C TO +85°C)

19.4 Package Marking Information

Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁	Mask revision number for microcontroller
	E	Assembly code of the plant or country of origin in which part was assembled.
Note:	In the event the full Microchip part number cannot be marked o line, it will be carried over to the next line thus limiting the numb available characters for customer specific information.	

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIC16C9XX

APPENDIX C: WHAT'S NEW

Figure 13-13 (Resistor Ladder and Charge Pump) in LCD Section.

Parameter D150 - Open Drain High Voltage.

DC and AC Characterization Graphs and Tables.

APPENDIX D: WHAT'S CHANGED

Various descriptions for clarity.

Example code for Changing prescaler assignment between Timer0 and the WDT.

The A/D section has many changes that provide greater clarification of A/D operation.

The Instruction Set has Q-cycle activity listings for every instruction.

The following Electrical Characteristic Parameter values have changed to:

D011 (Star Typical Max	ndard Voltage 22.5 48	De μA μA	vices,	C)		
D022 (Star Typical Max	ndard Voltage 40 55	De μΑ μΑ	vices)			
D024 (Star Typical Max	ndard Voltage 33 60	De μΑ μΑ	vices)			
D001 (Exte Min	ended Voltage 2.5	e De V	evices,	LC)		
D011 (Exte Typical Max	ended Voltage 13.5 30	e De μΑ μΑ	evices,	LC)		
D022 (Exte Typical Max	ended Voltage 36 50	e De μΑ μΑ	evices,	LC)		
D024 (Exte Typical Max	ended Voltage 15 29	e De μΑ μΑ	evices,	LC)		
D030 (with Max Max	TTL) 0.5Vdd 0.8V	V V	(entir (4.5V	RE RANGE) ≤ VDD ≤ 5.5V)		
D201, D20	2					
Deleted D2	210 and D211	, D	251, D	253, D260, D271		
D222 Min Typical Max	5 15 50	kH kH kH	Z Z Z			
D223, D22	4 - units to ns	5.				
Added D26	65 (VLCDADJ	vo	Itage li	mits.		
Changed p	arameters:					
12 - TckR		35	ns Typ	bical		
13 - TckF		35	ns Typ	bical		
15 - TioV2	ckH	Tosc + 200 ns Min				

- 18 TosH2ioL 200 ns Min (LC devices)
- 30 TmcL 2 μs Min
- 34 Tioz 2.1 µs Max

Timer0 and Timer1 External Clock Timings - Various.

- 53 TccR.
- 54 TccF
- 73 TdiV2scH 50 ns Min
- 74 TscH2diL 50 ns Min

Combined A/D specification tables for Standard and Extended Voltage devices.

List of Equations And Examples

Example 3-1:	Instruction Pipeline Flow15
Example 4-1:	Call of a Subroutine in Page 1 from Page 030
Example 4-2:	Indirect Addressing
Example 5-1:	Initializing PORTA
Example 5-2:	Initializing PORTB
Example 5-3:	Initializing PORTC
Example 5-4:	Initializing PORTD
Example 5-5:	Initializing PORTE
Example 5-6:	Initializing PORTF
Example 5-7:	Initializing PORTG 40
Example 5-8:	Read-Modify-Write Instructions on an
	I/O Port
Example 7-1:	Changing Prescaler (Timer0→WDT)49
Example 7-2:	Changing Prescaler (WDT→Timer0)49
Example 8-1:	Reading a 16-bit Free-Running Timer 53
Example 10-1:	Changing Between Capture Prescalers 58
Example 10-2:	PWM Period and Duty Cycle Calculation 60
Example 11-1:	Loading the SSPBUF (SSPSR) Register 65
Equation 12-1:	A/D Minimum Charging Time82
Example 12-1:	Calculating the Minimum Required
	Sample Time82
Example 12-2:	Doing an A/D Conversion
Example 12-3:	4-bit vs. 8-bit Conversion Times
Example 13-1:	Static MUX with 32 Segments 100
Example 13-2:	1/3 MUX with 13 Segments 100
Example 14-1:	Saving STATUS, W, and PCLATH
	Registers in RAM115

List of Figures

Figure 3-1:	PIC16C923 Block Diagram	. 10
Figure 3-2:	PIC16C924 Block Diagram	. 11
Figure 3-3:	Clock/Instruction Cycle	. 15
Figure 4-1:	Program Memory Map and Stack	. 17
Figure 4-2:	Register File Map	. 18
Figure 4-3:	Status Register (Address 03h, 83h, 103h,	
	183h)	. 23
Figure 4-4:	OPTION Register (Address 81h, 181h)	. 24
Figure 4-5:	INTCON Register (Address 0Bh, 8Bh,	
	10Bh, 18Bh)	. 25
Figure 4-6:	PIE1 Register (Address 8Ch)	. 26
Figure 4-7:	PIR1 Register (Address 0Ch)	. 27
Figure 4-8:	PCON Register (Address 8Eh)	. 28
Figure 4-9:	Loading of PC In Different Situations	. 29
Figure 4-10:	Direct/Indirect Addressing	. 30
Figure 5-1:	Block Diagram of pins RA3:RA0 and RA5.	. 31
Figure 5-2:	Block Diagram of RA4/T0CKI Pin	. 31
Figure 5-3:	Block Diagram of RB3:RB0 Pins	. 33
Figure 5-4:	Block Diagram of RB7:RB4 Pins	. 33
Figure 5-5:	PORTC Block Diagram (Peripheral Output	
	Override)	. 35
Figure 5-6:	PORTD<4:0> Block Diagram	. 36
Figure 5-7:	PORTD<7:5> Block Diagram	. 37
Figure 5-8:	PORTE Block Diagram	. 38
Figure 5-9:	PORTF Block Diagram	. 39
Figure 5-10:	PORTG Block Diagram	. 40
Figure 5-11:	Successive I/O Operation	. 41
Figure 7-1:	Timer0 Block Diagram	. 45
Figure 7-2:	Timer0 Timing: Internal Clock/No Prescale	45
Figure 7-3:	Timer0 Timing: Internal Clock/Prescale 1:2	46
Figure 7-4:	Timer0 Interrupt Timing	. 46
Figure 7-5:	Timer0 Timing with External Clock	. 47
Figure 7-6:	Block Diagram of the Timer0/WDT	
	Prescaler	. 48

Figure 8-1:	T1CON: Timer1 Control Register (Address	
	10h)5	1
Figure 8-2:	Timer1 Block Diagram52	2
Figure 9-1:	Timer2 Block Diagram5	5
Figure 9-2:	T2CON: Timer2 Control Register (Address	5
Figure 10-1	CCP1CON Register (Address 17b) 5	э 7
Figure 10-1.	Conture Mode Operation Block Diagram	/ 0
Figure 10-2.	Compare Mode Operation Block Diagram	0
Figure 10-3.	Compare Mode Operation Block Diagram	0 0
Figure 10-4:		9
Figure 10-5:		9
Figure 11-1:	(Address 94b)	ঽ
Figure 11-2	SSPCON: Sync Serial Port Control Register	0
riguio i i 2.	(Address 14b)	л
Figure 11-3	SSP Block Diagram (SPI Mode)	5
Figure 11-5.	SDI Mostor/Slove Connection	6 6
Figure 11-4.	CDI Made Timing Master Made	0 7
Figure 11-5:	SPI Mode Timing, Master Mode	1
Figure 11-6:	SPI Mode Timing	_
	(Slave Mode With $CKE = 0$)6	1
Figure 11-7:	SPI Mode Timing	_
	(Slave Mode With CKE = 1)68	8
Figure 11-8:	Start and Stop Conditions69	9
Figure 11-9:	7-bit Address Format7	0
Figure 11-10:	I ² C 10-bit Address Format70	0
Figure 11-11:	Slave-receiver Acknowledge70	0
Figure 11-12:	Data Transfer Wait State70	0
Figure 11-13:	Master-transmitter Sequence	1
Figure 11-14:	Master-receiver Sequence7	1
Figure 11-15:	Combined Format	1
Figure 11-16:	Multi-master Arbitration	
g	(Two Masters) 7'	2
Figure 11-17	Clock Synchronization 7	2
Figure 11-18:	SSP Block Diagram	-
riguie rielo.	$(l^2 C Mode)$ 7	2
Figure 11 10:	(1°C Woveforms for Reception	5
Figure 11-19.	(Z bit Address)	5
Figure 11 20	(7-bit Address)	5
Figure 11-20:	(Z bit Address)	~
E '	(7-bit Address)	6
Figure 11-21:	Operation of the I ² C Module in IDLE_MODE,	_
	RCV_MODE or XMI1_MODE	8
Figure 12-1:	ADCON0 Register (Address 1Fh)79	9
Figure 12-2:	ADCON1 Register (Address 9Fh)80	0
Figure 12-3:	A/D Block Diagram8	1
Figure 12-4:	Analog Input Model82	2
Figure 12-5:	A/D Transfer Function8	7
Figure 12-6:	Flowchart of A/D Operation8	8
Figure 13-1:	LCDCON Register (Address 10Fh)89	9
Figure 13-2:	LCD Module Block Diagram9	0
Figure 13-3:	LCDPS Register (Address 10Eh)90	0
Figure 13-4:	Waveforms in Static Drive9	1
Figure 13-5:	Waveforms in 1/2 MUX, 1/3 Bias Drive92	2
Figure 13-6:	Waveforms in 1/3 MUX, 1/3 Bias93	3
Figure 13-7:	Waveforms in 1/4 MUX, 1/3 Bias	4
Figure 13-8:	LCD Clock Generation	5
Figure 13-9:	Example Waveforms in 1/4 MUX Drive 9	7
Figure 13-10	Generic I CDD Register Lavout	8
Figure 13-11	Sleep Entry/exit When SI PEN = 1 or	Č
. iguio 10-11.	$CS1 \cdot CS0 = 00$	٥
Figure 12 12:	LCDSE Register (Address 10Db) 10	9 0
Figure 13-12:	Charge Pump and Posister Lodder 40	1
Figure 13-13:	Configuration Word	1 2
	Configuration word	3
rigure 14-2:	Crystal/Ceramic Resonator Operation	
	(HS, XT or LP OSC Configuration)	4
Figure 14-3:	(HS, XT or LP OSC Configuration)	4

PIC16C9XX PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

PAR	PART NOXX X /XX XXX						Examples	
				⊣Pattern: Package: 	QTP, S SP PT CL L	QTP, ROM Code or Special Requirements = 64-pin Shrink PDIP = TQFP = 68-pin Windowed CERQUAD = PLCC	a)	PIC16C924 - 04/P 301 Commercial Temp., PDIP Package, 4 MHz, normal VDD limits, QTP pattern #301
				Temperature Range: Frequency Range:	- I 04 04 08	 = 0°C to +70°C (T for Tape/Reel) = -40°C to +85°C (S for Tape/Reel) = 200 kHz (PIC16C9XX-04) = 4 MHz = 8 MHz 	b) c)	PIC16LC923 - 04/PT Commercial Temp., TQFP package, 4 MHz, extended VDD limits PIC16C923 - 08I/CL Industrial Temp., Windowed CERQUAD
				_Device	PIC160 PIC160 PIC161 PIC161 PIC161	C9XX :VDD range 4.0V to 6.0V C9XXT :VDD range 4.0V to 6.0V (Tape/Reel) C9XX :VDD range 2.5V to 6.0V C9XT :VDD range 2.5V to 6.0V (Tape/Reel)		package, 8 MHz, normal VDD limits

* CL Devices are UV erasable and can be programmed to any device configuration. CL Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office (see below)
 The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.