

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SPI
Peripherals	LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	176 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c924-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C9XX

TABLE 3-1: PIC16C9XX PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	TQFP Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	22	24	14	I	ST/CMOS	Oscillator crystal input or external clock source input. This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
OSC2/CLKOUT	23	25	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	2	57	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port. The AN and VREF multi- plexed functions are used by the PIC16C924 only.
RA0/AN0	4	5	60	I/O	TTL	RA0 can also be Analog input0.
RA1/AN1	5	6	61	I/O	TTL	RA1 can also be Analog input1.
RA2/AN2	7	8	63	I/O	TTL	RA2 can also be Analog input2.
RA3/AN3/Vref	8	9	64	I/O	TTL	RA3 can also be Analog input3 or A/D Voltage Reference.
RA4/T0CKI	9	10	1	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/AN4/SS	10	11	2	I/O	TTL	RA5 can be the slave select for the synchronous serial port or Analog input4.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT	12	13	4	I/O	TTL/ST	RB0 can also be the external interrupt pin. This buffer is a Schmitt Trigger input when configured as an exter- nal interrupt.
RB1	11	12	3	I/O	TTL	
RB2	3	4	59	I/O	TTL	
RB3	2	3	58	I/O	TTL	
RB4	64	68	56	I/O	TTL	Interrupt on change pin.
RB5	63	67	55	I/O	TTL	Interrupt on change pin.
RB6	61	65	53	I/O	TTL/ST	Interrupt on change pin. Serial programming clock. This buffer is a Schmitt Trigger input when used in serial programming mode.
RB7	62	66	54	I/O	TTL/ST	Interrupt on change pin. Serial programming data. This buffer is a Schmitt Trigger input when used in serial programming mode.
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	24	26	16	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	25	27	17	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	26	28	18	I/O	ST	RC2 can also be the Capture1 input/Compare1 out- put/PWM1 output.
RC3/SCK/SCL	13	14	5	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	14	15	6	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2 C mode).
RC5/SDO	15	16	7	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
C1	16	17	8	Р		LCD Voltage Generation.
C2	17	18	9	Р		LCD Voltage Generation.
Legend: I = input — = Not us	O = ou ed	tput	-	= pow	er TL input	L = LCD Driver ST = Schmitt Trigger input

TABLE 4-1: SPECIAL FUNCTION REGISTER SUMMARY (CONT.)	TABLE 4-1:
--	------------

							•	,				
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets	
Bank 2	•	•	•			•	·	•		•		
100h	INDF	Addressing	this location	uses conten	ts of FSR to	address data	memory (no	ot a physical	register)	0000 0000	0000 0000	
101h	TMR0	Timer0 mod	Timer0 module's register									
102h	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000	
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu	
104h	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu	
105h	_	Unimpleme	Jnimplemented									
106h	PORTB	PORTB Dat	ta Latch whe	n written: PC	RTB pins wh	en read				xxxx xxxx	uuuu uuuu	
107h	PORTF	PORTF pins	s when read							0000 0000	0000 0000	
108h	PORTG	PORTG pin	s when read							0000 0000	0000 0000	
109h	_	Unimpleme	nted							_	_	
10Ah	PCLATH	_	_	_	Write Buffer	r for the uppe	er 5 bits of the	e PC		0 0000	0 0000	
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
10Ch	_	Unimpleme	nted							_	_	
10Dh	LCDSE	SE29	SE27	SE20	SE16	SE12	SE9	SE5	SE0	1111 1111	1111 1111	
10Eh	LCDPS	_	_	_	_	LP3	LP2	LP1	LP0	0000	0000	
10Fh	LCDCON	LCDEN	SLPEN		VGEN	CS1	CS0	LMUX1	LMUX0	00-0 0000	00-0 0000	
110h	LCDD00	SEG07 COM0	SEG06 COM0	SEG05 COM0	SEG04 COM0	SEG03 COM0	SEG02 COM0	SEG01 COM0	SEG00 COM0	xxxx xxxx	uuuu uuuu	
111h	LCDD01	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG09 COM0	SEG08 COM0	XXXX XXXX	uuuu uuuu	
112h	LCDD02	SEG23 COM0	SEG22 COM0	SEG21 COM0	SEG20 COM0	SEG19 COM0	SEG18 COM0	SEG17 COM0	SEG16 COM0	xxxx xxxx	uuuu uuuu	
113h	LCDD03	SEG31 COM0	SEG30 COM0	SEG29 COM0	SEG28 COM0	SEG27 COM0	SEG26 COM0	SEG25 COM0	SEG24 COM0	xxxx xxxx	uuuu uuuu	
114h	LCDD04	SEG07 COM1	SEG06 COM1	SEG05 COM1	SEG04 COM1	SEG03 COM1	SEG02 COM1	SEG01 COM1	SEG00 COM1	XXXX XXXX	uuuu uuuu	
115h	LCDD05	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG09 COM1	SEG08 COM1	XXXX XXXX	uuuu uuuu	
116h	LCDD06	SEG23 COM1	SEG22 COM1	SEG21 COM1	SEG20 COM1	SEG19 COM1	SEG18 COM1	SEG17 COM1	SEG16 COM1	XXXX XXXX	uuuu uuuu	
117h	LCDD07	SEG31 COM1 ⁽³⁾	SEG30 COM1	SEG29 COM1	SEG28 COM1	SEG27 COM1	SEG26 COM1	SEG25 COM1	SEG24 COM1	XXXX XXXX	uuuu uuuu	
118h	LCDD08	SEG07 COM2	SEG06 COM2	SEG05 COM2	SEG04 COM2	SEG03 COM2	SEG02 COM2	SEG01 COM2	SEG00 COM2	xxxx xxxx	uuuu uuuu	
119h	LCDD09	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG09 COM2	SEG08 COM2	xxxx xxxx	uuuu uuuu	
11Ah	LCDD10	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	XXXX XXXX	uuuu uuuu	
11Bh	LCDD11	SEG31 COM2 ⁽³⁾	SEG30 COM2 ⁽³⁾	SEG29 COM2	SEG28 COM2	SEG27 COM2	SEG26 COM2	SEG25 COM2	SEG24 COM2	xxxx xxxx	uuuu uuuu	
11Ch	LCDD12	SEG07 COM3	SEG06 COM3	SEG05 COM3	SEG04 COM3	SEG03 COM3	SEG02 COM3	SEG01 COM3	SEG00 COM3	XXXX XXXX	uuuu uuuu	
11Dh	LCDD13	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG09 COM3	SEG08 COM3	xxxx xxxx	uuuu uuuu	
11Eh	LCDD14	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	xxxx xxxx	uuuu uuuu	
11Fh	LCDD15	SEG31 COM3 ⁽³⁾	SEG30 COM3 ⁽³⁾	SEG29 COM3 ⁽³⁾	SEG28 COM3	SEG27 COM3	SEG26 COM3	SEG25 COM3	SEG24 COM3	xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0',

shaded locations are unimplemented, read as '0'. Note

1: Registers ADRES, ADCON0, and ADCON1 are not implemented in the PIC16C923, read as '0'.

2: These bits are reserved on the PIC16C923, always maintain these bits clear.

These pixels do not display, but can be used as general purpose RAM.
 PIC16C923 reset values for PORTA: --xx xxxx for a POR, and --uu uuuu for all other resets, PIC16C924 reset values for PORTA: --xx xxxx for a POR.

5: Bit1 of ADCON0 is reserved on the PIC16C924, always maintain this bit clear.

4.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 4-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

Note 1: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 4-3: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x					
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit				
bit7 bit 7:	IRP: Regis	ster Bank	Select bit	(used for ir	ndirect addr	essing)	bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
	0 = Bank 0, 1 (00h - FFh)											
bit 6-5:	it 6-5: RP1:RP0 : Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh)											
bit 4:	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred											
bit 3:	PD : Power 1 = After p 0 = By exe	r-down bit oower-up c ecution of	or by the C the SLEEP	LRWDT inst	ruction							
bit 2:	Z : Zero bit 1 = The re 0 = The re	sult of an sult of an	arithmetic arithmetic	or logic op or logic op	peration is z	ero ot zero						
bit 1:	DC : Digit of 1 = A carry 0 = No car	carry/borro y-out from rry-out fro	the 4th lo the 4th lo the 4th lo	WF, ADDLW w order bi ow order b	, SUBLW , SUI t of the resu bit of the res	BWF instruct It occurred ult	tions) (for b	porrow the polarity is reversed)				
bit 0:	 C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 											

7.0 TIMER0 MODULE

The Timer0 module has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit TOCS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION<5>). In counter mode Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION<4>). Clearing

bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

PIC16C9XX

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2

FIGURE 7-4: **TIMER0 INTERRUPT TIMING**

FIGURE 11-7: SPI MODE TIMING (SLAVE MODE WITH CKE = 1)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	LCDIF	ADIF ⁽¹⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
8Ch	PIE1	LCDIE	ADIE ⁽¹⁾	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
13h	SSPBUF	Synchro	nous Serial	Port Recei	-	xxxx xxxx	uuuu uuuu				
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	—	—	PORTA Da	ata Directio	n Control R	11 1111	11 1111			
87h	TRISC	_	—	PORTC D	PORTC Data Direction Control Register						11 1111
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode. Note 1: Bits ADIE and ADIF are reserved on the PIC16C923, always maintain these bits clear.

11.2.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/W bit (Figure 11-9). The more complex is the 10-bit address with a R/W bit (Figure 11-10). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-9: 7-BIT ADDRESS FORMAT

FIGURE 11-10: I²C 10-BIT ADDRESS FORMAT

11.2.3 TRANSFER ACKNOWLEDGE

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-11). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave SDA high so that the master can generate the STOP condition (Figure 11-8).

FIGURE 11-11: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-12. The slave will inherently stretch the clock, when it is a transmitter, but will not when it is a receiver. The slave will have to clear the SSPCON<4> bit to enable clock stretching when it is a receiver.

FIGURE 11-12: DATA TRANSFER WAIT STATE

12.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 12-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), (Figure 12-4). The source impedance affects the offset voltage at the analog input (due to pin leakage current). **The maximum recommended impedance for analog sources is 10 k** Ω . After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 12-1 may be used. This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

EQUATION 12-1: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/512)) \bullet (1 - e^{(-Tc/CHOLD(Ric + Rss + Rs))})$

Given: VHOLD = (VREF/512), for 1/2 LSb resolution

The above equation reduces to:

 $Tc = -(51.2 \text{ pF})(1 \text{ k}\Omega - \text{Rss} + \text{Rs}) \ln(1/511)$

Example 12-1 shows the calculation of the minimum required acquisition time (TACQ). This calculation is based on the following system assumptions.

CHOLD = 51.2 pF

 $Rs = 10 \ k\Omega$

1/2 LSb error

 $VDD = 5V \rightarrow Rss = 7 \text{ k}\Omega$

Temp (system max.) = 50°C

VHOLD = 0 @ t = 0

- Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
- **Note 2:** The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **Note 3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- Note 4: After a conversion has completed, a 2.0 TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel.

EXAMPLE 12-1: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ = Amplifier Settling Time +

- Holding Capacitor Charging Time + Temperature Coefficient
- TACQ = $5 \,\mu s + Tc + [(Temp 25^{\circ}C)(0.05 \,\mu s/^{\circ}C)]$
- TC = -CHOLD (RIC + RSS + RS) ln(1/511) -51.2 pF (1 k Ω + 7 k Ω + 10 k Ω) ln(0.0020) -51.2 pF (18 k Ω) ln(0.0020) -0.921 μ s (-6.2364) 5.747 μ s TACO = 5 μ s + 5 747 μ s + 1/50°C - 25°C)(0.05 μ s/°C
- TACQ = 5 μs + 5.747 μs + [(50°C 25°C)(0.05 μs/°C)] 10.747 μs + 1.25 μs 11.997 μs

12.8 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

12.9 Connection Considerations

If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification.

An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 k Ω recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

12.10 Transfer Function

The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF / 256 (Figure 12-5).

FIGURE 13-2: LCD MODULE BLOCK DIAGRAM

FIGURE 13-3: LCDPS REGISTER (ADDRESS 10Eh)

TABLE 14-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS	(Cont.'d)
---	-----------

Register	Applicable Devices		Power-on Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
LCDSE	923	924	1111 1111	1111 1111	սսսս սսսս	
LCDPS	923	924	0000	0000	uuuu	
LCDCON	923	924	00-0 0000	00-0 0000	uu-u uuuu	
LCDD00 to LCDD15	923	924	XXXX XXXX	<u>uuuu</u> uuuu	սսսս սսսս	
TRISF	923	924	1111 1111	1111 1111	uuuu uuuu	
TRISG	923	924	1111 1111	1111 1111	սսսս սսսս	

Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 14-5 for reset value for specific condition.

4: Bits PIE1<6> and PIR1<6> are reserved on the PIC16C923, always maintain these bits clear.

5: PORTA values when read.

FIGURE 14-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 14-10:TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

14.7 <u>Watchdog Timer (WDT)</u>

The Watchdog Timer is as a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 14.1).

14.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

14.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., and max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 14-16:WATCHDOG TIMER BLOCK DIAGRAM

FIGURE 14-17:SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	(1)	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Figure 14-1 for operation of these bits.

14.8 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

14.8.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. A/D conversion (when A/D clock source is RC).
- 6. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 7. LCD module.

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

14.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PICmicro. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

16.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PICmicro series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PICmicro family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display.

16.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

16.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PICmicro device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

16.15 <u>SEEVAL[®] Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

16.16 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters.

17.5 <u>Timing Diagrams and Specifications</u>

FIGURE 17-3: EXTERNAL CLOCK TIMING

TABLE 17-4: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	8	MHz	HS osc mode
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	8	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	125	—	—	ns	HS osc mode
			5	_	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			125	_	250	ns	HS osc mode
			5		—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	500	_	DC	ns	TCY = 4/FOSC
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			10			ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	-	—	25	ns	XT oscillator
	TosF	Fall Time	-	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	$\overline{SS}\downarrow$ to $SCK\downarrow$ or $SCK\uparrow$ input				ns	
71*	TscH	SCK input high time (slave mode)	Continuous	1.25Tcy + 30	—	_	ns	
71A*			Single Byte	40	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Continuous	1.25Tcy + 30	—	—	ns	
72A*			Single Byte	40				
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input	50	—	—	ns		
74*	TscH2diL, TscL2diL	Hold time of SDI data input to	50	—	—	ns		
75*	TdoR	SDO data output rise time	_	10	25	ns		
76*	TdoF	SDO data output fall time	SDO data output fall time			25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impeda	ance	10	_	50	ns	
78*	TscR	SCK output rise time (master	mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master	mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after S	SCK edge	_	_	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SC	K edge	Тсү	—	_	ns	
82*	TssL2doV	SDO data output valid after S	SDO data output valid after $\overline{SS}\downarrow$ edge			50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_		ns	
84*	Tb2b	Delay between consecutive b	oytes	1.5Tcy + 40	_	_	ns	

TABLE 17-9: SPI MODE REQUIREMENTS

* Characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 18-1: RC OSCILLATOR FREQUENCIES

Coxt	Povt	Average		
Cext	NEXI	Fosc @ 5V, 25°C		
22 pF	5k	4.12 MHz	± 1.4%	
	10k	2.35 MHz	± 1.4%	
	100k	268 kHz	± 1.1%	
100 pF	3.3k	1.80 MHz	± 1.0%	
	5k	1.27 MHz	± 1.0%	
	10k	688 kHz	± 1.2%	
	100k	77.2 kHz	± 1.0%	
300 pF	3.3k	707 kHz	± 1.4%	
	5k	501 kHz	± 1.2%	
	10k	269 kHz	± 1.6%	
	100k	28.3 kHz	± 1.1%	

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 18-20:TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 18-21:TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 18-22:TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Data based on process characterization samples. See first page of this section for details.

PIC16C9XX PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

PART NOXX X /XX XXX							Examples	
				⊣Pattern: Package: 	QTP, S SP PT CL L	QTP, ROM Code or Special Requirements = 64-pin Shrink PDIP = TQFP = 68-pin Windowed CERQUAD = PLCC	a)	PIC16C924 - 04/P 301 Commercial Temp., PDIP Package, 4 MHz, normal VDD limits, QTP pattern #301
				Temperature Range: Frequency Range:	- I 04 04 08	 = 0°C to +70°C (T for Tape/Reel) = -40°C to +85°C (S for Tape/Reel) = 200 kHz (PIC16C9XX-04) = 4 MHz = 8 MHz 	b) c)	PIC16LC923 - 04/PT Commercial Temp., TQFP package, 4 MHz, extended VDD limits PIC16C923 - 08I/CL Industrial Temp., Windowed CERQUAD
				_Device	PIC160 PIC160 PIC161 PIC161 PIC161	C9XX :VDD range 4.0V to 6.0V C9XXT :VDD range 4.0V to 6.0V (Tape/Reel) C9XX :VDD range 2.5V to 6.0V C9XT :VDD range 2.5V to 6.0V (Tape/Reel)		package, 8 MHz, normal VDD limits

* CL Devices are UV erasable and can be programmed to any device configuration. CL Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- Your local Microchip sales office (see below)
 The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.