

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c924-08-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM.

The special function registers can be classified into two sets (core and peripheral). Those registers associated with the "core" functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
Bank 0											
00h	INDF	F Addressing this location uses contents of FSR to address data memory (not a physical register)									0000 0000
01h	TMR0	Timer0 mod	dule's register							XXXX XXXX	uuuu uuuu
02h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect dat	a memory ad	dress pointe	r					XXXX XXXX	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	n written: POI	RTA pins whe	en read		(4)	(4)
06h	PORTB	PORTB Da	ta Latch whe	n written: PO	RTB pins wh	en read				XXXX XXXX	uuuu uuuu
07h	PORTC	_	_	PORTC Dat	a Latch whe	n written: PO	RTC pins wh	en read		xx xxxx	uu uuuu
08h	PORTD	PORTD Da	ta Latch whe	n written: PO	RTD pins wh	ien read				0000 0000	0000 0000
09h	PORTE	PORTE pin	s when read							0000 0000	0000 0000
0Ah	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program Co	ounter	0 0000	0 0000
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF ⁽²⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted					•	•	_	_
0Eh	TMR1L	Holding reg	lolding register for the Least Significant Byte of the 16-bit TMR1 register								uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the N	lost Significa	ant Byte of th	e 16-bit TMR	1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's register							0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Buf	fer/Transmit	Register				XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	Register (LS	B)					XXXX XXXX	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	Register (MS	SB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	_	Unimpleme	nted							_	_
19h	_	Unimpleme	nted							_	—
1Ah	_	Unimpleme	nted							_	_
1Bh	_	Unimpleme	nted							_	_
1Ch	_	Unimpleme	nted							_	_
1Dh	_	Unimpleme	nted							_	_
1Eh ⁽¹⁾	ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
1Fh ⁽¹⁾	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	(5)	ADON	0000 0000	0000 0000

TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY

 ${\rm x}$ = unknown, ${\rm u}$ = unchanged, ${\rm q}$ = value depends on condition, - = unimplemented read as '0', Legend: shaded locations are unimplemented, read as '0'.

1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'. Note

2: These bits are reserved on the PIC16C923, always maintain these bits clear.

3: These pixels do not display, but can be used as general purpose RAM.

4: PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --0x 0000 when read.

5: Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.

TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
Bank 1	·	•					·			•	
80h	INDF	Addressing	this location	0000 0000	0000 0000						
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect data	a memory ad	dress pointe	r					XXXX XXXX	uuuu uuuu
85h	TRISA	—	_	PORTA Dat	a Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	a Direction R	legister						1111 1111	1111 1111
87h	TRISC	—	_	PORTC Da	ta Direction F	Register				11 1111	11 1111
88h	TRISD	PORTD Dat	a Direction F	Register						1111 1111	1111 1111
89h	TRISE	PORTE Dat	a Direction R	legister						1111 1111	1111 1111
8Ah	PCLATH	—	_	—	Write Buffer	for the uppe	er 5 bits of the	e PC		0 0000	0 0000
8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	LCDIE	ADIE ⁽²⁾	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							_	_
8Eh	PCON	—	_	—	_	_	_	POR	—	0-	u-
8Fh	_	Unimpleme	nted							_	_
90h	—	Unimpleme	nted							—	—
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Reg	ister				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	—	Unimpleme	nted							_	—
96h	—	Unimpleme	nted							_	—
97h	—	Unimpleme	nted							_	—
98h	—	Unimpleme	nted							_	—
99h	—	Unimpleme	nted							_	—
9Ah	_	Unimpleme	nted							_	_
9Bh	—	Unimpleme	nted							-	—
9Ch	—	Unimpleme	nted							-	—
9Dh	_	Unimpleme	nted							-	—
9Eh	_	Unimpleme	nted							_	_
9Fh ⁽¹⁾	ADCON1		—	_		_	PCFG2	PCFG1	PCFG0	000	000

Legend: ${\rm x}$ = unknown, ${\rm u}$ = unchanged, ${\rm q}$ = value depends on condition, - = unimplemented read as '0',

Note

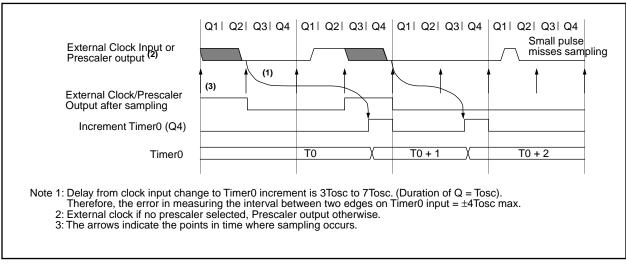
shaded locations are unimplemented, read as '0'. 1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.

These bits are reserved on the PIC16C923, always maintain these bits clear.
 These pixels do not display, but can be used as general purpose RAM.
 PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --0x 0000 when read.
 Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.

7.2 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres-

caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TMR0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

PIC16C9XX

NOTES:

10.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM master/slave duty cycle register. Table 10-1 shows the timer resources used by the CCP module.

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All three are readable and writable.

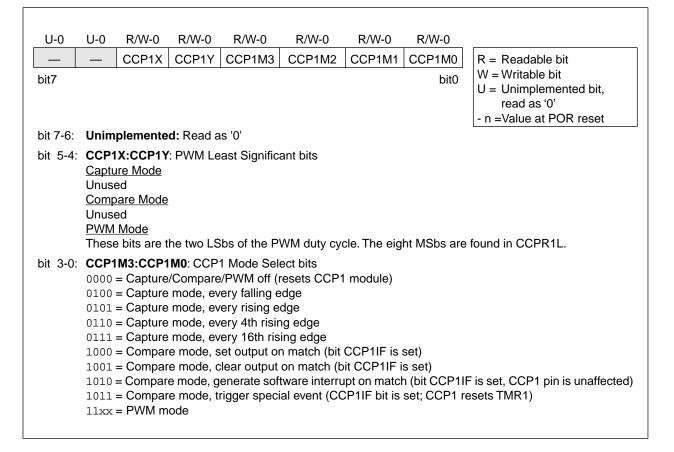

Figure 10-1 shows the CCP1CON register.

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h)

For use of the CCP module, refer to the *Embedded Control Handbook*, "Using the CCP Modules" (AN594).

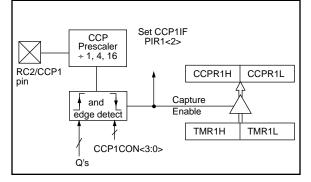
TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

10.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an					
	output, a write to the port can cause a cap-					
	ture condition.					

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode the capture operation may not work.

10.1.3 SOFTWARE INTERRUPT

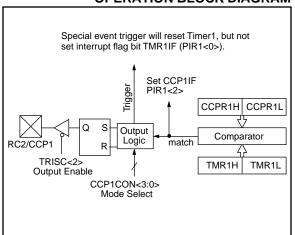
When the Capture mode is changed, a false capture interrupt may be generated. The user should keep enable bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

10.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS


CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	mode value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

10.2 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, a compare interrupt is also generated.

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

11.3.2 MASTER MODE

Master mode of operation is supported, in firmware, using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP and START bits will toggle based on the start and stop conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle with both the S and P bits clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

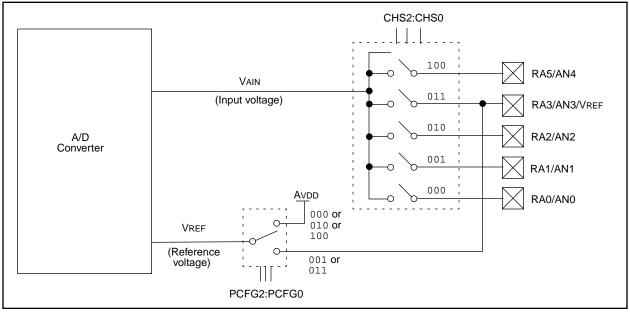
Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.3.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP and START bits will toggle based on the start and stop conditions. Control of the I^2C bus may be taken when bit P (SSP-STAT<4>) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, they are:

- Address Transfer
- Data Transfer


When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF ⁽¹⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE ⁽¹⁾	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
13h	SSPBUF	Synchronous	s Serial Po	rt Receive I	Buffer/Tran	smit Regis	ter			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchronous	s Serial Po	rt (I ² C mod	e) Address	Register				0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	—	ORTC Data Direction Control Register							11 1111	11 1111

TABLE 11-4: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by SSP in l^2C mode. Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.

FIGURE 12-3: A/D BLOCK DIAGRAM

12.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5 TAD per 8-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 12-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

12.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog inputs will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins), may cause the input buffer to consume current that is out of the devices specification.

TABLE 12-1: TAD vs. DEVICE OPERATING FREQUENCIES

A/D Clock	Source (TAD)	Device Frequency							
Operation ADCS1:ADCS0		8 MHz	5 MHz	1.25 MHz	333.33 kHz				
2Tosc	00	250 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs				
8Tosc	01	1 μs	1.6 μs	6.4 μs	24 μs ⁽³⁾				
32Tosc	10	4 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾				
RC	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾				

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When derived frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep mode only

5: For extended voltage devices (LC), please refer to the electrical specifications section.

13.4.1 SEGMENT ENABLES

The LCDSE register is used to select the pin function for groups of pins. The selection allows each group of pins to operate as either LCD drivers or digital only pins. To configure the pins as a digital port, the corresponding bits in the LCDSE register must be cleared.

If the pin is a digital I/O the corresponding TRIS bit controls the data direction. Any bit set in the LCDSE register overrides any bit settings in the corresponding TRIS register.

- **Note 1:** On a Power-on Reset these pins are configured as LCD drivers.
- Note 2: The LMUX1:LMUX0 takes precedence over the LCDSE bit settings for pins RD7, RD6 and RD5.

EXAMPLE 13-1: STATIC MUX WITH 32 SEGMENTS

BCF	STATUS, RPO	;Select Bank 2
BSF	STATUS, RP1	;
BCF	LCDCON,LMUX1	;Select Static MUX
BCF	LCDCON,LMUX0	;
MOVLW	OxFF	;Make PortD,E,F,G
MOVWF	LCDSE	;LCD pins
		; configure rest of LCD

EXAMPLE 13-2: 1/3 MUX WITH 13 SEGMENTS

BCF	STATUS, RPO	;Select Bank 2
BSF	STATUS, RP1	;
BSF	LCDCON,LMUX1	;Select 1/3 MUX
BCF	LCDCON,LMUX0	;
MOVLW	0x87	;Make PORTD<7:0> &
MOVWF	LCDSE	;PORTE<6:0> LCD pins
		; configure rest of LCD
MOVLW	0x87	;Make PORTD<7:0> & ;PORTE<6:0> LCD pins

FIGURE 13-12:LCDSE REGISTER (ADDRESS 10Dh)

							D 44/ 4				
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
SE29 bit7	SE27	SE20	SE16	SE12	SE9	SE5	SE0 bit0	R =Readable bit W =Writable bit U =Unimplemented bit, Read as '0' -n =Value at POR reset			
bit 7:	bit 7: SE29: Pin function select RD7/COM1/SEG31 - RD5/COM3/SEG29 1 = pins have LCD drive function 0 = pins have digital Input function The LMUX1:LMUX0 setting takes precedence over the LCDSE register.										
bit 6:											
bit 5:	SE20 : Pin fr 1 = pins hav 0 = pins hav	ve LCD dri	ve function	1	- RG0/SE	G20					
bit 4:	SE16 : Pin fr 1 = pins hav 0 = pins hav	ve LCD dri	ve functior	ו	RF4/SEC	616					
bit 3:	SE12 : Pin for $1 = pins have 0 = pins have 0$	ve LCD dri	ve function	1	RF0/SEC	912					
bit 2:	SE9 : Pin function select RE6/SEG11 - RE4/SEG09 1 = pins have LCD drive function 0 = pins have digital Input function										
bit 1:	SE5 : Pin function select RE3/SEG08 - RE0/SEG05 1 = pins have LCD drive function 0 = pins have digital Input function										
bit 0:	SE0 : Pin for $1 = pins have 0 = pins have$	ve LCD dri	ve function	1	RD0/SE	G00					

14.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16CXXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- · Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming

The PIC16CXXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

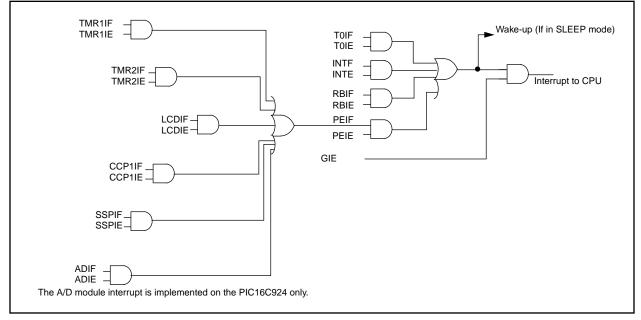
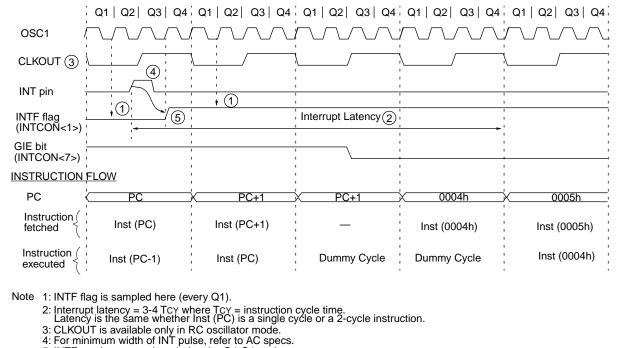

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

FIGURE 14-1: CONFIGURATION WORD


CP1 C	CP0 CP1	CP0	CP1	CP0	—	—	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
oit13												bit0	Address	2007h
	CP1:CP0 11 = Code 10 = Uppe 01 = Uppe 00 = All m Unimpler	e protec er half o er 3/4 of nemory i	tion off f progra f progra is code	am men Im men protect	nory co 10ry co	•								
oit 3:	PWRTE : F 1 = PWRT 0 = PWRT	r disable	ed	r Enable	e bit									
oit 2:	WDTE : W 1 = WDT 0 = WDT	enabled		Enable	bit									
bit 1-0:	FOSC1:F 11 = RC (10 = HS (01 = XT (00 = LP (oscillato oscillato oscillator	r r r	or Sele	ction bi	its								

PIC16C9XX

FIGURE 14-14:INTERRUPT LOGIC

FIGURE 14-15:INT PIN INTERRUPT TIMING

- 5: INTF can be set anytime during the Q4-Q1 cycles.

CLRF	Clear f						
Syntax:	[<i>label</i>] C	[<i>label</i>] CLRF f					
Operands:	$0 \le f \le 127$						
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$						
Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The conter and the Z	-	ster 'f' are	cleared			
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	CLRF	FLAG	S_REG				
	After Inst	FLAG_RE ruction FLAG_RE	EG = EG =	0x5A 0x00			
		Z	=	1			

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (V 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	00	0001	0xxx	xxxx
Description:	W register set.	is cleared	. Zero bit (Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No- Operation	Process data	Write to W
Example	CLRW			
	Before In	struction		
			0x5A	
	After Inst		0x00	
		VV =	UXUU	

DECFSZ	Decreme	nt f, Skip	o if O		GOTO	Uncondi	tional Br	anch	
Syntax:	[label]	DECFSZ	f,d		Syntax:	[label]	GOTO	k	
Operands:	$0 \le f \le 12$	7			Operands:	$0 \leq k \leq 2047$			
Operation:	$d \in [0,1]$ (f) - 1 \rightarrow (destination); skip if result = 0		Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11		>			
		uit = 0			Status Affected:	None			
Status Affected:	None				Encoding:	10	1kkk	kkkk	kkkk
Encoding: Description:	00 1011 dfff ffff The contents of register 'f' are decremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. black in register 'f'.		Description: GOT econtents of register 'f' are decre- ented. If 'd' is 0 the result is placed in the register. If 'd' is 1 the result is placed		eleven bit into PC bit PC are loa	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.			
	If the result executed. If	the result	is 0, then a	NOP is	Words:	1			
	executed in tion.	stead mak	ing it a 2Tc	Y instruc-	Cycles:	2			
Words:	1				Q Cycle Activity:	Q1	Q2	Q3	Q4
Cycles:	1(2)				1st Cycle	Decode	Read literal 'k'	Process data	Write to PC
Q Cycle Activity:	Q1	Q2	Q3	Q4	2nd Cycle	No-	No-	No-	No-
	Decode	Read register 'f'	Process data	Write to destination		Operation	Operation	Operation	Operation
If Skip:	(2nd Cyc	le)			Example	GOTO T	HERE		
	Q1	Q2	Q3	Q4		After Inst	ruction		
	No- Operation	No- Operation	No- Operation	No- Operation		PC = Address TH		THERE	
Example	HERE CONTINU	DECFS GOTO JE •	Z CNT LOOI						
	Before In: PC After Insti CNT if CNT PC if CNT PC	= addr ruction = CNT = 0, = addr ≠ 0,	ress here - 1 ress Cont ress here						

RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below	Operation:	See description below
Status Affected:	С	Status Affected:	С
Encoding:	00 1101 dfff ffff	Encoding:	00 1100 dfff ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode Read register 'f' Vrite to destination		Decode Read register 'f' Process Write to destination
Example	RLF REG1,0	Example	RRF REG1,0
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

PIC16C9XX

NOTES:

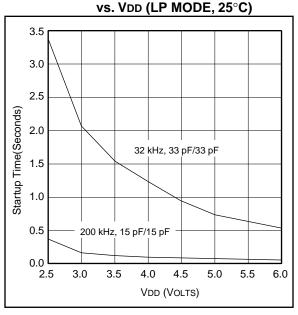


FIGURE 18-23: TYPICAL XTAL STARTUP TIME

FIGURE 18-24:TYPICAL XTAL STARTUP TIME vs. VDD (HS MODE, 25°C)

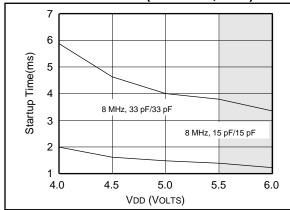
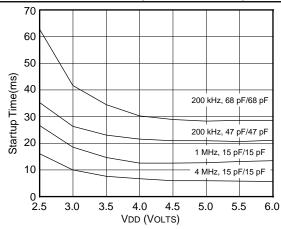
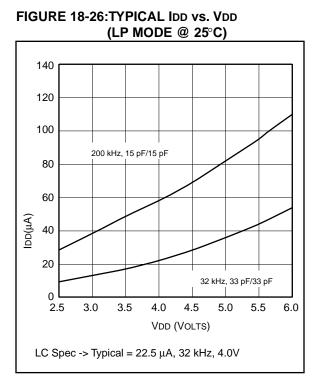
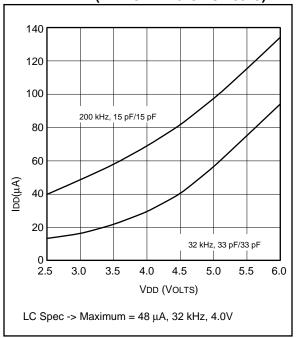
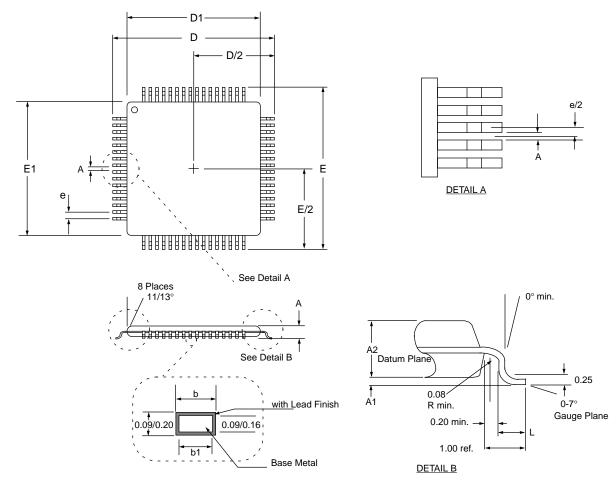



FIGURE 18-25:TYPICAL XTAL STARTUP TIME vs. VDD (XT MODE, 25°C)


FIGURE 18-27:MAXIMUM IDD vs. VDD (LP MODE -40°C TO +85°C)

19.0 PACKAGING INFORMATION

19.1 64-Lead Plastic Surface Mount (TQFP 10x10x1 mm Body 1.0/0.10 mm Lead Form))

	Package Group: Plastic TQFP						
		Millimeters		Inches			
Symbol	Min	Nominal	Мах	Min	Nominal	Max	
α	0°	-	7 °	0°	-	7 °	
А	-	-	1.20	-	-	0.047	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.95	1.00	1.05	0.037	0.039	0.041	
b	0.17	0.22	0.27	0.007	0.009	0.011	
b1	0.17	0.20	0.23	0.007	0.008	0.009	
D	-	12.00	-	-	0.472	-	
D1	-	10.00	-	-	0.394	-	
E	-	12.00	-	-	0.472	-	
E1	-	10.00	-	-	0.394	-	
е	-	0.50	-	-	0.020	-	
L	0.45	0.60	0.75	0.018	0.024	0.030	
N	64	64	64	64	64	64	

INDEX

	•
-	
-	•

A/D		
Accuracy/Error		86
ADCON0	. 79,	80
ADCON1	. 79,	80
ADIF		
Analog-to-Digital Converter		79
Configuring Analog Port		83
Connection Considerations		87
Conversion time		85
Conversions		
Converter Characteristics		
Faster Conversion - Lower Resolution Tradeoff		85
GO/DONE		
Internal Sampling Switch (Rss) Impedance		82
Operation During Sleep		86
Sampling Requirements		82
Sampling Time		82
Source Impedance		82
Transfer Function		87
A/D Conversion Clock		83
Registers		
Section		19
Absolute Maximum Ratings		
ACK70, 74, 75	, 76,	77
ADCON0 Register		19
ADCON1 Register		20
ADIE bit		26
ADIF bit		27
ADRES	80, 1	09
ALU		9
Application Notes		
AN546		79
AN552		33
AN556		29
AN578		63
AN594		57
AN607	1	07
Architecture		
Harvard		9
Overview		9
von Neumann		9
Assembler		
MPASM Assembler	1	38
В		
		74
BF Block Diagrams		14
A/D		Q 1
Capture Mode		
Compare Mode		
External Brown-out1		
External Brown-out2		
External Parallel Cystal Oscillator		
External Power-on Reset		
External Series Crystal Oscillator		
Interrupt Logic		
LCD Module		
On-Chip Reset Circuit		
PIC16C923		
PIC16C923		
PIC16C924		
PORTC		
PORTD		
		20

PORTF	
PORTG	
PWM	
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	
RB3:RB0 Port Pins	
RB7:RB4 Port Pins	
RC Oscillator	
SSP (I ² C Mode) SSP (SPI Mode)	
Timer0	
Timer0/WDT Prescaler	
Timer1	
Timer2	
Watchdog Timer	
Brown-out Protection Circuit	
С	
C bit	23
Capture/Compare/PWM (CCP)	20
Capture Mode	58
CCP1	
CCP1CON	-
CCPR1H	
CCPR1L	109
Compare Mode	
Compare Mode Block Diagram	58
Prescaler	
PWM Block Diagram	
PWM Mode	
PWM, Example Frequencies/Resolutions	
Section	
Carry bit CCP1CON Register	
CCP1IE bit	
CCP1IF bit	
CCPR1H Register	
CCPR1L Register	
Clocking Scheme	
Code Examples	
Call of a Subroutine in Page 1 from Page 0	
Changing Between Capture Prescalers	
Changing Prescaler (Timer0 to WDT)	
Changing Prescaler (WDT to Timer0)	
Doing an A/D Conversion	
I/O Programming I ² C Module Operation	
Indirect Addressing	
Initializing PORTA	
Initializing PORTB	
Initializing PORTC	
Initializing PORTD	
Initializing PORTE	
Initializing PORTF	
Initializing PORTG	
Loading the SSPBUF register	
Reading a 16-bit Free-running Timer	
Code Protection	
Computed GOTO Configuration Bits	
Ŭ	
D	
DC bit	
DC Characteristics	
Development Support	
Development Tools Digit Carry bit	
	9

PIC16C9XX PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

PART NOXX X /XX XXX		Examples
Pattern:	QTP, SQTP, ROM Code or Special RequirementsSP= 64-pin Shrink PDIPPT= TQFPCL= 68-pin Windowed CERQUADL= PLCC	a) PIC16C924 - 04/P 301 Commercial Temp., PDIP Package, 4 MHz, normal VDD limits, QTP pattern #301
Temperature Range: Frequency Range:	$\begin{array}{rcl} - & = & 0^{\circ}\text{C to } +70^{\circ}\text{C (T for Tape/Reel)} \\ \text{I} & = & -40^{\circ}\text{C to } +85^{\circ}\text{C (S for Tape/Reel)} \\ \end{array}$ $\begin{array}{rcl} 04 & = & 200 \text{ kHz (PIC16C9XX-04)} \\ 04 & = & 4 \text{ MHz} \\ 08 & = & 8 \text{ MHz} \end{array}$	 b) PIC16LC923 - 04/PT Commercial Temp., TQFP package, 4 MHz, extended VDD limits c) PIC16C923 - 08I/CL Industrial Temp., Windowed CERQUAD
Device	PIC16C9XX :VDD range 4.0V to 6.0V PIC16C9XXT :VDD range 4.0V to 6.0V (Tape/Reel) PIC16LC9XX :VDD range 2.5V to 6.0V PIC16LC9XT :VDD range 2.5V to 6.0V (Tape/Reel)	

* CL Devices are UV erasable and can be programmed to any device configuration. CL Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office (see below)
 The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.